Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
/*
|
|
|
|
* Client side of key exchange for the SSH-2 transport protocol (RFC 4253).
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include "putty.h"
|
|
|
|
#include "ssh.h"
|
|
|
|
#include "sshbpp.h"
|
|
|
|
#include "sshppl.h"
|
|
|
|
#include "sshcr.h"
|
|
|
|
#include "storage.h"
|
|
|
|
#include "ssh2transport.h"
|
|
|
|
|
|
|
|
void ssh2kex_coroutine(struct ssh2_transport_state *s)
|
|
|
|
{
|
|
|
|
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
|
|
|
|
PktIn *pktin;
|
|
|
|
PktOut *pktout;
|
|
|
|
|
|
|
|
crBegin(s->crStateKex);
|
|
|
|
|
|
|
|
if (s->kex_alg->main_type == KEXTYPE_DH) {
|
|
|
|
/*
|
|
|
|
* Work out the number of bits of key we will need from the
|
|
|
|
* key exchange. We start with the maximum key length of
|
|
|
|
* either cipher...
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
int csbits, scbits;
|
|
|
|
|
|
|
|
csbits = s->out.cipher ? s->out.cipher->real_keybits : 0;
|
|
|
|
scbits = s->in.cipher ? s->in.cipher->real_keybits : 0;
|
|
|
|
s->nbits = (csbits > scbits ? csbits : scbits);
|
|
|
|
}
|
|
|
|
/* The keys only have hlen-bit entropy, since they're based on
|
|
|
|
* a hash. So cap the key size at hlen bits. */
|
|
|
|
if (s->nbits > s->kex_alg->hash->hlen * 8)
|
|
|
|
s->nbits = s->kex_alg->hash->hlen * 8;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we're doing Diffie-Hellman group exchange, start by
|
|
|
|
* requesting a group.
|
|
|
|
*/
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
ppl_logevent(("Doing Diffie-Hellman group exchange"));
|
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_DHGEX;
|
|
|
|
/*
|
|
|
|
* Work out how big a DH group we will need to allow that
|
|
|
|
* much data.
|
|
|
|
*/
|
|
|
|
s->pbits = 512 << ((s->nbits - 1) / 64);
|
|
|
|
if (s->pbits < DH_MIN_SIZE)
|
|
|
|
s->pbits = DH_MIN_SIZE;
|
|
|
|
if (s->pbits > DH_MAX_SIZE)
|
|
|
|
s->pbits = DH_MAX_SIZE;
|
|
|
|
if ((s->ppl.remote_bugs & BUG_SSH2_OLDGEX)) {
|
|
|
|
pktout = ssh_bpp_new_pktout(
|
|
|
|
s->ppl.bpp, SSH2_MSG_KEX_DH_GEX_REQUEST_OLD);
|
|
|
|
put_uint32(pktout, s->pbits);
|
|
|
|
} else {
|
|
|
|
pktout = ssh_bpp_new_pktout(
|
|
|
|
s->ppl.bpp, SSH2_MSG_KEX_DH_GEX_REQUEST);
|
|
|
|
put_uint32(pktout, DH_MIN_SIZE);
|
|
|
|
put_uint32(pktout, s->pbits);
|
|
|
|
put_uint32(pktout, DH_MAX_SIZE);
|
|
|
|
}
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEX_DH_GEX_GROUP) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting Diffie-Hellman group, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->p = get_mp_ssh2(pktin);
|
|
|
|
s->g = get_mp_ssh2(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Unable to parse Diffie-Hellman group packet");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->dh_ctx = dh_setup_gex(s->p, s->g);
|
|
|
|
s->kex_init_value = SSH2_MSG_KEX_DH_GEX_INIT;
|
|
|
|
s->kex_reply_value = SSH2_MSG_KEX_DH_GEX_REPLY;
|
|
|
|
} else {
|
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_DHGROUP;
|
|
|
|
s->dh_ctx = dh_setup_group(s->kex_alg);
|
|
|
|
s->kex_init_value = SSH2_MSG_KEXDH_INIT;
|
|
|
|
s->kex_reply_value = SSH2_MSG_KEXDH_REPLY;
|
|
|
|
ppl_logevent(("Using Diffie-Hellman with standard group \"%s\"",
|
|
|
|
s->kex_alg->groupname));
|
|
|
|
}
|
|
|
|
|
|
|
|
ppl_logevent(("Doing Diffie-Hellman key exchange with hash %s",
|
|
|
|
s->kex_alg->hash->text_name));
|
|
|
|
/*
|
|
|
|
* Now generate and send e for Diffie-Hellman.
