putty/sshbn.c

876 строки
22 KiB
C
Исходник Обычный вид История

/*
* Bignum routines for RSA and DH and stuff.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BIGNUM_INTERNAL
typedef unsigned short *Bignum;
#include "ssh.h"
unsigned short bnZero[1] = { 0 };
unsigned short bnOne[2] = { 1, 1 };
/*
* The Bignum format is an array of `unsigned short'. The first
* element of the array counts the remaining elements. The
* remaining elements express the actual number, base 2^16, _least_
* significant digit first. (So it's trivial to extract the bit
* with value 2^n for any n.)
*
* All Bignums in this module are positive. Negative numbers must
* be dealt with outside it.
*
* INVARIANT: the most significant word of any Bignum must be
* nonzero.
*/
Bignum Zero = bnZero, One = bnOne;
static Bignum newbn(int length) {
Bignum b = smalloc((length+1)*sizeof(unsigned short));
if (!b)
abort(); /* FIXME */
memset(b, 0, (length+1)*sizeof(*b));
b[0] = length;
return b;
}
void bn_restore_invariant(Bignum b) {
while (b[0] > 1 && b[b[0]] == 0) b[0]--;
}
Bignum copybn(Bignum orig) {
Bignum b = smalloc((orig[0]+1)*sizeof(unsigned short));
if (!b)
abort(); /* FIXME */
memcpy(b, orig, (orig[0]+1)*sizeof(*b));
return b;
}
void freebn(Bignum b) {
/*
* Burn the evidence, just in case.
*/
memset(b, 0, sizeof(b[0]) * (b[0] + 1));
sfree(b);
}
Bignum bn_power_2(int n) {
Bignum ret = newbn((n+15)/16);
bignum_set_bit(ret, n, 1);
return ret;
}
/*
* Compute c = a * b.
* Input is in the first len words of a and b.
* Result is returned in the first 2*len words of c.
*/
static void internal_mul(unsigned short *a, unsigned short *b,
unsigned short *c, int len)
{
int i, j;
unsigned long ai, t;
for (j = 0; j < 2*len; j++)
c[j] = 0;
for (i = len - 1; i >= 0; i--) {
ai = a[i];
t = 0;
for (j = len - 1; j >= 0; j--) {
t += ai * (unsigned long) b[j];
t += (unsigned long) c[i+j+1];
c[i+j+1] = (unsigned short)t;
t = t >> 16;
}
c[i] = (unsigned short)t;
}
}
static void internal_add_shifted(unsigned short *number,
unsigned n, int shift) {
int word = 1 + (shift / 16);
int bshift = shift % 16;
unsigned long addend;
addend = n << bshift;
while (addend) {
addend += number[word];
number[word] = (unsigned short) addend & 0xFFFF;
addend >>= 16;
word++;
}
}
/*
* Compute a = a % m.
* Input in first alen words of a and first mlen words of m.
* Output in first alen words of a
* (of which first alen-mlen words will be zero).
* The MSW of m MUST have its high bit set.
* Quotient is accumulated in the `quotient' array, which is a Bignum
* rather than the internal bigendian format. Quotient parts are shifted
* left by `qshift' before adding into quot.
*/
static void internal_mod(unsigned short *a, int alen,
unsigned short *m, int mlen,
unsigned short *quot, int qshift)
{
unsigned short m0, m1;
unsigned int h;
int i, k;
m0 = m[0];
if (mlen > 1)
m1 = m[1];
else
m1 = 0;
for (i = 0; i <= alen-mlen; i++) {
unsigned long t;
unsigned int q, r, c, ai1;
if (i == 0) {
h = 0;
} else {
h = a[i-1];
a[i-1] = 0;
}
if (i == alen-1)
ai1 = 0;
else
ai1 = a[i+1];
/* Find q = h:a[i] / m0 */
t = ((unsigned long) h << 16) + a[i];
q = t / m0;
r = t % m0;
/* Refine our estimate of q by looking at
h:a[i]:a[i+1] / m0:m1 */
t = (long) m1 * (long) q;
if (t > ((unsigned long) r << 16) + ai1) {
q--;
t -= m1;
r = (r + m0) & 0xffff; /* overflow? */
if (r >= (unsigned long)m0 &&
t > ((unsigned long) r << 16) + ai1)
q--;
}
/* Subtract q * m from a[i...] */
c = 0;
for (k = mlen - 1; k >= 0; k--) {
t = (long) q * (long) m[k];
t += c;
c = t >> 16;
if ((unsigned short) t > a[i+k]) c++;
a[i+k] -= (unsigned short) t;
}
/* Add back m in case of borrow */
if (c != h) {
t = 0;
for (k = mlen - 1; k >= 0; k--) {
t += m[k];
t += a[i+k];
a[i+k] = (unsigned short)t;
t = t >> 16;
}
q--;
}
if (quot)
internal_add_shifted(quot, q, qshift + 16 * (alen-mlen-i));
}
}
/*
* Compute (base ^ exp) % mod.
