putty/Recipe

370 строки
14 KiB
Plaintext
Исходник Обычный вид История

# -*- makefile -*-
#
# This file describes which PuTTY programs are made up from which
# object and resource files. It is processed into the various
# Makefiles by means of a Perl script. Makefile changes should
# really be made by editing this file and/or the Perl script, not
# by editing the actual Makefiles.
# ------------------------------------------------------------
# Top-level configuration.
# Overall project name.
!name putty
# Locations and types of output Makefiles.
!makefile clangcl windows/Makefile.clangcl
!makefile vc windows/Makefile.vc
!makefile vcproj windows/MSVC
!makefile cygwin windows/Makefile.mgw
!makefile borland windows/Makefile.bor
!makefile lcc windows/Makefile.lcc
!makefile gtk unix/Makefile.gtk
!makefile unix unix/Makefile.ux
Move the Unix configure script up to the top level. Previously, 'configure' and its assorted machinery lived in the 'unix' subdir, because that seemed like a clean place to keep it given that all the other per-platform Makefiles live in their platform directories. However, this never sat all that happily with autotools, and even less so now that it likes to have object file pathnames parallel source file pathnames: if you have Makefile.am refer to source files outside its subdir as "../terminal.c" and enable subdir-objects then any out-of-tree build calls the corresponding object file "../terminal.o" and so your build products mostly end up at the directory above your build dir! And as of autotools 1.14 my previous compensatory bodge of prefixing every source file path in Makefile.am with "$(srcdir)" has stopped working too. So I'm giving in to necessity, and changing policy by moving the configure machinery up to the top level of the source tree where autotools will be less confused by it. This should not be taken as any indication of the primacy of the Unix port, only of the recalcitrance of autotools. Whereas before we had a trivial script called 'configure' at the top level that invoked unix/configure to effectively do an 'out-of-tree build' (for make purposes) at the top level of the source tree, we now have a similar script in unix/configure. So this _should_ make very little difference: people who were previously running configure from the top level should still be able to, and likewise people who were running it from the unix subdir. [originally from svn r10141]