|
|
|
|
*/
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_CPU);
|
|
|
|
s->e = dh_create_e(s->dh_ctx, s->nbits * 2);
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, s->kex_init_value);
|
|
|
|
put_mp_ssh2(pktout, s->e);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_WAITING);
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != s->kex_reply_value) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting Diffie-Hellman reply, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_CPU);
|
|
|
|
s->hostkeydata = get_string(pktin);
|
|
|
|
s->hkey = ssh_key_new_pub(s->hostkey_alg, s->hostkeydata);
|
|
|
|
s->f = get_mp_ssh2(pktin);
|
|
|
|
s->sigdata = get_string(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Unable to parse Diffie-Hellman reply packet");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
const char *err = dh_validate_f(s->dh_ctx, s->f);
|
|
|
|
if (err) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Diffie-Hellman reply failed "
|
|
|
|
"validation: %s", err);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
s->K = dh_find_K(s->dh_ctx, s->f);
|
|
|
|
|
|
|
|
/* We assume everything from now on will be quick, and it might
|
|
|
|
* involve user interaction. */
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_NOT);
|
|
|
|
|
|
|
|
put_stringpl(s->exhash, s->hostkeydata);
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
if (!(s->ppl.remote_bugs & BUG_SSH2_OLDGEX))
|
|
|
|
put_uint32(s->exhash, DH_MIN_SIZE);
|
|
|
|
put_uint32(s->exhash, s->pbits);
|
|
|
|
if (!(s->ppl.remote_bugs & BUG_SSH2_OLDGEX))
|
|
|
|
put_uint32(s->exhash, DH_MAX_SIZE);
|
|
|
|
put_mp_ssh2(s->exhash, s->p);
|
|
|
|
put_mp_ssh2(s->exhash, s->g);
|
|
|
|
}
|
|
|
|
put_mp_ssh2(s->exhash, s->e);
|
|
|
|
put_mp_ssh2(s->exhash, s->f);
|
|
|
|
|
|
|
|
dh_cleanup(s->dh_ctx);
|
|
|
|
s->dh_ctx = NULL;
|
|
|
|
freebn(s->f); s->f = NULL;
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
freebn(s->g); s->g = NULL;
|
|
|
|
freebn(s->p); s->p = NULL;
|
|
|
|
}
|
|
|
|
} else if (s->kex_alg->main_type == KEXTYPE_ECDH) {
|
|
|
|
|
|
|
|
ppl_logevent(("Doing ECDH key exchange with curve %s and hash %s",
|
|
|
|
ssh_ecdhkex_curve_textname(s->kex_alg),
|
|
|
|
s->kex_alg->hash->text_name));
|
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_ECDHKEX;
|
|
|
|
|
|
|
|
s->ecdh_key = ssh_ecdhkex_newkey(s->kex_alg);
|
|
|
|
if (!s->ecdh_key) {
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "Unable to generate key for ECDH");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEX_ECDH_INIT);
|
|
|
|
{
|
|
|
|
strbuf *pubpoint = strbuf_new();
|
|
|
|
ssh_ecdhkex_getpublic(s->ecdh_key, BinarySink_UPCAST(pubpoint));
|
|
|
|
put_stringsb(pktout, pubpoint);
|
|
|
|
}
|
|
|
|
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEX_ECDH_REPLY) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting ECDH reply, type %d (%s)", pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
s->hostkeydata = get_string(pktin);
|
|
|
|
put_stringpl(s->exhash, s->hostkeydata);
|
|
|
|
s->hkey = ssh_key_new_pub(s->hostkey_alg, s->hostkeydata);
|
|
|
|
|
|
|
|
{
|
|
|
|
strbuf *pubpoint = strbuf_new();
|
|
|
|
ssh_ecdhkex_getpublic(s->ecdh_key, BinarySink_UPCAST(pubpoint));
|
|
|
|
put_string(s->exhash, pubpoint->u, pubpoint->len);
|
|
|
|
strbuf_free(pubpoint);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
ptrlen keydata = get_string(pktin);
|
|
|
|
put_stringpl(s->exhash, keydata);
|
|
|
|
s->K = ssh_ecdhkex_getkey(s->ecdh_key, keydata.ptr, keydata.len);
|
|
|
|
if (!get_err(pktin) && !s->K) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received invalid elliptic curve "
|
|
|
|
"point in ECDH reply");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
s->sigdata = get_string(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Unable to parse ECDH reply packet");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ssh_ecdhkex_freekey(s->ecdh_key);
|
|
|
|
s->ecdh_key = NULL;
|
|
|
|
#ifndef NO_GSSAPI
|
|
|
|
} else if (s->kex_alg->main_type == KEXTYPE_GSS) {
|
|
|
|
ptrlen data;
|
|
|
|
|
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_GSSKEX;
|
|
|
|
s->init_token_sent = 0;
|
|
|
|
s->complete_rcvd = 0;
|
|
|
|
s->hkey = NULL;
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
s->keystr = NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Work out the number of bits of key we will need from the
|
|
|
|
* key exchange. We start with the maximum key length of
|
|
|
|
* either cipher...