* The base MUST be smaller than the modulus.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
*/
Bignum modpow(Bignum base, Bignum exp, Bignum mod)
{
unsigned short *a, *b, *n, *m;
int mshift;
int mlen, i, j;
Bignum result;
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = smalloc(mlen * sizeof(unsigned short));
for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
/* Shift m left to make msb bit set */
for (mshift = 0; mshift < 15; mshift++)
if ((m[0] << mshift) & 0x8000) break;
if (mshift) {
for (i = 0; i < mlen - 1; i++)
m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
m[mlen-1] = m[mlen-1] << mshift;
}
/* Allocate n of size mlen, copy base to n */
n = smalloc(mlen * sizeof(unsigned short));
i = mlen - base[0];
for (j = 0; j < i; j++) n[j] = 0;
for (j = 0; j < base[0]; j++) n[i+j] = base[base[0] - j];
/* Allocate a and b of size 2*mlen. Set a = 1 */
a = smalloc(2 * mlen * sizeof(unsigned short));
b = smalloc(2 * mlen * sizeof(unsigned short));
for (i = 0; i < 2*mlen; i++) a[i] = 0;
a[2*mlen-1] = 1;
/* Skip leading zero bits of exp. */
i = 0; j = 15;
while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
j--;
if (j < 0) { i++; j = 15; }
}
/* Main computation */
while (i < exp[0]) {
while (j >= 0) {
internal_mul(a + mlen, a + mlen, b, mlen);
internal_mod(b, mlen*2, m, mlen, NULL, 0);
if ((exp[exp[0] - i] & (1 << j)) != 0) {
internal_mul(b + mlen, n, a, mlen);
internal_mod(a, mlen*2, m, mlen, NULL, 0);
} else {
unsigned short *t;
t = a; a = b; b = t;
}
j--;
}
i++; j = 15;
}
/* Fixup result in case the modulus was shifted */
if (mshift) {
for (i = mlen - 1; i < 2*mlen - 1; i++)
a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift));
a[2*mlen-1] = a[2*mlen-1] << mshift;
internal_mod(a, mlen*2, m, mlen, NULL, 0);
for (i = 2*mlen - 1; i >= mlen; i--)
a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift));
}
/* Copy result to buffer */
result = newbn(mod[0]);
for (i = 0; i < mlen; i++)
result[result[0] - i] = a[i+mlen];
while (result[0] > 1 && result[result[0]] == 0) result[0]--;
/* Free temporary arrays */
for (i = 0; i < 2*mlen; i++) a[i] = 0; sfree(a);
for (i = 0; i < 2*mlen; i++) b[i] = 0; sfree(b);
for (i = 0; i < mlen; i++) m[i] = 0; sfree(m);
for (i = 0; i < mlen; i++) n[i] = 0; sfree(n);
return result;
}
/*
* Compute (p * q) % mod.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
*/
Bignum modmul(Bignum p, Bignum q, Bignum mod)
{
unsigned short *a, *n, *m, *o;
int mshift;
int pqlen, mlen, rlen, i, j;
Bignum result;
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = smalloc(mlen * sizeof(unsigned short));
for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
/* Shift m left to make msb bit set */
for (mshift = 0; mshift < 15; mshift++)
if ((m[0] << mshift) & 0x8000) break;
if (mshift) {
for (i = 0; i < mlen - 1; i++)
m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
m[mlen-1] = m[mlen-1] << mshift;
}
pqlen = (p[0] > q[0] ? p[0] : q[0]);
/* Allocate n of size pqlen, copy p to n */
