incubator-airflow/chart
Kamil Breguła b946b44870
Remove unused value in Helm Chart - podMutation (#11703)
2020-10-21 08:40:02 -07:00
..
dockerfiles Enforce strict rules for yamllint (#11709) 2020-10-21 12:24:32 +02:00
files Better file extension for Helm template (#11702) 2020-10-21 12:17:19 +02:00
templates Better file extension for Helm template (#11702) 2020-10-21 12:17:19 +02:00
tests Enforce strict rules for yamllint (#11709) 2020-10-21 12:24:32 +02:00
.gitignore Add Production Helm chart support (#8777) 2020-06-17 23:37:54 +01:00
.helmignore Add Production Helm chart support (#8777) 2020-06-17 23:37:54 +01:00
Chart.yaml Enforce strict rules for yamllint (#11709) 2020-10-21 12:24:32 +02:00
README.md Add missing values entries to Parameters in chart/README.md (#11477) 2020-10-13 15:21:47 +02:00
requirements.lock Switches to Helm Chart for Kubernetes tests (#9468) 2020-07-01 14:50:30 +02:00
requirements.yaml Enforce strict rules for yamllint (#11709) 2020-10-21 12:24:32 +02:00
values.schema.json Remove unused value in Helm Chart - podMutation (#11703) 2020-10-21 08:40:02 -07:00
values.yaml Remove unused value in Helm Chart - podMutation (#11703) 2020-10-21 08:40:02 -07:00

README.md

Helm Chart for Apache Airflow

Apache Airflow is a platform to programmatically author, schedule and monitor workflows.

Introduction

This chart will bootstrap an Airflow deployment on a Kubernetes cluster using the Helm package manager.

Prerequisites

  • Kubernetes 1.12+ cluster
  • Helm 2.11+ or Helm 3.0+
  • PV provisioner support in the underlying infrastructure

Installing the Chart

To install this repository from source (using helm 3)

kubectl create namespace airflow
helm repo add stable https://kubernetes-charts.storage.googleapis.com
helm dep update
helm install airflow . --namespace airflow

The command deploys Airflow on the Kubernetes cluster in the default configuration. The Parameters section lists the parameters that can be configured during installation.

Tip: List all releases using helm list

Upgrading the Chart

To upgrade the chart with the release name airflow:

helm upgrade airflow . --namespace airflow

Uninstalling the Chart

To uninstall/delete the airflow deployment:

helm delete airflow --namespace airflow

The command removes all the Kubernetes components associated with the chart and deletes the release.

Updating DAGs

The recommended way to update your DAGs with this chart is to build a new docker image with the latest DAG code (docker build -t my-company/airflow:8a0da78 .), push it to an accessible registry (docker push my-company/airflow:8a0da78), then update the Airflow pods with that image:

helm upgrade airflow . \
  --set images.airflow.repository=my-company/airflow \
  --set images.airflow.tag=8a0da78

For local development purpose you can also build the image locally and use it via deployment method described by Breeze.

Mounting DAGS using Git-Sync side car with Persistence enabled

This option will use a Persistent Volume Claim with an accessMode of ReadWriteMany. The scheduler pod will sync DAGs from a git repository onto the PVC every configured number of seconds. The other pods will read the synced DAGs. Not all volume plugins have support for ReadWriteMany accessMode. Refer Persistent Volume Access Modes for details

helm upgrade airflow . \
  --set dags.persistence.enabled=true \
  --set dags.gitSync.enabled=true
  # you can also override the other persistence or gitSync values
  # by setting the  dags.persistence.* and dags.gitSync.* values
  # Please refer to values.yaml for details

Mounting DAGS using Git-Sync side car without Persistence

This option will use an always running Git-Sync side car on every scheduler,webserver and worker pods. The Git-Sync side car containers will sync DAGs from a git repository every configured number of seconds. If you are using the KubernetesExecutor, Git-sync will run as an initContainer on your worker pods.

helm upgrade airflow . \
  --set dags.persistence.enabled=false \
  --set dags.gitSync.enabled=true
  # you can also override the other gitSync values
  # by setting the  dags.gitSync.* values
  # Refer values.yaml for details

Mounting DAGS from an externally populated PVC

In this approach, Airflow will read the DAGs from a PVC which has ReadOnlyMany or ReadWriteMany accessMode. You will have to ensure that the PVC is populated/updated with the required DAGs(this won't be handled by the chart). You can pass in the name of the volume claim to the chart

helm upgrade airflow . \
  --set dags.persistence.enabled=true \
  --set dags.persistence.existingClaim=my-volume-claim
  --set dags.gitSync.enabled=false

Parameters

The following tables lists the configurable parameters of the Airflow chart and their default values.

