d3/lib/science/science.stats.js

720 строки
18 KiB
JavaScript
Исходник Обычный вид История

(function(){science.stats = {};
// Bandwidth selectors for Gaussian kernels.
// Based on R's implementations in `stats.bw`.
science.stats.bandwidth = {
// Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.
nrd0: function(x) {
var hi = Math.sqrt(science.stats.variance(x));
if (!(lo = Math.min(hi, science.stats.iqr(x) / 1.34)))
(lo = hi) || (lo = Math.abs(x[1])) || (lo = 1);
return .9 * lo * Math.pow(x.length, -.2);
},
// Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and
// Visualization. Wiley.
nrd: function(x) {
var h = science.stats.iqr(x) / 1.34;
return 1.06 * Math.min(Math.sqrt(science.stats.variance(x)), h)
* Math.pow(x.length, -1/5);
}
};
science.stats.distance = {
euclidean: function(a, b) {
var n = a.length,
i = -1,
s = 0,
x;
while (++i < n) {
x = a[i] - b[i];
s += x * x;
}
return Math.sqrt(s);
},
manhattan: function(a, b) {
var n = a.length,
i = -1,
s = 0;
while (++i < n) s += Math.abs(a[i] - b[i]);
return s;
},
minkowski: function(p) {
return function(a, b) {
var n = a.length,
i = -1,
s = 0;
while (++i < n) s += Math.pow(Math.abs(a[i] - b[i]), p);
return Math.pow(s, 1 / p);
};
},
chebyshev: function(a, b) {
var n = a.length,
i = -1,
max = 0,
x;
while (++i < n) {
x = Math.abs(a[i] - b[i]);
if (x > max) max = x;
}
return max;
},
hamming: function(a, b) {
var n = a.length,
i = -1,
d = 0;
while (++i < n) if (a[i] !== b[i]) d++;
return d;
},
jaccard: function(a, b) {
var n = a.length,
i = -1,
s = 0;
while (++i < n) if (a[i] === b[i]) s++;
return s / n;
},
braycurtis: function(a, b) {
var n = a.length,
i = -1,
s0 = 0,
s1 = 0,
ai,
bi;
while (++i < n) {
ai = a[i];
bi = b[i];
s0 += Math.abs(ai - bi);
s1 += Math.abs(ai + bi);
}
return s0 / s1;
}
};
// Based on implementation in http://picomath.org/.
science.stats.erf = function(x) {
var a1 = 0.254829592,
a2 = -0.284496736,
a3 = 1.421413741,
a4 = -1.453152027,
a5 = 1.061405429,
p = 0.3275911;
// Save the sign of x
var sign = x < 0 ? -1 : 1;
if (x < 0) {
sign = -1;
x = -x;
}
// A&S formula 7.1.26
var t = 1 / (1 + p * x);
return sign * (
1 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1)
* t * Math.exp(-x * x));
};
science.stats.phi = function(x) {
return .5 * (1 + science.stats.erf(x / Math.SQRT2));
};
// See <http://en.wikipedia.org/wiki/Kernel_(statistics)>.
science.stats.kernel = {
uniform: function(u) {
if (u <= 1 && u >= -1) return .5;
return 0;
},
triangular: function(u) {
if (u <= 1 && u >= -1) return 1 - Math.abs(u);
return 0;
},
epanechnikov: function(u) {
if (u <= 1 && u >= -1) return .75 * (1 - u * u);
return 0;
},
quartic: function(u) {
if (u <= 1 && u >= -1) {
var tmp = 1 - u * u;
return (15 / 16) * tmp * tmp;
}
return 0;
},
triweight: function(u) {
if (u <= 1 && u >= -1) {
var tmp = 1 - u * u;
return (35 / 32) * tmp * tmp * tmp;
}
return 0;
},
gaussian: function(u) {
return 1 / Math.sqrt(2 * Math.PI) * Math.exp(-.5 * u * u);
},
cosine: function(u) {
if (u <= 1 && u >= -1) return Math.PI / 4 * Math.cos(Math.PI / 2 * u);
return 0;
}
};
// http://exploringdata.net/den_trac.htm
science.stats.kde = function() {
var kernel = science.stats.kernel.gaussian,
sample = [],
bandwidth = science.stats.bandwidth.nrd;
function kde(points, i) {
var bw = bandwidth.call(this, sample);
return points.map(function(x) {
var i = -1,
y = 0,
n = sample.length;
while (++i < n) {
y += kernel((x - sample[i]) / bw);
}
return [x, y / bw / n];
});
}
kde.kernel = function(x) {
if (!arguments.length) return kernel;
kernel = x;
return kde;
};
kde.sample = function(x) {
if (!arguments.length) return sample;
sample = x;
return kde;
};
kde.bandwidth = function(x) {
if (!arguments.length) return bandwidth;
bandwidth = science.functor(x);
return kde;
};
return kde;
};
// Based on figue implementation by Jean-Yves Delort.