n = smalloc(pqlen * sizeof(unsigned short));
i = pqlen - p[0];
for (j = 0; j < i; j++) n[j] = 0;
for (j = 0; j < p[0]; j++) n[i+j] = p[p[0] - j];
/* Allocate o of size pqlen, copy q to o */
o = smalloc(pqlen * sizeof(unsigned short));
i = pqlen - q[0];
for (j = 0; j < i; j++) o[j] = 0;
for (j = 0; j < q[0]; j++) o[i+j] = q[q[0] - j];
/* Allocate a of size 2*pqlen for result */
a = smalloc(2 * pqlen * sizeof(unsigned short));
/* Main computation */
internal_mul(n, o, a, pqlen);
internal_mod(a, pqlen*2, m, mlen, NULL, 0);
/* Fixup result in case the modulus was shifted */
if (mshift) {
for (i = 2*pqlen - mlen - 1; i < 2*pqlen - 1; i++)
a[i] = (a[i] << mshift) | (a[i+1] >> (16-mshift));
a[2*pqlen-1] = a[2*pqlen-1] << mshift;
internal_mod(a, pqlen*2, m, mlen, NULL, 0);
for (i = 2*pqlen - 1; i >= 2*pqlen - mlen; i--)
a[i] = (a[i] >> mshift) | (a[i-1] << (16-mshift));
}
/* Copy result to buffer */
rlen = (mlen < pqlen*2 ? mlen : pqlen*2);
result = newbn(rlen);
for (i = 0; i < rlen; i++)
result[result[0] - i] = a[i+2*pqlen-rlen];
while (result[0] > 1 && result[result[0]] == 0) result[0]--;
/* Free temporary arrays */
for (i = 0; i < 2*pqlen; i++) a[i] = 0; sfree(a);
for (i = 0; i < mlen; i++) m[i] = 0; sfree(m);
for (i = 0; i < pqlen; i++) n[i] = 0; sfree(n);
for (i = 0; i < pqlen; i++) o[i] = 0; sfree(o);
return result;
}
/*
* Compute p % mod.
* The most significant word of mod MUST be non-zero.
* We assume that the result array is the same size as the mod array.
* We optionally write out a quotient.
*/
void bigmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
{
unsigned short *n, *m;
int mshift;
int plen, mlen, i, j;
/* Allocate m of size mlen, copy mod to m */
/* We use big endian internally */
mlen = mod[0];
m = smalloc(mlen * sizeof(unsigned short));
for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j];
/* Shift m left to make msb bit set */
for (mshift = 0; mshift < 15; mshift++)
if ((m[0] << mshift) & 0x8000) break;
if (mshift) {
for (i = 0; i < mlen - 1; i++)
m[i] = (m[i] << mshift) | (m[i+1] >> (16-mshift));
m[mlen-1] = m[mlen-1] << mshift;
}
plen = p[0];
/* Ensure plen > mlen */
if (plen <= mlen) plen = mlen+1;
/* Allocate n of size plen, copy p to n */
n = smalloc(plen * sizeof(unsigned short));
for (j = 0; j < plen; j++) n[j] = 0;
for (j = 1; j <= p[0]; j++) n[plen-j] = p[j];
/* Main computation */
internal_mod(n, plen, m, mlen, quotient, mshift);
/* Fixup result in case the modulus was shifted */
if (mshift) {
for (i = plen - mlen - 1; i < plen - 1; i++)
n[i] = (n[i] << mshift) | (n[i+1] >> (16-mshift));
n[plen-1] = n[plen-1] << mshift;
internal_mod(n, plen, m, mlen, quotient, 0);
for (i = plen - 1; i >= plen - mlen; i--)
n[i] = (n[i] >> mshift) | (n[i-1] << (16-mshift));
}
/* Copy result to buffer */
for (i = 1; i <= result[0]; i++) {
int j = plen-i;
result[i] = j>=0 ? n[j] : 0;
}
/* Free temporary arrays */
for (i = 0; i < mlen; i++) m[i] = 0; sfree(m);
for (i = 0; i < plen; i++) n[i] = 0; sfree(n);
}
/*
* Decrement a number.