2014-02-22 22:01:32 +04:00
!makefile am Makefile.am
!makefile devcppproj windows/DEVCPP
!makefile vstudio10 windows/VS2010
!makefile vstudio12 windows/VS2012
# Source directories.
!srcdir charset/
!srcdir windows/
!srcdir unix/
# Help text added to the top of each Makefile, with /D converted
# into -D as appropriate for the particular Makefile.
!begin help
#
# Extra options you can set:
#
# - COMPAT=/DAUTO_WINSOCK (Windows only)
# Causes PuTTY to assume that <windows.h> includes its own WinSock
# header file, so that it won't try to include <winsock.h>.
#
# - COMPAT=/DWINSOCK_TWO (Windows only)
# Causes the PuTTY utilities to include <winsock2.h> instead of
# <winsock.h>, except Plink which _needs_ WinSock 2 so it already
# does this.
#
# - COMPAT=/DNO_SECURITY (Windows only)
2016-04-10 16:37:43 +03:00
# Disables use of <aclapi.h>, which is not available with some
# development environments (such as very old versions of the
# mingw/Cygwin GNU toolchain). This has the following effects:
# - Pageant won't care about the local user ID of processes
# accessing it; a version of Pageant built with this option
# will therefore refuse to run under NT-series OSes on
# security grounds (although it will run fine on Win95-series
# OSes where there is no access control anyway).
# - SSH connection sharing is disabled.
# - There is no support for restriction of the process ACLs.
#
# - COMPAT=/DNO_MULTIMON (Windows only)
# Disables PuTTY's use of <multimon.h>, which is not available
# with some development environments. This means that PuTTY's
# full-screen mode (configurable to work on Alt-Enter) will
# not behave usefully in a multi-monitor environment.
#
# - COMPAT=/DNO_HTMLHELP (Windows only)
# Disables PuTTY's use of <htmlhelp.h>, which is not available
# with some development environments. The resulting binary
# will only look for an old-style WinHelp file (.HLP/.CNT), and
# will ignore any .CHM file.
#
# If you don't have this header, you may be able to use the copy
# supplied with HTML Help Workshop.
#
# - RCFL=/DNO_MANIFESTS (Windows only)
# Disables inclusion of XML application manifests in the PuTTY
# binaries. This may be necessary to build for 64-bit Windows;
# the manifests are only included to use the XP GUI style on
# Windows XP, and the architecture tags are a lie on 64-bit.
#
# - COMPAT=/DNO_IPV6
# Disables PuTTY's ability to make IPv6 connections, enabling
# it to compile under development environments which do not
# support IPv6 in their header files.
#
# - COMPAT=/DNO_GSSAPI
# Disables PuTTY's ability to use GSSAPI functions for
# authentication and key exchange.
#
# - COMPAT=/DSTATIC_GSSAPI
# Causes PuTTY to try to link statically against the GSSAPI
# library instead of the default of doing it at run time.
#
# - COMPAT=/DMSVC4 (Windows only)
# - RCFL=/DMSVC4
# Makes a couple of minor changes so that PuTTY compiles using
# MSVC 4. You will also need /DNO_SECURITY and /DNO_MULTIMON.
#
# - COMPAT=/DNO_SECUREZEROMEMORY (Windows only)
# Disables PuTTY's use of SecureZeroMemory(), which is missing
# from some environments' header files.
#
# - XFLAGS=/DTELNET_DEFAULT
# Causes PuTTY to default to the Telnet protocol (in the absence
# of Default Settings and so on to the contrary). Normally PuTTY
# will default to SSH.
#
# - XFLAGS=/DDEBUG
# Causes PuTTY to enable internal debugging.
#
# - XFLAGS=/DMALLOC_LOG
# Causes PuTTY to emit a file called putty_mem.log, logging every
# memory allocation and free, so you can track memory leaks.
#
# - XFLAGS=/DMINEFIELD (Windows only)
# Causes PuTTY to use a custom memory allocator, similar in
# concept to Electric Fence, in place of regular malloc(). Wastes
# huge amounts of RAM, but should cause heap-corruption bugs to
# show up as GPFs at the point of failure rather than appearing
# later on as second-level damage.
#
# - XFLAGS=/DFUZZING
# Builds a version of PuTTY with some tweaks to make fuzz testing
# easier: the SSH random number generator is replaced by one that
# always returns the same thing. Note that this makes SSH
# completely insecure -- a FUZZING build should never be used to
# connect to a real server.
!end
# ------------------------------------------------------------
# Additional text added verbatim to each individual Makefile.
!cflags am version
Show the git commit hash in local dev builds too. This is perhaps the more useful end of the mechanism I added in the previous commit: now, when a developer runs a configure+make build from a git checkout (rather than from a bob-built source tarball), the Makefile will automatically run 'git rev-parse HEAD' and embed the result in the binaries. So now when I want to deploy my own bleeding-edge code for day-to-day use on my own machine, I can easily check whether I've done it right (e.g. did I install to the right prefix?), and also easily check whether any given PuTTY or pterm has been restarted since I rolled out a new version. In order to arrange this (and in particular to force version.o to be rebuilt when _any_ source file changes), I've had to reintroduce some of the slightly painful Makefile nastiness that I removed in 4d8782e74 when I retired the 'manifest' system, namely having version.o depend on a file empty.h, which in turn is trivially rebuilt by a custom make rule whose dependencies include $(allsources). That's a bit unfortunate, but I think acceptable: the main horribleness of the manifest system was not that part, but the actual _manifests_, which were there to arrange that if you modified the sources in a distribution tarball the binaries would automatically switch to reporting themselves as local builds rather than the version baked into the tarball. I haven't reintroduced that part of the system: if you check out a given git commit, modify the checked-out sources, and build the result, the Makefile won't make any inconvenient attempts to detect that, and the resulting build will still announce itself as the git commit you started from.