|
|
|
|
*
|
|
|
|
* This is rote from the KEXTYPE_DH section above.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
int csbits, scbits;
|
|
|
|
|
|
|
|
csbits = s->out.cipher->real_keybits;
|
|
|
|
scbits = s->in.cipher->real_keybits;
|
|
|
|
s->nbits = (csbits > scbits ? csbits : scbits);
|
|
|
|
}
|
|
|
|
/* The keys only have hlen-bit entropy, since they're based on
|
|
|
|
* a hash. So cap the key size at hlen bits. */
|
|
|
|
if (s->nbits > s->kex_alg->hash->hlen * 8)
|
|
|
|
s->nbits = s->kex_alg->hash->hlen * 8;
|
|
|
|
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
/*
|
|
|
|
* Work out how big a DH group we will need to allow that
|
|
|
|
* much data.
|
|
|
|
*/
|
|
|
|
s->pbits = 512 << ((s->nbits - 1) / 64);
|
|
|
|
ppl_logevent(("Doing GSSAPI (with Kerberos V5) Diffie-Hellman "
|
|
|
|
"group exchange, with minimum %d bits", s->pbits));
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEXGSS_GROUPREQ);
|
|
|
|
put_uint32(pktout, s->pbits); /* min */
|
|
|
|
put_uint32(pktout, s->pbits); /* preferred */
|
|
|
|
put_uint32(pktout, s->pbits * 2); /* max */
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV(
|
|
|
|
(pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEXGSS_GROUP) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting Diffie-Hellman group, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->p = get_mp_ssh2(pktin);
|
|
|
|
s->g = get_mp_ssh2(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Unable to parse Diffie-Hellman group packet");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->dh_ctx = dh_setup_gex(s->p, s->g);
|
|
|
|
} else {
|
|
|
|
s->dh_ctx = dh_setup_group(s->kex_alg);
|
|
|
|
ppl_logevent(("Using GSSAPI (with Kerberos V5) Diffie-Hellman with"
|
|
|
|
" standard group \"%s\"", s->kex_alg->groupname));
|
|
|
|
}
|
|
|
|
|
|
|
|
ppl_logevent(("Doing GSSAPI (with Kerberos V5) Diffie-Hellman key "
|
|
|
|
"exchange with hash %s", s->kex_alg->hash->text_name));
|
|
|
|
/* Now generate e for Diffie-Hellman. */
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_CPU);
|
|
|
|
s->e = dh_create_e(s->dh_ctx, s->nbits * 2);
|
|
|
|
|
|
|
|
if (s->shgss->lib->gsslogmsg)
|
|
|
|
ppl_logevent(("%s", s->shgss->lib->gsslogmsg));
|
|
|
|
|
|
|
|
/* initial tokens are empty */
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->gss_rcvtok);
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->gss_sndtok);
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->mic);
|
|
|
|
s->gss_stat = s->shgss->lib->acquire_cred(
|
|
|
|
s->shgss->lib, &s->shgss->ctx, &s->gss_cred_expiry);
|
|
|
|
if (s->gss_stat != SSH_GSS_OK) {
|
|
|
|
ssh_sw_abort(s->ppl.ssh,
|
|
|
|
"GSSAPI key exchange failed to initialise");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* now enter the loop */
|
|
|
|
assert(s->shgss->srv_name);
|
|
|
|
do {
|
|
|
|
/*
|
|
|
|
* When acquire_cred yields no useful expiration, go with the
|
|
|
|
* service ticket expiration.
|
|
|
|
*/
|
|
|
|
s->gss_stat = s->shgss->lib->init_sec_context(
|
|
|
|
s->shgss->lib, &s->shgss->ctx, s->shgss->srv_name,
|
|
|
|
s->gss_delegate, &s->gss_rcvtok, &s->gss_sndtok,
|
|
|
|
(s->gss_cred_expiry == GSS_NO_EXPIRATION ?