*/
void decbn(Bignum bn) {
int i = 1;
while (i < bn[0] && bn[i] == 0)
bn[i++] = 0xFFFF;
bn[i]--;
}
Bignum bignum_from_bytes(unsigned char *data, int nbytes) {
Bignum result;
int w, i;
w = (nbytes+1)/2; /* bytes -> words */
result = newbn(w);
for (i=1; i<=w; i++)
result[i] = 0;
for (i=nbytes; i-- ;) {
unsigned char byte = *data++;
if (i & 1)
result[1+i/2] |= byte<<8;
else
result[1+i/2] |= byte;
}
while (result[0] > 1 && result[result[0]] == 0) result[0]--;
return result;
}
/*
* Read an ssh1-format bignum from a data buffer. Return the number
* of bytes consumed.
*/
int ssh1_read_bignum(unsigned char *data, Bignum *result) {
unsigned char *p = data;
int i;
int w, b;
w = 0;
for (i=0; i<2; i++)
w = (w << 8) + *p++;
b = (w+7)/8; /* bits -> bytes */
if (!result) /* just return length */
return b + 2;
*result = bignum_from_bytes(p, b);
return p + b - data;
}
/*
* Return the bit count of a bignum, for ssh1 encoding.
*/
int ssh1_bignum_bitcount(Bignum bn) {
int bitcount = bn[0] * 16 - 1;
while (bitcount >= 0 && (bn[bitcount/16+1] >> (bitcount % 16)) == 0)
bitcount--;
return bitcount + 1;
}
/*
* Return the byte length of a bignum when ssh1 encoded.
*/
int ssh1_bignum_length(Bignum bn) {
return 2 + (ssh1_bignum_bitcount(bn)+7)/8;
}
/*
* Return a byte from a bignum; 0 is least significant, etc.
*/
int bignum_byte(Bignum bn, int i) {
if (i >= 2*bn[0])
return 0; /* beyond the end */
else if (i & 1)
return (bn[i/2+1] >> 8) & 0xFF;
else
return (bn[i/2+1] ) & 0xFF;
}
/*
* Return a bit from a bignum; 0 is least significant, etc.
*/
int bignum_bit(Bignum bn, int i) {
if (i >= 16*bn[0])
return 0; /* beyond the end */
else
return (bn[i/16+1] >> (i%16)) & 1;
}
/*
* Set a bit in a bignum; 0 is least significant, etc.
*/
void bignum_set_bit(Bignum bn, int bitnum, int value) {
if (bitnum >= 16*bn[0])
abort(); /* beyond the end */
else {
int v = bitnum/16+1;
int mask = 1 << (bitnum%16);
if (value)
bn[v] |= mask;
else
bn[v] &= ~mask;
}
}
/*
* Write a ssh1-format bignum into a buffer. It is assumed the
* buffer is big enough. Returns the number of bytes used.
*/
int ssh1_write_bignum(void *data, Bignum bn) {
unsigned char *p = data;
int len = ssh1_bignum_length(bn);
int i;
int bitc = ssh1_bignum_bitcount(bn);
*p++ = (bitc >> 8) & 0xFF;
*p++ = (bitc ) & 0xFF;
for (i = len-2; i-- ;)
*p++ = bignum_byte(bn, i);
return len;
}
/*
* Compare two bignums. Returns like strcmp.
*/
int bignum_cmp(Bignum a, Bignum b) {
int amax = a[0], bmax = b[0];
int i = (amax > bmax ? amax : bmax);
while (i) {
unsigned short aval = (i > amax ? 0 : a[i]);
unsigned short bval = (i > bmax ? 0 : b[i]);
if (aval < bval) return -1;
if (aval > bval) return +1;
i--;
}
return 0;
}
/*
* Right-shift one bignum to form another.
*/
Bignum bignum_rshift(Bignum a, int shift) {
Bignum ret;
int i, shiftw, shiftb, shiftbb, bits;
unsigned short ai, ai1;
bits = ssh1_bignum_bitcount(a) - shift;
ret = newbn((bits+15)/16);
if (ret) {
shiftw = shift / 16;
shiftb = shift % 16;
shiftbb = 16 - shiftb;
ai1 = a[shiftw+1];
for (i = 1; i <= ret[0]; i++) {
ai = ai1;
ai1 = (i+shiftw+1 <= a[0] ? a[i+shiftw+1] : 0);
ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & 0xFFFF;
}
}
return ret;
}
/*
* Non-modular multiplication and addition.