// http://code.google.com/p/figue/
science.stats.kmeans = function() {
var distance = science.stats.distance.euclidean,
maxIterations = 1000,
k = 1;
function kmeans(vectors) {
var n = vectors.length,
assignments = [],
clusterSizes = [],
repeat = 1,
iterations = 0,
centroids = science_stats_kmeansRandom(k, vectors),
newCentroids,
i,
j,
x,
d,
min,
best;
while (repeat && iterations < maxIterations) {
// Assignment step.
j = -1; while (++j < k) {
clusterSizes[j] = 0;
}
i = -1; while (++i < n) {
x = vectors[i];
min = Infinity;
j = -1; while (++j < k) {
d = distance.call(this, centroids[j], x);
if (d < min) {
min = d;
best = j;
}
}
clusterSizes[assignments[i] = best]++;
}
// Update centroids step.
newCentroids = [];
i = -1; while (++i < n) {
x = assignments[i];
d = newCentroids[x];
if (d == null) newCentroids[x] = vectors[i].slice();
else {
j = -1; while (++j < d.length) {
d[j] += vectors[i][j];
}
}
}
j = -1; while (++j < k) {
x = newCentroids[j];
d = 1 / clusterSizes[j];
i = -1; while (++i < x.length) x[i] *= d;
}
// Check convergence.
repeat = 0;
j = -1; while (++j < k) {
if (!science_stats_kmeansCompare(newCentroids[j], centroids[j])) {
repeat = 1;
break;
}
}
centroids = newCentroids;
iterations++;
}
return {assignments: assignments, centroids: centroids};
}
kmeans.k = function(x) {
if (!arguments.length) return k;
k = x;
return kmeans;
};
kmeans.distance = function(x) {
if (!arguments.length) return distance;
distance = x;
return kmeans;
};
return kmeans;
};
function science_stats_kmeansCompare(a, b) {
if (!a || !b || a.length !== b.length) return false;
var n = a.length,
i = -1;
while (++i < n) if (a[i] !== b[i]) return false;
return true;
}
// Returns an array of k distinct vectors randomly selected from the input
// array of vectors. Returns null if k > n or if there are less than k distinct
// objects in vectors.
function science_stats_kmeansRandom(k, vectors) {
var n = vectors.length;
if (k > n) return null;
var selected_vectors = [];
var selected_indices = [];
var tested_indices = {};
var tested = 0;
var selected = 0;
var i,
vector,
select;
while (selected < k) {
if (tested === n) return null;
var random_index = Math.floor(Math.random() * n);
if (random_index in tested_indices) continue;
tested_indices[random_index] = 1;
tested++;
vector = vectors[random_index];
select = true;
for (i = 0; i < selected; i++) {
if (science_stats_kmeansCompare(vector, selected_vectors[i])) {
select = false;
break;
}
}
if (select) {
selected_vectors[selected] = vector;
selected_indices[selected] = random_index;
selected++;
}
}
return selected_vectors;
}
science.stats.hcluster = function() {
var distance = science.stats.distance.euclidean,
linkage = "simple"; // simple, complete or average
function hcluster(vectors) {
var n = vectors.length,
dMin = [],
cSize = [],
distMatrix = [],
clusters = [],
c1,
c2,
c1Cluster,
c2Cluster,
p,
root,
i,
j;
// Initialise distance matrix and vector of closest clusters.
