add agda and literate agda support
This commit is contained in:
Родитель
fdc81d8818
Коммит
cf15832504
|
@ -62,6 +62,12 @@ Ada:
|
|||
extensions:
|
||||
- .ads
|
||||
|
||||
Agda:
|
||||
type: programming
|
||||
primary_extension: .agda
|
||||
extensions:
|
||||
- .agda
|
||||
|
||||
ApacheConf:
|
||||
type: markup
|
||||
aliases:
|
||||
|
@ -703,6 +709,13 @@ LilyPond:
|
|||
extensions:
|
||||
- .ily
|
||||
|
||||
Literate Agda:
|
||||
type: programming
|
||||
group: Agda
|
||||
primary_extension: .lagda
|
||||
extensions:
|
||||
- .lagda
|
||||
|
||||
Literate CoffeeScript:
|
||||
type: programming
|
||||
group: CoffeeScript
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
module NatCat where
|
||||
|
||||
open import Relation.Binary.PropositionalEquality
|
||||
|
||||
-- If you can show that a relation only ever has one inhabitant
|
||||
-- you get the category laws for free
|
||||
module
|
||||
EasyCategory
|
||||
(obj : Set)
|
||||
(_⟶_ : obj → obj → Set)
|
||||
(_∘_ : ∀ {x y z} → x ⟶ y → y ⟶ z → x ⟶ z)
|
||||
(id : ∀ x → x ⟶ x)
|
||||
(single-inhabitant : (x y : obj) (r s : x ⟶ y) → r ≡ s)
|
||||
where
|
||||
|
||||
idʳ : ∀ x y (r : x ⟶ y) → r ∘ id y ≡ r
|
||||
idʳ x y r = single-inhabitant x y (r ∘ id y) r
|
||||
|
||||
idˡ : ∀ x y (r : x ⟶ y) → id x ∘ r ≡ r
|
||||
idˡ x y r = single-inhabitant x y (id x ∘ r) r
|
||||
|
||||
∘-assoc : ∀ w x y z (r : w ⟶ x) (s : x ⟶ y) (t : y ⟶ z) → (r ∘ s) ∘ t ≡ r ∘ (s ∘ t)
|
||||
∘-assoc w x y z r s t = single-inhabitant w z ((r ∘ s) ∘ t) (r ∘ (s ∘ t))
|
||||
|
||||
open import Data.Nat
|
||||
|
||||
same : (x y : ℕ) (r s : x ≤ y) → r ≡ s
|
||||
same .0 y z≤n z≤n = refl
|
||||
same .(suc m) .(suc n) (s≤s {m} {n} r) (s≤s s) = cong s≤s (same m n r s)
|
||||
|
||||
≤-trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z
|
||||
≤-trans .0 y z z≤n s = z≤n
|
||||
≤-trans .(suc m) .(suc n) .(suc n₁) (s≤s {m} {n} r) (s≤s {.n} {n₁} s) = s≤s (≤-trans m n n₁ r s)
|
||||
|
||||
≤-refl : ∀ x → x ≤ x
|
||||
≤-refl zero = z≤n
|
||||
≤-refl (suc x) = s≤s (≤-refl x)
|
||||
|
||||
module Nat-EasyCategory = EasyCategory ℕ _≤_ (λ {x}{y}{z} → ≤-trans x y z) ≤-refl same
|
|
@ -0,0 +1,82 @@
|
|||
\documentclass{article}
|
||||
|
||||
% The following packages are needed because unicode
|
||||
% is translated (using the next set of packages) to
|
||||
% latex commands. You may need more packages if you
|
||||
% use more unicode characters:
|
||||
|
||||
\usepackage{amssymb}
|
||||
\usepackage{bbm}
|
||||
\usepackage[greek,english]{babel}
|
||||
|
||||
% This handles the translation of unicode to latex:
|
||||
|
||||
\usepackage{ucs}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{autofe}
|
||||
|
||||
% Some characters that are not automatically defined
|
||||
% (you figure out by the latex compilation errors you get),
|
||||
% and you need to define:
|
||||
|
||||
\DeclareUnicodeCharacter{8988}{\ensuremath{\ulcorner}}
|
||||
\DeclareUnicodeCharacter{8989}{\ensuremath{\urcorner}}
|
||||
\DeclareUnicodeCharacter{8803}{\ensuremath{\overline{\equiv}}}
|
||||
|
||||
% Add more as you need them (shouldn’t happen often).
|
||||
|
||||
% Using “\newenvironment” to redefine verbatim to
|
||||
% be called “code” doesn’t always work properly.
|
||||
% You can more reliably use:
|
||||
|
||||
\usepackage{fancyvrb}
|
||||
|
||||
\DefineVerbatimEnvironment
|
||||
{code}{Verbatim}
|
||||
{} % Add fancy options here if you like.
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{code}
|
||||
module NatCat where
|
||||
|
||||
open import Relation.Binary.PropositionalEquality
|
||||
|
||||
-- If you can show that a relation only ever has one inhabitant
|
||||
-- you get the category laws for free
|
||||
module
|
||||
EasyCategory
|
||||
(obj : Set)
|
||||
(_⟶_ : obj → obj → Set)
|
||||
(_∘_ : ∀ {x y z} → x ⟶ y → y ⟶ z → x ⟶ z)
|
||||
(id : ∀ x → x ⟶ x)
|
||||
(single-inhabitant : (x y : obj) (r s : x ⟶ y) → r ≡ s)
|
||||
where
|
||||
|
||||
idʳ : ∀ x y (r : x ⟶ y) → r ∘ id y ≡ r
|
||||
idʳ x y r = single-inhabitant x y (r ∘ id y) r
|
||||
|
||||
idˡ : ∀ x y (r : x ⟶ y) → id x ∘ r ≡ r
|
||||
idˡ x y r = single-inhabitant x y (id x ∘ r) r
|
||||
|
||||
∘-assoc : ∀ w x y z (r : w ⟶ x) (s : x ⟶ y) (t : y ⟶ z) → (r ∘ s) ∘ t ≡ r ∘ (s ∘ t)
|
||||
∘-assoc w x y z r s t = single-inhabitant w z ((r ∘ s) ∘ t) (r ∘ (s ∘ t))
|
||||
|
||||
open import Data.Nat
|
||||
|
||||
same : (x y : ℕ) (r s : x ≤ y) → r ≡ s
|
||||
same .0 y z≤n z≤n = refl
|
||||
same .(suc m) .(suc n) (s≤s {m} {n} r) (s≤s s) = cong s≤s (same m n r s)
|
||||
|
||||
≤-trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z
|
||||
≤-trans .0 y z z≤n s = z≤n
|
||||
≤-trans .(suc m) .(suc n) .(suc n₁) (s≤s {m} {n} r) (s≤s {.n} {n₁} s) = s≤s (≤-trans m n n₁ r s)
|
||||
|
||||
≤-refl : ∀ x → x ≤ x
|
||||
≤-refl zero = z≤n
|
||||
≤-refl (suc x) = s≤s (≤-refl x)
|
||||
|
||||
module Nat-EasyCategory = EasyCategory ℕ _≤_ (λ {x}{y}{z} → ≤-trans x y z) ≤-refl same
|
||||
\end{code}
|
||||
|
||||
\end{document}
|
Загрузка…
Ссылка в новой задаче