*/
Bignum bigmuladd(Bignum a, Bignum b, Bignum addend) {
int alen = a[0], blen = b[0];
int mlen = (alen > blen ? alen : blen);
int rlen, i, maxspot;
unsigned short *workspace;
Bignum ret;
/* mlen space for a, mlen space for b, 2*mlen for result */
workspace = smalloc(mlen * 4 * sizeof(unsigned short));
for (i = 0; i < mlen; i++) {
workspace[0*mlen + i] = (mlen-i <= a[0] ? a[mlen-i] : 0);
workspace[1*mlen + i] = (mlen-i <= b[0] ? b[mlen-i] : 0);
}
internal_mul(workspace+0*mlen, workspace+1*mlen, workspace+2*mlen, mlen);
/* now just copy the result back */
rlen = alen + blen + 1;
if (addend && rlen <= addend[0])
rlen = addend[0] + 1;
ret = newbn(rlen);
maxspot = 0;
for (i = 1; i <= ret[0]; i++) {
ret[i] = (i <= 2*mlen ? workspace[4*mlen - i] : 0);
if (ret[i] != 0)
maxspot = i;
}
ret[0] = maxspot;
/* now add in the addend, if any */
if (addend) {
unsigned long carry = 0;
for (i = 1; i <= rlen; i++) {
carry += (i <= ret[0] ? ret[i] : 0);
carry += (i <= addend[0] ? addend[i] : 0);
ret[i] = (unsigned short) carry & 0xFFFF;
carry >>= 16;
if (ret[i] != 0 && i > maxspot)
maxspot = i;
}
}
ret[0] = maxspot;
return ret;
}
/*
* Non-modular multiplication.
*/
Bignum bigmul(Bignum a, Bignum b) {
return bigmuladd(a, b, NULL);
}
/*
* Create a bignum which is the bitmask covering another one. That
* is, the smallest integer which is >= N and is also one less than
* a power of two.
*/
Bignum bignum_bitmask(Bignum n) {
Bignum ret = copybn(n);
int i;
unsigned short j;
i = ret[0];
while (n[i] == 0 && i > 0)
i--;
if (i <= 0)
return ret; /* input was zero */
j = 1;
while (j < n[i])
j = 2*j+1;
ret[i] = j;
while (--i > 0)
ret[i] = 0xFFFF;
return ret;
}
/*
* Convert a (max 16-bit) short into a bignum.
*/
Bignum bignum_from_short(unsigned short n) {
Bignum ret;
ret = newbn(2);
ret[1] = n & 0xFFFF;
ret[2] = (n >> 16) & 0xFFFF;
ret[0] = (ret[2] ? 2 : 1);
return ret;
}
/*
* Add a long to a bignum.
*/
Bignum bignum_add_long(Bignum number, unsigned long addend) {
Bignum ret = newbn(number[0]+1);
int i, maxspot = 0;
unsigned long carry = 0;
for (i = 1; i <= ret[0]; i++) {
carry += addend & 0xFFFF;
carry += (i <= number[0] ? number[i] : 0);
addend >>= 16;
ret[i] = (unsigned short) carry & 0xFFFF;
carry >>= 16;
if (ret[i] != 0)
maxspot = i;
}
ret[0] = maxspot;
return ret;
}
/*
* Compute the residue of a bignum, modulo a (max 16-bit) short.
*/
unsigned short bignum_mod_short(Bignum number, unsigned short modulus) {
unsigned long mod, r;
int i;
r = 0;
mod = modulus;
for (i = number[0]; i > 0; i--)
r = (r * 65536 + number[i]) % mod;
return (unsigned short) r;
}
void diagbn(char *prefix, Bignum md) {
int i, nibbles, morenibbles;
static const char hex[] = "0123456789ABCDEF";
printf("%s0x", prefix ? prefix : "");
nibbles = (3 + ssh1_bignum_bitcount(md))/4; if (nibbles<1) nibbles=1;
morenibbles = 4*md[0] - nibbles;
for (i=0; i<morenibbles; i++) putchar('-');
for (i=nibbles; i-- ;)
putchar(hex[(bignum_byte(md, i/2) >> (4*(i%2))) & 0xF]);
if (prefix) putchar('\n');
}
/*
* Greatest common divisor.