i = -1; while (++i < n) {
dMin[i] = 0;
distMatrix[i] = [];
j = -1; while (++j < n) {
distMatrix[i][j] = i === j ? Infinity : distance(vectors[i] , vectors[j]);
if (distMatrix[i][dMin[i]] > distMatrix[i][j]) dMin[i] = j;
}
}
// create leaves of the tree
i = -1; while (++i < n) {
clusters[i] = [];
clusters[i][0] = {
left: null,
right: null,
dist: 0,
centroid: vectors[i],
size: 1,
depth: 0
};
cSize[i] = 1;
}
// Main loop
for (p = 0; p < n-1; p++) {
// find the closest pair of clusters
c1 = 0;
for (i = 0; i < n; i++) {
if (distMatrix[i][dMin[i]] < distMatrix[c1][dMin[c1]]) c1 = i;
}
c2 = dMin[c1];
// create node to store cluster info
c1Cluster = clusters[c1][0];
c2Cluster = clusters[c2][0];
newCluster = {
left: c1Cluster,
right: c2Cluster,
dist: distMatrix[c1][c2],
centroid: calculateCentroid(c1Cluster.size, c1Cluster.centroid,
c2Cluster.size, c2Cluster.centroid),
size: c1Cluster.size + c2Cluster.size,
depth: 1 + Math.max(c1Cluster.depth, c2Cluster.depth)
};
clusters[c1].splice(0, 0, newCluster);
cSize[c1] += cSize[c2];
// overwrite row c1 with respect to the linkage type
for (j = 0; j < n; j++) {
switch (linkage) {
case "single":
if (distMatrix[c1][j] > distMatrix[c2][j])
distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j];
break;
case "complete":
if (distMatrix[c1][j] < distMatrix[c2][j])
distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j];
break;
case "average":
distMatrix[j][c1] = distMatrix[c1][j] = (cSize[c1] * distMatrix[c1][j] + cSize[c2] * distMatrix[c2][j]) / (cSize[c1] + cSize[j]);
break;
}
}
distMatrix[c1][c1] = Infinity;
// infinity ­out old row c2 and column c2
for (i = 0; i < n; i++)
distMatrix[i][c2] = distMatrix[c2][i] = Infinity;
// update dmin and replace ones that previous pointed to c2 to point to c1
for (j = 0; j < n; j++) {
if (dMin[j] == c2) dMin[j] = c1;
if (distMatrix[c1][j] < distMatrix[c1][dMin[c1]]) dMin[c1] = j;
}
// keep track of the last added cluster
root = newCluster;
}
return root;
}
hcluster.distance = function(x) {
if (!arguments.length) return distance;
distance = x;
return hcluster;
};
return hcluster;
};
function calculateCentroid(c1Size, c1Centroid, c2Size, c2Centroid) {
var newCentroid = [],
newSize = c1Size + c2Size,
n = c1Centroid.length,
i = -1;
while (++i < n) {
newCentroid[i] = (c1Size * c1Centroid[i] + c2Size * c2Centroid[i]) / newSize;
}
return newCentroid;
}
science.stats.iqr = function(x) {
var quartiles = science.stats.quantiles(x, [.25, .75]);
return quartiles[1] - quartiles[0];
};
// Based on org.apache.commons.math.analysis.interpolation.LoessInterpolator
// from http://commons.apache.org/math/
science.stats.loess = function() {
var bandwidth = .3,
robustnessIters = 2,
accuracy = 1e-12;
function smooth(xval, yval, weights) {
var n = xval.length,
i;
if (n !== yval.length) throw {error: "Mismatched array lengths"};
if (n == 0) throw {error: "At least one point required."};
if (arguments.length < 3) {
weights = [];
i = -1; while (++i < n) weights[i] = 1;
}
science_stats_loessFiniteReal(xval);
science_stats_loessFiniteReal(yval);
science_stats_loessFiniteReal(weights);
science_stats_loessStrictlyIncreasing(xval);
if (n == 1) return [yval[0]];
if (n == 2) return [yval[0], yval[1]];
var bandwidthInPoints = Math.floor(bandwidth * n);
if (bandwidthInPoints < 2) throw {error: "Bandwidth too small."};
var res = [],
residuals = [],
robustnessWeights = [];
// Do an initial fit and 'robustnessIters' robustness iterations.
// This is equivalent to doing 'robustnessIters+1' robustness iterations
// starting with all robustness weights set to 1.
i = -1; while (++i < n) {
res[i] = 0;
residuals[i] = 0;
robustnessWeights[i] = 1;
}
var iter = -1;
while (++iter <= robustnessIters) {
var bandwidthInterval = [0, bandwidthInPoints - 1];
// At each x, compute a local weighted linear regression
var x;
i = -1; while (++i < n) {
x = xval[i];
// Find out the interval of source points on which
// a regression is to be made.
if (i > 0) {
science_stats_loessUpdateBandwidthInterval(xval, weights, i, bandwidthInterval);
}
var ileft = bandwidthInterval[0],
iright = bandwidthInterval[1];
// Compute the point of the bandwidth interval that is
// farthest from x
var edge = (xval[i] - xval[ileft]) > (xval[iright] - xval[i]) ? ileft : iright;
// Compute a least-squares linear fit weighted by
// the product of robustness weights and the tricube
// weight function.