|
|
|
|
&s->gss_cred_expiry : NULL), NULL);
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->gss_rcvtok);
|
|
|
|
|
|
|
|
if (s->gss_stat == SSH_GSS_S_COMPLETE && s->complete_rcvd)
|
|
|
|
break; /* MIC is verified after the loop */
|
|
|
|
|
|
|
|
if (s->gss_stat != SSH_GSS_S_COMPLETE &&
|
|
|
|
s->gss_stat != SSH_GSS_S_CONTINUE_NEEDED) {
|
|
|
|
if (s->shgss->lib->display_status(
|
|
|
|
s->shgss->lib, s->shgss->ctx,
|
|
|
|
&s->gss_buf) == SSH_GSS_OK) {
|
|
|
|
char *err = s->gss_buf.value;
|
|
|
|
ssh_sw_abort(s->ppl.ssh,
|
|
|
|
"GSSAPI key exchange failed to initialise "
|
|
|
|
"context: %s", err);
|
|
|
|
sfree(err);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(s->gss_stat == SSH_GSS_S_COMPLETE ||
|
|
|
|
s->gss_stat == SSH_GSS_S_CONTINUE_NEEDED);
|
|
|
|
|
|
|
|
if (!s->init_token_sent) {
|
|
|
|
s->init_token_sent = 1;
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp,
|
|
|
|
SSH2_MSG_KEXGSS_INIT);
|
|
|
|
if (s->gss_sndtok.length == 0) {
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "GSSAPI key exchange failed: "
|
|
|
|
"no initial context token");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
put_string(pktout,
|
|
|
|
s->gss_sndtok.value, s->gss_sndtok.length);
|
|
|
|
put_mp_ssh2(pktout, s->e);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
s->shgss->lib->free_tok(s->shgss->lib, &s->gss_sndtok);
|
|
|
|
ppl_logevent(("GSSAPI key exchange initialised"));
|
|
|
|
} else if (s->gss_sndtok.length != 0) {
|
|
|
|
pktout = ssh_bpp_new_pktout(
|
|
|
|
s->ppl.bpp, SSH2_MSG_KEXGSS_CONTINUE);
|
|
|
|
put_string(pktout,
|
|
|
|
s->gss_sndtok.value, s->gss_sndtok.length);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
s->shgss->lib->free_tok(s->shgss->lib, &s->gss_sndtok);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (s->gss_stat == SSH_GSS_S_COMPLETE && s->complete_rcvd)
|
|
|
|
break;
|
|
|
|
|
|
|
|
wait_for_gss_token:
|
|
|
|
crMaybeWaitUntilV(
|
|
|
|
(pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
switch (pktin->type) {
|
|
|
|
case SSH2_MSG_KEXGSS_CONTINUE:
|
|
|
|
data = get_string(pktin);
|
|
|
|
s->gss_rcvtok.value = (char *)data.ptr;
|
|
|
|
s->gss_rcvtok.length = data.len;
|
|
|
|
continue;
|
|
|
|
case SSH2_MSG_KEXGSS_COMPLETE:
|
|
|
|
s->complete_rcvd = 1;
|
|
|
|
s->f = get_mp_ssh2(pktin);
|
|
|
|
data = get_string(pktin);
|
|
|
|
s->mic.value = (char *)data.ptr;
|
|
|
|
s->mic.length = data.len;
|
|
|
|
/* Save expiration time of cred when delegating */
|
|
|
|
if (s->gss_delegate && s->gss_cred_expiry != GSS_NO_EXPIRATION)
|
|
|
|
s->gss_cred_expiry = s->gss_cred_expiry;
|
|
|
|
/* If there's a final token we loop to consume it */
|
|
|
|
if (get_bool(pktin)) {
|
|
|
|
data = get_string(pktin);
|
|
|
|
s->gss_rcvtok.value = (char *)data.ptr;
|
|
|
|
s->gss_rcvtok.length = data.len;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case SSH2_MSG_KEXGSS_HOSTKEY:
|
|
|
|
s->hostkeydata = get_string(pktin);
|
|
|
|
if (s->hostkey_alg) {
|
|
|
|
s->hkey = ssh_key_new_pub(s->hostkey_alg,
|
|
|
|
s->hostkeydata);
|
|
|
|
put_string(s->exhash,
|
|
|
|
s->hostkeydata.ptr, s->hostkeydata.len);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Can't loop as we have no token to pass to
|
|
|
|
* init_sec_context.
|
|
|
|
*/
|
|
|
|
goto wait_for_gss_token;
|
|
|
|
case SSH2_MSG_KEXGSS_ERROR:
|
|
|
|
/*
|
|
|
|
* We have no use for the server's major and minor
|
|
|
|
* status. The minor status is really only
|
|
|
|
* meaningful to the server, and with luck the major
|
|
|
|
* status means something to us (but not really all
|
|
|
|
* that much). The string is more meaningful, and
|
|
|
|
* hopefully the server sends any error tokens, as
|
|
|
|
* that will produce the most useful information for
|
|
|
|
* us.