2017-01-21 17:57:31 +03:00
!begin am
if AUTO_GIT_COMMIT
Show the git commit hash in local dev builds too. This is perhaps the more useful end of the mechanism I added in the previous commit: now, when a developer runs a configure+make build from a git checkout (rather than from a bob-built source tarball), the Makefile will automatically run 'git rev-parse HEAD' and embed the result in the binaries. So now when I want to deploy my own bleeding-edge code for day-to-day use on my own machine, I can easily check whether I've done it right (e.g. did I install to the right prefix?), and also easily check whether any given PuTTY or pterm has been restarted since I rolled out a new version. In order to arrange this (and in particular to force version.o to be rebuilt when _any_ source file changes), I've had to reintroduce some of the slightly painful Makefile nastiness that I removed in 4d8782e74 when I retired the 'manifest' system, namely having version.o depend on a file empty.h, which in turn is trivially rebuilt by a custom make rule whose dependencies include $(allsources). That's a bit unfortunate, but I think acceptable: the main horribleness of the manifest system was not that part, but the actual _manifests_, which were there to arrange that if you modified the sources in a distribution tarball the binaries would automatically switch to reporting themselves as local builds rather than the version baked into the tarball. I haven't reintroduced that part of the system: if you check out a given git commit, modify the checked-out sources, and build the result, the Makefile won't make any inconvenient attempts to detect that, and the resulting build will still announce itself as the git commit you started from.
2017-01-21 17:57:31 +03:00
BUILT_SOURCES = empty.h
CLEANFILES = empty.h
libversion_a_CFLAGS += -DSOURCE_COMMIT=\"`git --git-dir=$(srcdir)/.git rev-parse HEAD 2>/dev/null`\"
Show the git commit hash in local dev builds too. This is perhaps the more useful end of the mechanism I added in the previous commit: now, when a developer runs a configure+make build from a git checkout (rather than from a bob-built source tarball), the Makefile will automatically run 'git rev-parse HEAD' and embed the result in the binaries. So now when I want to deploy my own bleeding-edge code for day-to-day use on my own machine, I can easily check whether I've done it right (e.g. did I install to the right prefix?), and also easily check whether any given PuTTY or pterm has been restarted since I rolled out a new version. In order to arrange this (and in particular to force version.o to be rebuilt when _any_ source file changes), I've had to reintroduce some of the slightly painful Makefile nastiness that I removed in 4d8782e74 when I retired the 'manifest' system, namely having version.o depend on a file empty.h, which in turn is trivially rebuilt by a custom make rule whose dependencies include $(allsources). That's a bit unfortunate, but I think acceptable: the main horribleness of the manifest system was not that part, but the actual _manifests_, which were there to arrange that if you modified the sources in a distribution tarball the binaries would automatically switch to reporting themselves as local builds rather than the version baked into the tarball. I haven't reintroduced that part of the system: if you check out a given git commit, modify the checked-out sources, and build the result, the Makefile won't make any inconvenient attempts to detect that, and the resulting build will still announce itself as the git commit you started from.
2017-01-21 17:57:31 +03:00
empty.h: $(allsources)
echo '/* Empty file touched by automake makefile to force rebuild of version.o */' >$@
endif
Show the git commit hash in local dev builds too. This is perhaps the more useful end of the mechanism I added in the previous commit: now, when a developer runs a configure+make build from a git checkout (rather than from a bob-built source tarball), the Makefile will automatically run 'git rev-parse HEAD' and embed the result in the binaries. So now when I want to deploy my own bleeding-edge code for day-to-day use on my own machine, I can easily check whether I've done it right (e.g. did I install to the right prefix?), and also easily check whether any given PuTTY or pterm has been restarted since I rolled out a new version. In order to arrange this (and in particular to force version.o to be rebuilt when _any_ source file changes), I've had to reintroduce some of the slightly painful Makefile nastiness that I removed in 4d8782e74 when I retired the 'manifest' system, namely having version.o depend on a file empty.h, which in turn is trivially rebuilt by a custom make rule whose dependencies include $(allsources). That's a bit unfortunate, but I think acceptable: the main horribleness of the manifest system was not that part, but the actual _manifests_, which were there to arrange that if you modified the sources in a distribution tarball the binaries would automatically switch to reporting themselves as local builds rather than the version baked into the tarball. I haven't reintroduced that part of the system: if you check out a given git commit, modify the checked-out sources, and build the result, the Makefile won't make any inconvenient attempts to detect that, and the resulting build will still announce itself as the git commit you started from.