// See http://en.wikipedia.org/wiki/Linear_regression
// (section "Univariate linear case")
// and http://en.wikipedia.org/wiki/Weighted_least_squares
// (section "Weighted least squares")
var sumWeights = 0,
sumX = 0,
sumXSquared = 0,
sumY = 0,
sumXY = 0,
denom = Math.abs(1 / (xval[edge] - x));
for (var k = ileft; k <= iright; ++k) {
var xk = xval[k],
yk = yval[k],
dist = k < i ? x - xk : xk - x,
w = science_stats_loessTricube(dist * denom) * robustnessWeights[k] * weights[k],
xkw = xk * w;
sumWeights += w;
sumX += xkw;
sumXSquared += xk * xkw;
sumY += yk * w;
sumXY += yk * xkw;
}
var meanX = sumX / sumWeights,
meanY = sumY / sumWeights,
meanXY = sumXY / sumWeights,
meanXSquared = sumXSquared / sumWeights;
var beta = (Math.sqrt(Math.abs(meanXSquared - meanX * meanX)) < accuracy)
? 0 : ((meanXY - meanX * meanY) / (meanXSquared - meanX * meanX));
var alpha = meanY - beta * meanX;
res[i] = beta * x + alpha;
residuals[i] = Math.abs(yval[i] - res[i]);
}
// No need to recompute the robustness weights at the last
// iteration, they won't be needed anymore
if (iter === robustnessIters) {
break;
}
// Recompute the robustness weights.
// Find the median residual.
var sortedResiduals = residuals.slice();
sortedResiduals.sort();
var medianResidual = sortedResiduals[Math.floor(n / 2)];
if (Math.abs(medianResidual) < accuracy)
break;
var arg,
w;
i = -1; while (++i < n) {
arg = residuals[i] / (6 * medianResidual);
robustnessWeights[i] = (arg >= 1) ? 0 : ((w = 1 - arg * arg) * w);
}
}
return res;
}
smooth.bandwidth = function(x) {
if (!arguments.length) return x;
bandwidth = x;
return smooth;
};
smooth.robustnessIterations = function(x) {
if (!arguments.length) return x;
robustnessIters = x;
return smooth;
};
smooth.accuracy = function(x) {
if (!arguments.length) return x;
accuracy = x;
return smooth;
};
return smooth;
};
function science_stats_loessFiniteReal(values) {
var n = values.length,
i = -1;
while (++i < n) if (!isFinite(values[i])) return false;
return true;
}
function science_stats_loessStrictlyIncreasing(xval) {
var n = xval.length,
i = 0;
while (++i < n) if (xval[i - 1] >= xval[i]) return false;
return true;
}
// Compute the tricube weight function.
// http://en.wikipedia.org/wiki/Local_regression#Weight_function
function science_stats_loessTricube(x) {
return (x = 1 - x * x * x) * x * x;
}
// Given an index interval into xval that embraces a certain number of
// points closest to xval[i-1], update the interval so that it embraces
// the same number of points closest to xval[i], ignoring zero weights.
function science_stats_loessUpdateBandwidthInterval(
xval, weights, i, bandwidthInterval) {
var left = bandwidthInterval[0],
right = bandwidthInterval[1];
// The right edge should be adjusted if the next point to the right
// is closer to xval[i] than the leftmost point of the current interval
var nextRight = science_stats_loessNextNonzero(weights, right);
if ((nextRight < xval.length) && (xval[nextRight] - xval[i]) < (xval[i] - xval[left])) {
var nextLeft = science_stats_loessNextNonzero(weights, left);
bandwidthInterval[0] = nextLeft;
bandwidthInterval[1] = nextRight;
}
}
function science_stats_loessNextNonzero(weights, i) {
var j = i + 1;
while (j < weights.length && weights[j] === 0) j++;
return j;
}
// Welford's algorithm.
science.stats.mean = function(x) {
var n = x.length;
if (n === 0) return NaN;
var m = 0,
i = -1;
while (++i < n) m += (x[i] - m) / (i + 1);
return m;
};
science.stats.median = function(x) {
return science.stats.quantiles(x, [.5])[0];
2011-05-11 11:35:12 +04:00
};
science.stats.mode = function(x) {
x = x.slice().sort(science.ascending);
2011-05-11 13:03:39 +04:00
var mode,
n = x.length,
i = -1,
l = i,
last = null,
max = 0,
tmp,
v;
while (++i < n) {
if ((v = x[i]) !== last) {
if ((tmp = i - l) > max) {
max = tmp;
mode = last;
}
last = v;
l = i;
}
}
return mode;
};
// Uses R's quantile algorithm type=7.
science.stats.quantiles = function(d, quantiles) {
d = d.slice().sort(science.ascending);
var n_1 = d.length - 1;
return quantiles.map(function(q) {
if (q === 0) return d[0];
else if (q === 1) return d[n_1];
var index = 1 + q * n_1,
lo = Math.floor(index),
h = index - lo,
a = d[lo - 1];
return h === 0 ? a : a + h * (d[lo] - a);
});
};
// Unbiased estimate of a sample's variance.
// Also known as the sample variance, where the denominator is n - 1.
science.stats.variance = function(x) {
2011-06-06 11:57:35 +04:00
var n = x.length;
if (n < 1) return NaN;
if (n === 1) return 0;
var mean = science.stats.mean(x),
i = -1,
s = 0;
while (++i < n) {
var v = x[i] - mean;
s += v * v;
}
return s / (n - 1);
};
})()