|
|
|
|
*/
|
|
|
|
get_uint32(pktin); /* server's major status */
|
|
|
|
get_uint32(pktin); /* server's minor status */
|
|
|
|
data = get_string(pktin);
|
|
|
|
ppl_logevent(("GSSAPI key exchange failed; "
|
|
|
|
"server's message: %.*s", PTRLEN_PRINTF(data)));
|
|
|
|
/* Language tag, but we have no use for it */
|
|
|
|
get_string(pktin);
|
|
|
|
/*
|
|
|
|
* Wait for an error token, if there is one, or the
|
|
|
|
* server's disconnect. The error token, if there
|
|
|
|
* is one, must follow the SSH2_MSG_KEXGSS_ERROR
|
|
|
|
* message, per the RFC.
|
|
|
|
*/
|
|
|
|
goto wait_for_gss_token;
|
|
|
|
default:
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet "
|
|
|
|
"during GSSAPI key exchange, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
} while (s->gss_rcvtok.length ||
|
|
|
|
s->gss_stat == SSH_GSS_S_CONTINUE_NEEDED ||
|
|
|
|
!s->complete_rcvd);
|
|
|
|
|
|
|
|
s->K = dh_find_K(s->dh_ctx, s->f);
|
|
|
|
|
|
|
|
/* We assume everything from now on will be quick, and it might
|
|
|
|
* involve user interaction. */
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_NOT);
|
|
|
|
|
|
|
|
if (!s->hkey)
|
|
|
|
put_stringz(s->exhash, "");
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
/* min, preferred, max */
|
|
|
|
put_uint32(s->exhash, s->pbits);
|
|
|
|
put_uint32(s->exhash, s->pbits);
|
|
|
|
put_uint32(s->exhash, s->pbits * 2);
|
|
|
|
|
|
|
|
put_mp_ssh2(s->exhash, s->p);
|
|
|
|
put_mp_ssh2(s->exhash, s->g);
|
|
|
|
}
|
|
|
|
put_mp_ssh2(s->exhash, s->e);
|
|
|
|
put_mp_ssh2(s->exhash, s->f);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* MIC verification is done below, after we compute the hash
|
|
|
|
* used as the MIC input.
|
|
|
|
*/
|
|
|
|
|
|
|
|
dh_cleanup(s->dh_ctx);
|
|
|
|
s->dh_ctx = NULL;
|
|
|
|
freebn(s->f); s->f = NULL;
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
freebn(s->g); s->g = NULL;
|
|
|
|
freebn(s->p); s->p = NULL;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
ptrlen rsakeydata;
|
|
|
|
|
|
|
|
assert(s->kex_alg->main_type == KEXTYPE_RSA);
|
|
|
|
ppl_logevent(("Doing RSA key exchange with hash %s",
|
|
|
|
s->kex_alg->hash->text_name));
|
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_RSAKEX;
|
|
|
|
/*
|
|
|
|
* RSA key exchange. First expect a KEXRSA_PUBKEY packet
|
|
|
|
* from the server.
|
|
|
|
*/
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEXRSA_PUBKEY) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting RSA public key, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
s->hostkeydata = get_string(pktin);
|
|
|
|
put_stringpl(s->exhash, s->hostkeydata);
|
|
|
|
s->hkey = ssh_key_new_pub(s->hostkey_alg, s->hostkeydata);
|
|
|
|
|
|
|
|
rsakeydata = get_string(pktin);
|
|
|
|
|
|
|
|
s->rsa_kex_key = ssh_rsakex_newkey(rsakeydata.ptr, rsakeydata.len);
|
|
|
|
if (!s->rsa_kex_key) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Unable to parse RSA public key packet");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
put_stringpl(s->exhash, rsakeydata);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Next, set up a shared secret K, of precisely KLEN -
|
|
|
|
* 2*HLEN - 49 bits, where KLEN is the bit length of the
|
|
|
|
* RSA key modulus and HLEN is the bit length of the hash
|
|
|
|
* we're using.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
int klen = ssh_rsakex_klen(s->rsa_kex_key);
|
|
|
|
int nbits = klen - (2*s->kex_alg->hash->hlen*8 + 49);
|
|
|
|
int i, byte = 0;
|
|
|
|
strbuf *buf;
|
|
|
|
unsigned char *outstr;
|
|
|
|
int outstrlen;
|
|
|
|
|
|
|
|
s->K = bn_power_2(nbits - 1);
|
|
|
|
|
|
|
|
for (i = 0; i < nbits; i++) {
|
|
|
|
if ((i & 7) == 0) {
|
|
|
|
byte = random_byte();
|
|
|
|
}
|
|
|
|
bignum_set_bit(s->K, i, (byte >> (i & 7)) & 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encode this as an mpint.