2017-01-21 17:57:31 +03:00
!end
!begin >empty.h
/* Empty file touched by automake makefile to force rebuild of version.o */
!end
!begin vc vars
CFLAGS = $(CFLAGS) /DHAS_GSSAPI
!end
!begin clangcl vars
CFLAGS += /DHAS_GSSAPI
!end
# `make install' target for Unix.
!begin gtk
install:
mkdir -p $(DESTDIR)$(bindir) $(DESTDIR)$(man1dir)
$(INSTALL_PROGRAM) -m 755 pageant $(DESTDIR)$(bindir)/pageant
$(INSTALL_PROGRAM) -m 755 plink $(DESTDIR)$(bindir)/plink
$(INSTALL_PROGRAM) -m 755 pscp $(DESTDIR)$(bindir)/pscp
$(INSTALL_PROGRAM) -m 755 psftp $(DESTDIR)$(bindir)/psftp
$(INSTALL_PROGRAM) -m 755 pterm $(DESTDIR)$(bindir)/pterm
if test -n "$(UTMP_GROUP)"; then \
chgrp $(UTMP_GROUP) $(DESTDIR)$(bindir)/pterm && \
chmod 2755 $(DESTDIR)$(bindir)/pterm; \
elif test -n "$(UTMP_USER)"; then \
chown $(UTMP_USER) $(DESTDIR)$(bindir)/pterm && \
chmod 4755 $(DESTDIR)$(bindir)/pterm; \
fi
$(INSTALL_PROGRAM) -m 755 putty $(DESTDIR)$(bindir)/putty
$(INSTALL_PROGRAM) -m 755 puttygen $(DESTDIR)$(bindir)/puttygen
$(INSTALL_PROGRAM) -m 755 puttytel $(DESTDIR)$(bindir)/puttytel
$(INSTALL_DATA) -m 644 ../doc/pageant.1 $(DESTDIR)$(man1dir)/pageant.1
$(INSTALL_DATA) -m 644 ../doc/plink.1 $(DESTDIR)$(man1dir)/plink.1
$(INSTALL_DATA) -m 644 ../doc/pscp.1 $(DESTDIR)$(man1dir)/pscp.1
$(INSTALL_DATA) -m 644 ../doc/psftp.1 $(DESTDIR)$(man1dir)/psftp.1
$(INSTALL_DATA) -m 644 ../doc/pterm.1 $(DESTDIR)$(man1dir)/pterm.1
$(INSTALL_DATA) -m 644 ../doc/putty.1 $(DESTDIR)$(man1dir)/putty.1
$(INSTALL_DATA) -m 644 ../doc/puttygen.1 $(DESTDIR)$(man1dir)/puttygen.1
$(INSTALL_DATA) -m 644 ../doc/puttytel.1 $(DESTDIR)$(man1dir)/puttytel.1
install-strip:
$(MAKE) install INSTALL_PROGRAM="$(INSTALL_PROGRAM) -s"
!end
# List the man pages for the automake makefile.
!begin am
if HAVE_GTK
man1_MANS = doc/plink.1 doc/pscp.1 doc/psftp.1 doc/puttygen.1 \
doc/pageant.1 doc/pterm.1 doc/putty.1 doc/puttytel.1
else
man1_MANS = doc/plink.1 doc/pscp.1 doc/psftp.1 doc/puttygen.1
endif
!end
# In automake, chgrp/chmod pterm after installation, if configured to.
!begin am
if HAVE_SETID_CMD
install-exec-local:
@SETID_CMD@ $(bindir)/pterm
chmod @SETID_MODE@ $(bindir)/pterm
endif
!end
# In automake makefile, build the OS X app bundle, if configured in
# Quartz mode.
!begin am
if HAVE_QUARTZ
noinst_SCRIPTS = unix/PuTTY.app unix/Pterm.app
unix/PuTTY.app: unix/putty.bundle puttyapp osxlaunch
rm -rf $@ && gtk-mac-bundler $<
unix/Pterm.app: unix/pterm.bundle ptermapp osxlaunch
rm -rf $@ && gtk-mac-bundler $<
endif
!end
# Random symbols.
!begin cygwin vars
# _WIN32_IE is required to expose identifiers that only make sense on
# systems with IE5+ installed, such as some arguments to SHGetFolderPath().
# WINVER etc perform a similar function for FlashWindowEx().
CFLAGS += -D_WIN32_IE=0x0500
CFLAGS += -DWINVER=0x0500 -D_WIN32_WINDOWS=0x0410 -D_WIN32_WINNT=0x0500
!end
# ------------------------------------------------------------
# Definitions of object groups. A group name, followed by an =,
# followed by any number of objects or other already-defined group
# names. A line beginning `+' is assumed to continue the previous
# line.
# Terminal emulator and its (platform-independent) dependencies.
TERMINAL = terminal wcwidth ldiscucs logging tree234 minibidi
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 22:52:21 +04:00
+ config dialog conf
# GUI front end and terminal emulator (putty, puttytel).
GUITERM = TERMINAL window windlg winctrls sizetip winprint winutils
+ wincfg sercfg winhelp winjump
# Same thing on Unix.
UXTERM = TERMINAL uxcfg sercfg uxucs uxprint timing callback miscucs
Divide the whole of gtkwin.c into three parts. This lays further groundwork for the OS X GTK3 port, which is going to have to deal with multiple sessions sharing the same process. gtkwin.c was a bit too monolithic for this, since it included some process-global runtime state (timers, toplevel callbacks), some process startup stuff (gtk_init, gtk_main, argv processing) and some per-session-window stuff. The per-session stuff remains in gtkwin.c, with the top-level function now being new_session_window() taking a Conf. The new gtkmain.c contains the outer skeleton of pt_main(), handling argv processing and one-off startup stuff like setlocale; and the new gtkcomm.c contains the pieces of PuTTY infrastructure like timers and uxsel that are shared between multiple sessions rather than reinstantiated per session, which have been rewritten to use global variables rather than fields in 'inst' (since it's now clear to me that they'll have to apply to all the insts in existence at once). There are still some lurking assumptions of one-session-per-process, e.g. the use of gtk_main_quit when a session finishes, and the fact that the config box insists on running as a separate invocation of gtk_main so that one session's preliminary config box can't coexist with another session already active. But this should make it possible to at least write an OS X app good enough to start testing with, even if it doesn't get everything quite right yet. This change is almost entirely rearranging existing code, so it shouldn't be seriously destabilising. But two noticeable actual changes have happened, both pleasantly simplifying: Firstly, the global-variables rewrite of gtkcomm.c has allowed the post_main edifice to become a great deal simpler. Most of its complexity was about remembering what 'inst' it had to call back to, and in fact the right answer is that it shouldn't be calling back to one at all. So now the post_main() called by gtkdlg.c has become the same function as the old inst_post_main() that actually did the work, instead of the two having to be connected by a piece of ugly plumbing. Secondly, a piece of code that's vanished completely in this refactoring is the temporary blocking of SIGCHLD around most of the session setup code. This turns out to have been introduced in 2002, _before_ I switched to using the intra-process signal pipe strategy for SIGCHLD handling in 2003. So I now expect that we should be robust in any case against receiving SIGCHLD at an inconvenient moment, and hence there's no need to block it.