*/
Bignum biggcd(Bignum av, Bignum bv) {
Bignum a = copybn(av);
Bignum b = copybn(bv);
diagbn("a = ", a);
diagbn("b = ", b);
while (bignum_cmp(b, Zero) != 0) {
Bignum t = newbn(b[0]);
bigmod(a, b, t, NULL);
diagbn("t = ", t);
while (t[0] > 1 && t[t[0]] == 0) t[0]--;
freebn(a);
a = b;
b = t;
}
freebn(b);
return a;
}
/*
* Modular inverse, using Euclid's extended algorithm.
*/
Bignum modinv(Bignum number, Bignum modulus) {
Bignum a = copybn(modulus);
Bignum b = copybn(number);
Bignum xp = copybn(Zero);
Bignum x = copybn(One);
int sign = +1;
while (bignum_cmp(b, One) != 0) {
Bignum t = newbn(b[0]);
Bignum q = newbn(a[0]);
bigmod(a, b, t, q);
while (t[0] > 1 && t[t[0]] == 0) t[0]--;
freebn(a);
a = b;
b = t;
t = xp;
xp = x;
x = bigmuladd(q, xp, t);
sign = -sign;
freebn(t);
}
freebn(b);
freebn(a);
freebn(xp);
/* now we know that sign * x == 1, and that x < modulus */
if (sign < 0) {
/* set a new x to be modulus - x */
Bignum newx = newbn(modulus[0]);
unsigned short carry = 0;
int maxspot = 1;
int i;
for (i = 1; i <= newx[0]; i++) {
unsigned short aword = (i <= modulus[0] ? modulus[i] : 0);
unsigned short bword = (i <= x[0] ? x[i] : 0);
newx[i] = aword - bword - carry;
bword = ~bword;
carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
if (newx[i] != 0)
maxspot = i;
}
newx[0] = maxspot;
freebn(x);
x = newx;
}
/* and return. */
return x;
}
/*
* Render a bignum into decimal. Return a malloced string holding
* the decimal representation.
*/
char *bignum_decimal(Bignum x) {
int ndigits, ndigit;
int i, iszero;
unsigned long carry;
char *ret;
unsigned short *workspace;
/*
* First, estimate the number of digits. Since log(10)/log(2)
* is just greater than 93/28 (the joys of continued fraction
* approximations...) we know that for every 93 bits, we need
* at most 28 digits. This will tell us how much to malloc.
*
* Formally: if x has i bits, that means x is strictly less
* than 2^i. Since 2 is less than 10^(28/93), this is less than
* 10^(28i/93). We need an integer power of ten, so we must
* round up (rounding down might make it less than x again).
* Therefore if we multiply the bit count by 28/93, rounding
* up, we will have enough digits.
*/
i = ssh1_bignum_bitcount(x);
ndigits = (28*i + 92)/93; /* multiply by 28/93 and round up */
ndigits++; /* allow for trailing \0 */
ret = smalloc(ndigits);
/*
* Now allocate some workspace to hold the binary form as we
* repeatedly divide it by ten. Initialise this to the
* big-endian form of the number.
*/
workspace = smalloc(sizeof(unsigned short) * x[0]);
for (i = 0; i < x[0]; i++)
workspace[i] = x[x[0] - i];
/*
* Next, write the decimal number starting with the last digit.
* We use ordinary short division, dividing 10 into the
* workspace.
*/
ndigit = ndigits-1;
ret[ndigit] = '\0';
do {
iszero = 1;
carry = 0;
for (i = 0; i < x[0]; i++) {
carry = (carry << 16) + workspace[i];
workspace[i] = (unsigned short) (carry / 10);
if (workspace[i])
iszero = 0;
carry %= 10;
}
ret[--ndigit] = (char)(carry + '0');
} while (!iszero);
/*
* There's a chance we've fallen short of the start of the
* string. Correct if so.
*/
if (ndigit > 0)
memmove(ret, ret+ndigit, ndigits-ndigit);
/*
* Done.
*/
return ret;
}