|
|
|
|
*/
|
|
|
|
buf = strbuf_new();
|
|
|
|
put_mp_ssh2(buf, s->K);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encrypt it with the given RSA key.
|
|
|
|
*/
|
|
|
|
outstrlen = (klen + 7) / 8;
|
|
|
|
outstr = snewn(outstrlen, unsigned char);
|
|
|
|
ssh_rsakex_encrypt(s->kex_alg->hash, buf->u, buf->len,
|
|
|
|
outstr, outstrlen, s->rsa_kex_key);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* And send it off in a return packet.
|
|
|
|
*/
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEXRSA_SECRET);
|
|
|
|
put_string(pktout, outstr, outstrlen);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
put_string(s->exhash, outstr, outstrlen);
|
|
|
|
|
|
|
|
strbuf_free(buf);
|
|
|
|
sfree(outstr);
|
|
|
|
}
|
|
|
|
|
|
|
|
ssh_rsakex_freekey(s->rsa_kex_key);
|
|
|
|
s->rsa_kex_key = NULL;
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEXRSA_DONE) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting RSA kex signature, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
s->sigdata = get_string(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Unable to parse RSA kex signature");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ssh2transport_finalise_exhash(s);
|
|
|
|
|
|
|
|
#ifndef NO_GSSAPI
|
|
|
|
if (s->kex_alg->main_type == KEXTYPE_GSS) {
|
|
|
|
Ssh_gss_buf gss_buf;
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->gss_buf);
|
|
|
|
|
|
|
|
gss_buf.value = s->exchange_hash;
|
|
|
|
gss_buf.length = s->kex_alg->hash->hlen;
|
|
|
|
s->gss_stat = s->shgss->lib->verify_mic(
|
|
|
|
s->shgss->lib, s->shgss->ctx, &gss_buf, &s->mic);
|
|
|
|
if (s->gss_stat != SSH_GSS_OK) {
|
|
|
|
if (s->shgss->lib->display_status(
|
|
|
|
s->shgss->lib, s->shgss->ctx, &s->gss_buf) == SSH_GSS_OK) {
|
|
|
|
char *err = s->gss_buf.value;
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "GSSAPI key exchange MIC was "
|
|
|
|
"not valid: %s", err);
|
|
|
|
sfree(err);
|
|
|
|
} else {
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "GSSAPI key exchange MIC was "
|
|
|
|
"not valid");
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2018-10-29 22:50:29 +03:00
|
|
|
s->gss_kex_used = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
|
|
|
|
/*-
|
|
|
|
* If this the first KEX, save the GSS context for "gssapi-keyex"
|
|
|
|
* authentication.
|
|
|
|
*
|
|
|
|
* http://tools.ietf.org/html/rfc4462#section-4
|
|
|
|
*
|
|
|
|
* This method may be used only if the initial key exchange was
|
|
|
|
* performed using a GSS-API-based key exchange method defined in
|
|
|
|
* accordance with Section 2. The GSS-API context used with this
|
|
|
|
* method is always that established during an initial GSS-API-based
|
|
|
|
* key exchange. Any context established during key exchange for the
|
|
|
|
* purpose of rekeying MUST NOT be used with this method.
|
|
|
|
*/
|
|
|
|
if (s->got_session_id) {
|
|
|
|
s->shgss->lib->release_cred(s->shgss->lib, &s->shgss->ctx);
|
|
|
|
}
|
|
|
|
ppl_logevent(("GSSAPI Key Exchange complete!"));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
s->dh_ctx = NULL;
|
|
|
|
|
|
|
|
/* In GSS keyex there's no hostkey signature to verify */
|
|
|
|
if (s->kex_alg->main_type != KEXTYPE_GSS) {
|
|
|
|
if (!s->hkey) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Server's host key is invalid");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ssh_key_verify(
|
|
|
|
s->hkey, s->sigdata,
|
|
|
|
make_ptrlen(s->exchange_hash, s->kex_alg->hash->hlen))) {
|
|
|
|
#ifndef FUZZING
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Signature from server's host key "
|
|
|
|
"is invalid");
|
|
|
|
return;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
s->keystr = (s->hkey ? ssh_key_cache_str(s->hkey) : NULL);
|
|
|
|
#ifndef NO_GSSAPI
|
|
|
|
if (s->gss_kex_used) {
|
|
|
|
/*
|
|
|
|
* In a GSS-based session, check the host key (if any) against
|
|
|
|
* the transient host key cache.