2016-03-23 00:24:30 +03:00
GTKTERM = UXTERM gtkwin gtkcfg gtkdlg gtkfont gtkcols gtkmisc xkeysym
+ x11misc gtkcomm
# Non-SSH back ends (putty, puttytel, plink).
NONSSH = telnet raw rlogin ldisc pinger
# SSH back end (putty, plink, pscp, psftp).
SSH = ssh sshcrc sshdes sshmd5 sshrsa sshrand sshsha sshblowf
+ sshdh sshcrcda sshpubk sshzlib sshdss x11fwd portfwd
+ sshaes sshccp sshsh256 sshsh512 sshbn wildcard pinger ssharcf
+ sshgssc pgssapi sshshare sshecc aqsync
WINSSH = SSH winnoise wincapi winpgntc wingss winshare winnps winnpc
+ winhsock errsock
UXSSH = SSH uxnoise uxagentc uxgss uxshare
# SFTP implementation (pscp, psftp).
SFTP = sftp int64 logging
# Miscellaneous objects appearing in all the network utilities (not
# Pageant or PuTTYgen).
MISC = timing callback misc version settings tree234 proxy conf be_misc
WINMISC = MISC winstore winnet winhandl cmdline windefs winmisc winproxy
+ wintime winhsock errsock winsecur winucs miscucs
UXMISC = MISC uxstore uxsel uxnet uxpeer cmdline uxmisc uxproxy time
# import.c and dependencies, for PuTTYgen-like utilities that have to
# load foreign key files.
IMPORT = import sshbcrypt sshblowf
# Character set library, for use in pterm.
CHARSET = sbcsdat slookup sbcs utf8 toucs fromucs xenc mimeenc macenc localenc
# Standard libraries.
LIBS = advapi32.lib user32.lib gdi32.lib comctl32.lib comdlg32.lib
+ shell32.lib imm32.lib winspool.lib ole32.lib
# Network backend sets. This also brings in the relevant attachment
# to proxy.c depending on whether we're crypto-avoidant or not.
BE_ALL = be_all cproxy
BE_NOSSH = be_nossh nocproxy
BE_SSH = be_ssh cproxy
BE_NONE = be_none nocproxy
# More backend sets, with the additional Windows serial-port module.
W_BE_ALL = be_all_s winser cproxy
W_BE_NOSSH = be_nos_s winser nocproxy
# And with the Unix serial-port module.
U_BE_ALL = be_all_s uxser cproxy
U_BE_NOSSH = be_nos_s uxser nocproxy
# ------------------------------------------------------------
# Definitions of actual programs. The program name, followed by a
# colon, followed by a list of objects. Also in the list may be the
# keywords [G] for Windows GUI app, [C] for Console app, [X] for
# X/GTK Unix app, [U] for command-line Unix app.
putty : [G] GUITERM NONSSH WINSSH W_BE_ALL WINMISC winx11 putty.res LIBS
puttytel : [G] GUITERM NONSSH W_BE_NOSSH WINMISC puttytel.res nogss LIBS
plink : [C] winplink wincons NONSSH WINSSH W_BE_ALL logging WINMISC
+ winx11 plink.res winnojmp noterm LIBS
pscp : [C] pscp winsftp wincons WINSSH BE_SSH SFTP wildcard WINMISC
+ pscp.res winnojmp LIBS
psftp : [C] psftp winsftp wincons WINSSH BE_SSH SFTP wildcard WINMISC
+ psftp.res winnojmp LIBS
pageant : [G] winpgnt pageant sshrsa sshpubk sshdes sshbn sshmd5 version
+ tree234 misc sshaes sshsha winsecur winpgntc aqsync sshdss sshsh256
+ sshsh512 winutils sshecc winmisc winhelp conf pageant.res LIBS
puttygen : [G] winpgen sshrsag sshdssg sshprime sshdes sshbn sshmd5 version
+ sshrand winnoise sshsha winstore misc winctrls sshrsa sshdss winmisc
+ sshpubk sshaes sshsh256 sshsh512 IMPORT winutils puttygen.res
+ tree234 notiming winhelp winnojmp conf LIBS wintime sshecc
+ sshecdsag winsecur
pterm : [X] GTKTERM uxmisc misc ldisc settings uxpty uxsel BE_NONE uxstore
+ uxsignal CHARSET cmdline uxpterm version time xpmpterm xpmptcfg
Divide the whole of gtkwin.c into three parts. This lays further groundwork for the OS X GTK3 port, which is going to have to deal with multiple sessions sharing the same process. gtkwin.c was a bit too monolithic for this, since it included some process-global runtime state (timers, toplevel callbacks), some process startup stuff (gtk_init, gtk_main, argv processing) and some per-session-window stuff. The per-session stuff remains in gtkwin.c, with the top-level function now being new_session_window() taking a Conf. The new gtkmain.c contains the outer skeleton of pt_main(), handling argv processing and one-off startup stuff like setlocale; and the new gtkcomm.c contains the pieces of PuTTY infrastructure like timers and uxsel that are shared between multiple sessions rather than reinstantiated per session, which have been rewritten to use global variables rather than fields in 'inst' (since it's now clear to me that they'll have to apply to all the insts in existence at once). There are still some lurking assumptions of one-session-per-process, e.g. the use of gtk_main_quit when a session finishes, and the fact that the config box insists on running as a separate invocation of gtk_main so that one session's preliminary config box can't coexist with another session already active. But this should make it possible to at least write an OS X app good enough to start testing with, even if it doesn't get everything quite right yet. This change is almost entirely rearranging existing code, so it shouldn't be seriously destabilising. But two noticeable actual changes have happened, both pleasantly simplifying: Firstly, the global-variables rewrite of gtkcomm.c has allowed the post_main edifice to become a great deal simpler. Most of its complexity was about remembering what 'inst' it had to call back to, and in fact the right answer is that it shouldn't be calling back to one at all. So now the post_main() called by gtkdlg.c has become the same function as the old inst_post_main() that actually did the work, instead of the two having to be connected by a piece of ugly plumbing. Secondly, a piece of code that's vanished completely in this refactoring is the temporary blocking of SIGCHLD around most of the session setup code. This turns out to have been introduced in 2002, _before_ I switched to using the intra-process signal pipe strategy for SIGCHLD handling in 2003. So I now expect that we should be robust in any case against receiving SIGCHLD at an inconvenient moment, and hence there's no need to block it.