Parameter Description Default
uid UID to run airflow pods under 50000
gid GID to run airflow pods under 50000
nodeSelector Node labels for pod assignment {}
affinity Affinity labels for pod assignment {}
tolerations Toleration labels for pod assignment []
labels Common labels to add to all objects defined in this chart {}
privateRegistry.enabled Enable usage of a private registry for Airflow base image false
privateRegistry.repository Repository where base image lives (eg: quay.io) ~
ingress.enabled Enable Kubernetes Ingress support false
ingress.web.* Configs for the Ingress of the web Service Please refer to values.yaml
ingress.flower.* Configs for the Ingress of the flower Service Please refer to values.yaml
networkPolicies.enabled Enable Network Policies to restrict traffic true
airflowHome Location of airflow home directory /opt/airflow
rbacEnabled Deploy pods with Kubernetes RBAC enabled true
executor Airflow executor (eg SequentialExecutor, LocalExecutor, CeleryExecutor, KubernetesExecutor) KubernetesExecutor
allowPodLaunching Allow airflow pods to talk to Kubernetes API to launch more pods true
defaultAirflowRepository Fallback docker repository to pull airflow image from apache/airflow
defaultAirflowTag Fallback docker image tag to deploy 1.10.10.1-alpha2-python3.6
images.airflow.repository Docker repository to pull image from. Update this to deploy a custom image ~
images.airflow.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.airflow.pullPolicy PullPolicy for airflow image IfNotPresent
images.flower.repository Docker repository to pull image from. Update this to deploy a custom image ~
images.flower.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.flower.pullPolicy PullPolicy for flower image IfNotPresent
images.statsd.repository Docker repository to pull image from. Update this to deploy a custom image astronomerinc/ap-statsd-exporter
images.statsd.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.statsd.pullPolicy PullPolicy for statsd-exporter image IfNotPresent
images.redis.repository Docker repository to pull image from. Update this to deploy a custom image redis
images.redis.tag Docker image tag to pull image from. Update this to deploy a new custom image tag 6-buster
images.redis.pullPolicy PullPolicy for redis image IfNotPresent
images.pgbouncer.repository Docker repository to pull image from. Update this to deploy a custom image astronomerinc/ap-pgbouncer
images.pgbouncer.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.pgbouncer.pullPolicy PullPolicy for pgbouncer image IfNotPresent
images.pgbouncerExporter.repository Docker repository to pull image from. Update this to deploy a custom image astronomerinc/ap-pgbouncer-exporter
images.pgbouncerExporter.tag Docker image tag to pull image from. Update this to deploy a new custom image tag ~
images.pgbouncerExporter.pullPolicy PullPolicy for pgbouncer-exporter image IfNotPresent
env Environment variables key/values to mount into Airflow pods []
secret Secret name/key pairs to mount into Airflow pods []
data.metadataSecretName Secret name to mount Airflow connection string from ~
data.resultBackendSecretName Secret name to mount Celery result backend connection string from ~
data.metadataConection Field separated connection data (alternative to secret name) {}
data.resultBackendConnection Field separated connection data (alternative to secret name) {}
fernetKey String representing an Airflow Fernet key ~
fernetKeySecretName Secret name for Airflow Fernet key ~
kerberos.enabled Enable kerberos support for workers false
kerberos.ccacheMountPath Location of the ccache volume /var/kerberos-ccache
kerberos.ccacheFileName Name of the ccache file ccache
kerberos.configPath Path for the Kerberos config file /etc/krb5.conf
kerberos.keytabPath Path for the Kerberos keytab file /etc/airflow.keytab
kerberos.principal Name of the Kerberos principal airflow
kerberos.reinitFrequency Frequency of reinitialization of the Kerberos token 3600
kerberos.confg Content of the configuration file for kerberos (might be templated using Helm templates) <see values.yaml>
workers.replicas Replica count for Celery workers (if applicable) 1
workers.keda.enabled Enable KEDA autoscaling features false
workers.keda.pollingInverval How often KEDA should poll the backend database for metrics in seconds 5
workers.keda.cooldownPeriod How often KEDA should wait before scaling down in seconds 30
workers.keda.maxReplicaCount Maximum number of Celery workers KEDA can scale to 10
workers.kerberosSideCar.enabled Enable Kerberos sidecar for the worker false
workers.persistence.enabled Enable log persistence in workers via StatefulSet false
workers.persistence.size Size of worker volumes if enabled 100Gi
workers.persistence.storageClassName StorageClass worker volumes should use if enabled default
workers.resources.limits.cpu CPU Limit of workers ~
workers.resources.limits.memory Memory Limit of workers ~
workers.resources.requests.cpu CPU Request of workers ~
workers.resources.requests.memory Memory Request of workers ~
workers.terminationGracePeriodSeconds How long Kubernetes should wait for Celery workers to gracefully drain before force killing 600
workers.safeToEvict Allow Kubernetes to evict worker pods if needed (node downscaling) true
workers.serviceAccountAnnotations Annotations to add to worker kubernetes service account {}
workers.extraVolumes Mount additional volumes into worker []
workers.extraVolumeMounts Mount additional volumes into worker []
scheduler.podDisruptionBudget.enabled Enable PDB on Airflow scheduler false
scheduler.podDisruptionBudget.config.maxUnavailable MaxUnavailable pods for scheduler 1
scheduler.replicas # of parallel schedulers (Airflow 2.0 using Mysql 8+ or Postgres only) 1
scheduler.resources.limits.cpu CPU Limit of scheduler ~
scheduler.resources.limits.memory Memory Limit of scheduler ~
scheduler.resources.requests.cpu CPU Request of scheduler ~
scheduler.resources.requests.memory Memory Request of scheduler ~
scheduler.airflowLocalSettings Custom Airflow local settings python file ~
scheduler.safeToEvict Allow Kubernetes to evict scheduler pods if needed (node downscaling) true
scheduler.serviceAccountAnnotations Annotations to add to scheduler kubernetes service account {}
scheduler.extraVolumes Mount additional volumes into scheduler []
scheduler.extraVolumeMounts Mount additional volumes into scheduler []
webserver.livenessProbe.initialDelaySeconds Webserver LivenessProbe initial delay 15
webserver.livenessProbe.timeoutSeconds Webserver LivenessProbe timeout seconds 30
webserver.livenessProbe.failureThreshold Webserver LivenessProbe failure threshold 20
webserver.livenessProbe.periodSeconds Webserver LivenessProbe period seconds 5
webserver.readinessProbe.initialDelaySeconds Webserver ReadinessProbe initial delay 15
webserver.readinessProbe.timeoutSeconds Webserver ReadinessProbe timeout seconds 30
webserver.readinessProbe.failureThreshold Webserver ReadinessProbe failure threshold 20
webserver.readinessProbe.periodSeconds Webserver ReadinessProbe period seconds 5
webserver.replicas How many Airflow webserver replicas should run 1
webserver.resources.limits.cpu CPU Limit of webserver ~
webserver.resources.limits.memory Memory Limit of webserver ~
webserver.resources.requests.cpu CPU Request of webserver ~
webserver.resources.requests.memory Memory Request of webserver ~
webserver.service.annotations Annotations to be added to the webserver service {}
webserver.defaultUser Optional default airflow user information {}
dags.persistence.* Dag persistence configuration Please refer to values.yaml
dags.gitSync.* Git sync configuration Please refer to values.yaml
multiNamespaceMode Whether the KubernetesExecutor can launch pods in multiple namespaces False
serviceAccountAnnottions.* Map of annotations for worker, webserver, scheduler kubernetes service accounts {}

