We currently use a script to keep certain duplicate QL files in sync across the repo. For historical reasons, this script has lived in the private repo alongside the rest of CodeQL, even though it's only used for files in the public `ql` repo. This PR moves the script into the public `ql` repo. It is still invoked by Jenkins scripts that live in the private repo during CI, but it can also be invoked directly without having a checkout of the private repo. This is useful for anyone who is modifying the dataflow or IR libraries with only a QL checkout.
When building SSA, we'll be assuming that stack variables do not escape, at least until we improve our alias analysis. I've added a new `IREscapeAnalysisConfiguration` class to allow the query to control this, and a new `UseSoundEscapeAnalysis.qll` module that can be imported to switch to the sound escape analysis. I've cloned the existing IR and SSA tests to have both sound and unsound versions. There were relatively few diffs in the IR dump tests, and the sanity tests still give the same results after one change described below.
Assuming that stack variables do not escape exposed an existing bug where we do not emit an `Uninitialized` instruction for the temporary variables used by `return` statements and `throw` expressions, even if the initializer is a constructor call or array initializer. I've refactored the code for handling elements that initialize a variable to share a common base class. I added a test case for returning an object initialized by constructor call, and ensured that the IR diffs for the existing `throw` test cases are correct.
This commit removes fields from the responsibilities of `FlowVar.qll`.
The treatment of fields in that file was slow and imprecise.
It then adds another copy of the shared global data flow library, used
only to find local field flow, and it exposes that local field flow
through `localFlow` and `localFlowStep`.
This has a performance cost. It adds two cached stages to any query that
uses `localFlow`: the stage from `DataFlowImplCommon`, which is shared
with all queries that use global data flow, and a new stage just for
`localFlowStep`.
This file is now identical in all languages. Unifying this file led to
the following changes:
- The documentation spelling fixes and example from the C++ version
were copied to the other versions and updated.
- The steps through `NonLocalJumpNode` from C# were abstracted into a
`globalAdditionalTaintStep` predicate that's empty for C++ and Java.
- The `defaultTaintBarrier` predicate from Java is now present but empty
on C++ and C#.
- The C++ `isAdditionalFlowStep` predicate on
`TaintTracking::Configuration` no longer includes `localFlowStep`.
That should avoid some unnecessary tuple copying.
To keep the code changes minimal, and to keep the implementation similar
to C++ and Java, the `TaintTracking{Public,Private}` files are now
imported together through `TaintTrackingUtil`. This has the side effect
of exposing `localAdditionalTaintStep`. The corresponding predicate for
Java was already exposed.
This change fixes a few key problems with the existing SSA implementations:
For unaliased SSA, we were incorrectly choosing to model a local variable that had accesses that did not cover the entire variable. This has been changed to ensure that all accesses to the variable are at offset zero and have the same type as the variable itself. This was only possible to fix now that every `MemoryOperand` has its own type.
For aliased SSA, we now correctly track the offset and size of each memory access using an interval of bit offsets covered by the access. The offset interval makes the overlap computation more straightforward. Again, this is only possible now that operands have types.
The `getXXXMemoryAccess` predicates are now driven by the `MemoryAccessKind` on the operands and results, instead of by specific opcodes.
This change does fix an existing false negative in the IR dataflow tests.
I added a few simple test cases to the SSA IR tests, covering the various kinds of overlap (MustExcactly, MustTotally, and MayPartially).
I added "PrintSSA.qll", which can dump the SSA memory accesses as part of an IR dump.
The existing unreachable IR removal code only retargeted an infeasible edge to an `Unreached` instruction if the successor of the edge was an unreachable block. This is too conservative, because it doesn't remove an infeasible edge that targets a block that is still reachable via other paths. The trivial example of this is `do { } while (false);`, where the back edge is infeasible, but the body block is still reachable from the loop entry.
This change retargets all infeasible edges to `Unreached` instructions, regardless of the reachability of the successor block.
This change removes any IR instructions that can be statically proven unreachable. To detect unreachable IR, we first run a simple constant value analysis on the IR. Then, any `ConditionalBranch` with a constant condition has the appropriate edge marked as "infeasible". We define a class `ReachableBlock` as any `IRBlock` with a path from the entry block of the function. SSA construction has been modified to operate only on `ReachableBlock` and `ReachableInstruction`, which ensures that only reachable IR gets translated into SSA form. For any infeasible edge where its predecessor block is reachable, we replace the original target of the branch with an `Unreached` instruction, which lets us preserve the invariant that all `ConditionalBranch` instructions have both a true and a false edge, and allows guard inference to still work.
The changes to `SSAConstruction.qll` are not as scary as they look. They are almost entirely a mechanical replacement of `OldIR::IRBlock` with `OldBlock`, which is just an alias for `ReachableBlock`.
Note that the `constant_func.ql` test can determine that the two new test functions always return 0.
Removing unreachable code helps get rid of some common FPs in IR-based dataflow analysis, especially for constructs like `while(true)`.
This change moves the simple constant analysis that was used by the const_func test into a pyrameterized module for use on any stage of the IR. This will be used to detect unreachable code.
This commit adds Chi nodes to the successor relation and accounts for
them in the CFG, but does not add them to the SSA data graph. Chi nodes
are inserted for partial writes to any VirtualVariable, regardless of
whether the partial write reaches any uses.
This enables the addition of new instructions in later phases of IR
construction; in particular, aliasing write instructions and inference
instructions.
@rdmarsh2 has been working on various queries and libraries on top of the IR, and has pointed out that having to always refer to an operand of an instruction by the pair of (instruction, operandTag) makes using the IR a bit clunky. This PR adds a new `Operand` IPA type that represents an operand of an instruction. `OperandTag` still exists, but is now an internal type used only in the IR implementation.
Moved IR flavors into "implementation", with internal files under "implementation/internal". Made `IRBlockConstruction` just a nested module of `IRConstruction`/`SSAConstruction`, so it gets picked up from the `Construction` parameter of the `IR` module, rather than being picked up just from being in the same directory as `IRBlock`.
There are no real code changes here, other than to fix up `import`s. All tests still hae the same output, as expected.
A future commit will hide the IR flavors other than the one we want queries to use directly.
This file is used by the `sync-identical-files.py` pull-request check in
our internal repo, which can hopefully soon start running on this repo
as well. This initial commit moves over all the file group definitions
whose files are entirely within this repository.
This change is not synchronized with the internal repo, so the file
groups will appear in both repositories until they sync up. That should
not cause any problems.