2016-03-23 00:24:30 +03:00
+ nogss gtkmain
putty : [X] GTKTERM uxmisc misc ldisc settings uxsel U_BE_ALL uxstore
+ uxsignal CHARSET uxputty NONSSH UXSSH UXMISC ux_x11 xpmputty
Divide the whole of gtkwin.c into three parts. This lays further groundwork for the OS X GTK3 port, which is going to have to deal with multiple sessions sharing the same process. gtkwin.c was a bit too monolithic for this, since it included some process-global runtime state (timers, toplevel callbacks), some process startup stuff (gtk_init, gtk_main, argv processing) and some per-session-window stuff. The per-session stuff remains in gtkwin.c, with the top-level function now being new_session_window() taking a Conf. The new gtkmain.c contains the outer skeleton of pt_main(), handling argv processing and one-off startup stuff like setlocale; and the new gtkcomm.c contains the pieces of PuTTY infrastructure like timers and uxsel that are shared between multiple sessions rather than reinstantiated per session, which have been rewritten to use global variables rather than fields in 'inst' (since it's now clear to me that they'll have to apply to all the insts in existence at once). There are still some lurking assumptions of one-session-per-process, e.g. the use of gtk_main_quit when a session finishes, and the fact that the config box insists on running as a separate invocation of gtk_main so that one session's preliminary config box can't coexist with another session already active. But this should make it possible to at least write an OS X app good enough to start testing with, even if it doesn't get everything quite right yet. This change is almost entirely rearranging existing code, so it shouldn't be seriously destabilising. But two noticeable actual changes have happened, both pleasantly simplifying: Firstly, the global-variables rewrite of gtkcomm.c has allowed the post_main edifice to become a great deal simpler. Most of its complexity was about remembering what 'inst' it had to call back to, and in fact the right answer is that it shouldn't be calling back to one at all. So now the post_main() called by gtkdlg.c has become the same function as the old inst_post_main() that actually did the work, instead of the two having to be connected by a piece of ugly plumbing. Secondly, a piece of code that's vanished completely in this refactoring is the temporary blocking of SIGCHLD around most of the session setup code. This turns out to have been introduced in 2002, _before_ I switched to using the intra-process signal pipe strategy for SIGCHLD handling in 2003. So I now expect that we should be robust in any case against receiving SIGCHLD at an inconvenient moment, and hence there's no need to block it.