|
|
|
|
*/
|
|
|
|
if (s->kex_alg->main_type == KEXTYPE_GSS) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We've just done a GSS key exchange. If it gave us a
|
|
|
|
* host key, store it.
|
|
|
|
*/
|
|
|
|
if (s->hkey) {
|
|
|
|
s->fingerprint = ssh2_fingerprint(s->hkey);
|
|
|
|
ppl_logevent(("GSS kex provided fallback host key:"));
|
|
|
|
ppl_logevent(("%s", s->fingerprint));
|
|
|
|
sfree(s->fingerprint);
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
ssh_transient_hostkey_cache_add(s->thc, s->hkey);
|
|
|
|
} else if (!ssh_transient_hostkey_cache_non_empty(s->thc)) {
|
|
|
|
/*
|
|
|
|
* But if it didn't, then we currently have no
|
|
|
|
* fallback host key to use in subsequent non-GSS
|
|
|
|
* rekeys. So we should immediately trigger a non-GSS
|
|
|
|
* rekey of our own, to set one up, before the session
|
|
|
|
* keys have been used for anything else.
|
|
|
|
*
|
|
|
|
* This is similar to the cross-certification done at
|
|
|
|
* user request in the permanent host key cache, but
|
|
|
|
* here we do it automatically, once, at session
|
|
|
|
* startup, and only add the key to the transient
|
|
|
|
* cache.
|
|
|
|
*/
|
|
|
|
if (s->hostkey_alg) {
|
2018-10-29 22:50:29 +03:00
|
|
|
s->need_gss_transient_hostkey = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* If we negotiated the "null" host key algorithm
|
|
|
|
* in the key exchange, that's an indication that
|
|
|
|
* no host key at all is available from the server
|
|
|
|
* (both because we listed "null" last, and
|
|
|
|
* because RFC 4462 section 5 says that a server
|
|
|
|
* MUST NOT offer "null" as a host key algorithm
|
|
|
|
* unless that is the only algorithm it provides
|
|
|
|
* at all).
|
|
|
|
*
|
|
|
|
* In that case we actually _can't_ perform a
|
|
|
|
* non-GSSAPI key exchange, so it's pointless to
|
|
|
|
* attempt one proactively. This is also likely to
|
|
|
|
* cause trouble later if a rekey is required at a
|
|
|
|
* moment whne GSS credentials are not available,
|
|
|
|
* but someone setting up a server in this
|
|
|
|
* configuration presumably accepts that as a
|
|
|
|
* consequence.
|
|
|
|
*/
|
|
|
|
if (!s->warned_about_no_gss_transient_hostkey) {
|
|
|
|
ppl_logevent(("No fallback host key available"));
|
2018-10-29 22:50:29 +03:00
|
|
|
s->warned_about_no_gss_transient_hostkey = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We've just done a fallback key exchange, so make
|
|
|
|
* sure the host key it used is in the cache of keys
|
|
|
|
* we previously received in GSS kexes.
|
|
|
|
*
|
|
|
|
* An exception is if this was the non-GSS key exchange we
|
|
|
|
* triggered on purpose to populate the transient cache.
|
|
|
|
*/
|
|
|
|
assert(s->hkey); /* only KEXTYPE_GSS lets this be null */
|
|
|
|
s->fingerprint = ssh2_fingerprint(s->hkey);
|
|
|
|
|
|
|
|
if (s->need_gss_transient_hostkey) {
|
|
|
|
ppl_logevent(("Post-GSS rekey provided fallback host key:"));
|
|
|
|
ppl_logevent(("%s", s->fingerprint));
|
|
|
|
ssh_transient_hostkey_cache_add(s->thc, s->hkey);
|
2018-10-29 22:50:29 +03:00
|
|
|
s->need_gss_transient_hostkey = false;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
} else if (!ssh_transient_hostkey_cache_verify(s->thc, s->hkey)) {
|
|
|
|
ppl_logevent(("Non-GSS rekey after initial GSS kex "
|
|
|
|
"used host key:"));
|
|
|
|
ppl_logevent(("%s", s->fingerprint));
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "Server's host key did not match any "
|
|
|
|
"used in previous GSS kex");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
sfree(s->fingerprint);
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
#endif /* NO_GSSAPI */
|
|
|
|
if (!s->got_session_id) {
|
|
|
|
/*
|
|
|
|
* Make a note of any other host key formats that are available.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
int i, j, nkeys = 0;
|
|
|
|
char *list = NULL;
|
|
|
|
for (i = 0; i < lenof(ssh2_hostkey_algs); i++) {
|
|
|
|
if (ssh2_hostkey_algs[i].alg == s->hostkey_alg)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (j = 0; j < s->n_uncert_hostkeys; j++)
|
|
|
|
if (s->uncert_hostkeys[j] == i)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (j < s->n_uncert_hostkeys) {
|
|
|
|
char *newlist;
|
|
|
|
if (list)
|
|
|
|
newlist = dupprintf(
|
|
|
|
"%s/%s", list,
|
|
|
|
ssh2_hostkey_algs[i].alg->ssh_id);
|
|
|
|
else
|
|
|
|
newlist = dupprintf(
|
|
|
|
"%s", ssh2_hostkey_algs[i].alg->ssh_id);
|
|
|
|
sfree(list);
|
|
|
|
list = newlist;
|
|
|
|
nkeys++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (list) {
|
|
|
|
ppl_logevent(("Server also has %s host key%s, but we "
|
|
|
|
"don't know %s", list,
|
|
|
|
nkeys > 1 ? "s" : "",
|
|
|
|
nkeys > 1 ? "any of them" : "it"));
|
|
|
|
sfree(list);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Authenticate remote host: verify host key. (We've already
|
|
|
|
* checked the signature of the exchange hash.)