Specify each parameter using the --set key=value[,key=value] argument to helm install. For example,

helm install --name my-release \
  --set executor=CeleryExecutor \
  --set enablePodLaunching=false .

Autoscaling with KEDA

KEDA stands for Kubernetes Event Driven Autoscaling. KEDA is a custom controller that allows users to create custom bindings to the Kubernetes Horizontal Pod Autoscaler. We've built an experimental scaler that allows users to create scalers based on postgreSQL queries. For the moment this exists on a separate branch, but will be merged upstream soon. To install our custom version of KEDA on your cluster, please run

helm repo add kedacore https://kedacore.github.io/charts

helm repo update

helm install \
    --set image.keda=docker.io/kedacore/keda:1.2.0 \
    --set image.metricsAdapter=docker.io/kedacore/keda-metrics-adapter:1.2.0 \
    --namespace keda --name keda kedacore/keda

Once KEDA is installed (which should be pretty quick since there is only one pod). You can try out KEDA autoscaling on this chart by setting workers.keda.enabled=true your helm command or in the values.yaml. (Note: KEDA does not support StatefulSets so you need to set worker.persistence.enabled to false)

kubectl create namespace airflow

helm install airflow . \
    --namespace airflow \
    --set executor=CeleryExecutor \
    --set workers.keda.enabled=true \
    --set workers.persistence.enabled=false

Walkthrough using kind

Install kind, and create a cluster:

We recommend testing with Kubernetes 1.15, as this image doesn't support Kubernetes 1.16+ for CeleryExecutor presently.

kind create cluster \
  --image kindest/node:v1.15.7@sha256:e2df133f80ef633c53c0200114fce2ed5e1f6947477dbc83261a6a921169488d

Confirm it's up:

kubectl cluster-info --context kind-kind

Add Astronomer's Helm repo:

helm repo add astronomer https://helm.astronomer.io
helm repo update

Create namespace + install the chart:

kubectl create namespace airflow
helm install airflow --n airflow astronomer/airflow

It may take a few minutes. Confirm the pods are up:

kubectl get pods --all-namespaces
helm list -n airflow

Run kubectl port-forward svc/airflow-webserver 8080:8080 -n airflow to port-forward the Airflow UI to http://localhost:8080/ to cofirm Airflow is working.

Build a Docker image from your DAGs:

  1. Start a project using astro-cli, which will generate a Dockerfile, and load your DAGs in. You can test locally before pushing to kind with astro airflow start.

     mkdir my-airflow-project && cd my-airflow-project
     astro dev init
    
  2. Then build the image:

     docker build -t my-dags:0.0.1 .
    
  3. Load the image into kind:

     kind load docker-image my-dags:0.0.1
    
  4. Upgrade Helm deployment:

     helm upgrade airflow -n airflow \
         --set images.airflow.repository=my-dags \
         --set images.airflow.tag=0.0.1 \
         astronomer/airflow
    

Contributing

Check out our contributing guide!