2016-03-23 00:24:30 +03:00
+ xpmpucfg gtkmain
puttytel : [X] GTKTERM uxmisc misc ldisc settings uxsel U_BE_NOSSH
+ uxstore uxsignal CHARSET uxputty NONSSH UXMISC xpmputty xpmpucfg
Divide the whole of gtkwin.c into three parts. This lays further groundwork for the OS X GTK3 port, which is going to have to deal with multiple sessions sharing the same process. gtkwin.c was a bit too monolithic for this, since it included some process-global runtime state (timers, toplevel callbacks), some process startup stuff (gtk_init, gtk_main, argv processing) and some per-session-window stuff. The per-session stuff remains in gtkwin.c, with the top-level function now being new_session_window() taking a Conf. The new gtkmain.c contains the outer skeleton of pt_main(), handling argv processing and one-off startup stuff like setlocale; and the new gtkcomm.c contains the pieces of PuTTY infrastructure like timers and uxsel that are shared between multiple sessions rather than reinstantiated per session, which have been rewritten to use global variables rather than fields in 'inst' (since it's now clear to me that they'll have to apply to all the insts in existence at once). There are still some lurking assumptions of one-session-per-process, e.g. the use of gtk_main_quit when a session finishes, and the fact that the config box insists on running as a separate invocation of gtk_main so that one session's preliminary config box can't coexist with another session already active. But this should make it possible to at least write an OS X app good enough to start testing with, even if it doesn't get everything quite right yet. This change is almost entirely rearranging existing code, so it shouldn't be seriously destabilising. But two noticeable actual changes have happened, both pleasantly simplifying: Firstly, the global-variables rewrite of gtkcomm.c has allowed the post_main edifice to become a great deal simpler. Most of its complexity was about remembering what 'inst' it had to call back to, and in fact the right answer is that it shouldn't be calling back to one at all. So now the post_main() called by gtkdlg.c has become the same function as the old inst_post_main() that actually did the work, instead of the two having to be connected by a piece of ugly plumbing. Secondly, a piece of code that's vanished completely in this refactoring is the temporary blocking of SIGCHLD around most of the session setup code. This turns out to have been introduced in 2002, _before_ I switched to using the intra-process signal pipe strategy for SIGCHLD handling in 2003. So I now expect that we should be robust in any case against receiving SIGCHLD at an inconvenient moment, and hence there's no need to block it.
2016-03-23 00:24:30 +03:00
+ nogss gtkmain
plink : [U] uxplink uxcons NONSSH UXSSH U_BE_ALL logging UXMISC uxsignal
+ ux_x11 noterm uxnogtk
PUTTYGEN_UNIX = sshrsag sshdssg sshprime sshdes sshbn sshmd5 version
+ sshrand uxnoise sshsha misc sshrsa sshdss uxcons uxstore uxmisc
+ sshpubk sshaes sshsh256 sshsh512 IMPORT puttygen.res time tree234
+ uxgen notiming conf sshecc sshecdsag uxnogtk
puttygen : [U] cmdgen PUTTYGEN_UNIX
cgtest : [UT] cgtest PUTTYGEN_UNIX
pscp : [U] pscp uxsftp uxcons UXSSH BE_SSH SFTP wildcard UXMISC uxnogtk
psftp : [U] psftp uxsftp uxcons UXSSH BE_SSH SFTP wildcard UXMISC uxnogtk
pageant : [X] uxpgnt uxagentc aqsync pageant sshrsa sshpubk sshdes sshbn
+ sshmd5 version tree234 misc sshaes sshsha sshdss sshsh256 sshsh512
+ sshecc conf uxsignal nocproxy nogss be_none x11fwd ux_x11 uxcons
+ gtkask gtkmisc UXMISC
ptermapp : [XT] GTKTERM uxmisc misc ldisc settings uxpty uxsel BE_NONE uxstore
+ uxsignal CHARSET cmdline uxpterm version time xpmpterm xpmptcfg
+ nogss gtkapp
puttyapp : [XT] GTKTERM uxmisc misc ldisc settings uxsel U_BE_ALL uxstore
+ uxsignal CHARSET uxputty NONSSH UXSSH UXMISC ux_x11 xpmputty
+ xpmpucfg gtkapp
osxlaunch : [UT] osxlaunch
fuzzterm : [UT] UXTERM CHARSET misc version uxmisc uxucs fuzzterm time settings
+ uxstore be_none uxnogtk
testbn : [UT] testbn sshbn misc version conf tree234 uxmisc uxnogtk
testbn : [C] testbn sshbn misc version conf tree234 winmisc LIBS
# ----------------------------------------------------------------------
# On Windows, provide a means of removing local test binaries that we
# aren't going to actually ship. (I prefer this to not building them
# in the first place, so that we find out about build breakage early.)
!begin vc
cleantestprogs:
-del $(BUILDDIR)testbn.exe
!end
!begin clangcl
cleantestprogs:
-rm -f $(BUILDDIR)testbn.exe
!end