|
|
|
|
*/
|
|
|
|
s->fingerprint = ssh2_fingerprint(s->hkey);
|
|
|
|
ppl_logevent(("Host key fingerprint is:"));
|
|
|
|
ppl_logevent(("%s", s->fingerprint));
|
|
|
|
/* First check against manually configured host keys. */
|
|
|
|
s->dlgret = verify_ssh_manual_host_key(
|
|
|
|
s->conf, s->fingerprint, s->hkey);
|
|
|
|
if (s->dlgret == 0) { /* did not match */
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "Host key did not appear in manually "
|
|
|
|
"configured list");
|
|
|
|
return;
|
|
|
|
} else if (s->dlgret < 0) { /* none configured; use standard handling */
|
|
|
|
s->dlgret = seat_verify_ssh_host_key(
|
|
|
|
s->ppl.seat, s->savedhost, s->savedport,
|
|
|
|
ssh_key_cache_id(s->hkey), s->keystr, s->fingerprint,
|
|
|
|
ssh2_transport_dialog_callback, s);
|
|
|
|
#ifdef FUZZING
|
|
|
|
s->dlgret = 1;
|
|
|
|
#endif
|
|
|
|
crMaybeWaitUntilV(s->dlgret >= 0);
|
|
|
|
if (s->dlgret == 0) {
|
|
|
|
ssh_user_close(s->ppl.ssh,
|
|
|
|
"User aborted at host key verification");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sfree(s->fingerprint);
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
/*
|
|
|
|
* Save this host key, to check against the one presented in
|
|
|
|
* subsequent rekeys.
|
|
|
|
*/
|
|
|
|
s->hostkey_str = s->keystr;
|
|
|
|
s->keystr = NULL;
|
|
|
|
} else if (s->cross_certifying) {
|
|
|
|
s->fingerprint = ssh2_fingerprint(s->hkey);
|
|
|
|
ppl_logevent(("Storing additional host key for this host:"));
|
|
|
|
ppl_logevent(("%s", s->fingerprint));
|
|
|
|
sfree(s->fingerprint);
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
store_host_key(s->savedhost, s->savedport,
|
|
|
|
ssh_key_cache_id(s->hkey), s->keystr);
|
2018-10-29 22:50:29 +03:00
|
|
|
s->cross_certifying = false;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
/*
|
|
|
|
* Don't forget to store the new key as the one we'll be
|
|
|
|
* re-checking in future normal rekeys.
|
|
|
|
*/
|
|
|
|
s->hostkey_str = s->keystr;
|
|
|
|
s->keystr = NULL;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* In a rekey, we never present an interactive host key
|
|
|
|
* verification request to the user. Instead, we simply
|
|
|
|
* enforce that the key we're seeing this time is identical to
|
|
|
|
* the one we saw before.
|
|
|
|
*/
|
|
|
|
if (strcmp(s->hostkey_str, s->keystr)) {
|
|
|
|
#ifndef FUZZING
|
|
|
|
ssh_sw_abort(s->ppl.ssh,
|
|
|
|
"Host key was different in repeat key exchange");
|
|
|
|
return;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sfree(s->keystr);
|
|
|
|
s->keystr = NULL;
|
|
|
|
if (s->hkey) {
|
|
|
|
ssh_key_free(s->hkey);
|
|
|
|
s->hkey = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
crFinishV;
|
|
|
|
}
|