putty/telnet.c

1071 строка
34 KiB
C
Исходник Обычный вид История

/*
* Telnet backend.
*/
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include "putty.h"
#define IAC 255 /* interpret as command: */
#define DONT 254 /* you are not to use option */
#define DO 253 /* please, you use option */
#define WONT 252 /* I won't use option */
#define WILL 251 /* I will use option */
#define SB 250 /* interpret as subnegotiation */
#define SE 240 /* end sub negotiation */
#define GA 249 /* you may reverse the line */
#define EL 248 /* erase the current line */
#define EC 247 /* erase the current character */
#define AYT 246 /* are you there */
#define AO 245 /* abort output--but let prog finish */
#define IP 244 /* interrupt process--permanently */
#define BREAK 243 /* break */
#define DM 242 /* data mark--for connect. cleaning */
#define NOP 241 /* nop */
#define EOR 239 /* end of record (transparent mode) */
#define ABORT 238 /* Abort process */
#define SUSP 237 /* Suspend process */
#define xEOF 236 /* End of file: EOF is already used... */
#define TELOPTS(X) \
X(BINARY, 0) /* 8-bit data path */ \
X(ECHO, 1) /* echo */ \
X(RCP, 2) /* prepare to reconnect */ \
X(SGA, 3) /* suppress go ahead */ \
X(NAMS, 4) /* approximate message size */ \
X(STATUS, 5) /* give status */ \
X(TM, 6) /* timing mark */ \
X(RCTE, 7) /* remote controlled transmission and echo */ \
X(NAOL, 8) /* negotiate about output line width */ \
X(NAOP, 9) /* negotiate about output page size */ \
X(NAOCRD, 10) /* negotiate about CR disposition */ \
X(NAOHTS, 11) /* negotiate about horizontal tabstops */ \
X(NAOHTD, 12) /* negotiate about horizontal tab disposition */ \
X(NAOFFD, 13) /* negotiate about formfeed disposition */ \
X(NAOVTS, 14) /* negotiate about vertical tab stops */ \
X(NAOVTD, 15) /* negotiate about vertical tab disposition */ \
X(NAOLFD, 16) /* negotiate about output LF disposition */ \
X(XASCII, 17) /* extended ascic character set */ \
X(LOGOUT, 18) /* force logout */ \
X(BM, 19) /* byte macro */ \
X(DET, 20) /* data entry terminal */ \
X(SUPDUP, 21) /* supdup protocol */ \
X(SUPDUPOUTPUT, 22) /* supdup output */ \
X(SNDLOC, 23) /* send location */ \
X(TTYPE, 24) /* terminal type */ \
X(EOR, 25) /* end or record */ \
X(TUID, 26) /* TACACS user identification */ \
X(OUTMRK, 27) /* output marking */ \
X(TTYLOC, 28) /* terminal location number */ \
X(3270REGIME, 29) /* 3270 regime */ \
X(X3PAD, 30) /* X.3 PAD */ \
X(NAWS, 31) /* window size */ \
X(TSPEED, 32) /* terminal speed */ \
X(LFLOW, 33) /* remote flow control */ \
X(LINEMODE, 34) /* Linemode option */ \
X(XDISPLOC, 35) /* X Display Location */ \
X(OLD_ENVIRON, 36) /* Old - Environment variables */ \
X(AUTHENTICATION, 37) /* Authenticate */ \
X(ENCRYPT, 38) /* Encryption option */ \
X(NEW_ENVIRON, 39) /* New - Environment variables */ \
X(TN3270E, 40) /* TN3270 enhancements */ \
X(XAUTH, 41) \
X(CHARSET, 42) /* Character set */ \
X(RSP, 43) /* Remote serial port */ \
X(COM_PORT_OPTION, 44) /* Com port control */ \
X(SLE, 45) /* Suppress local echo */ \
X(STARTTLS, 46) /* Start TLS */ \
X(KERMIT, 47) /* Automatic Kermit file transfer */ \
X(SEND_URL, 48) \
X(FORWARD_X, 49) \
X(PRAGMA_LOGON, 138) \
X(SSPI_LOGON, 139) \
X(PRAGMA_HEARTBEAT, 140) \
X(EXOPL, 255) /* extended-options-list */
#define telnet_enum(x,y) TELOPT_##x = y,
enum { TELOPTS(telnet_enum) dummy=0 };
#undef telnet_enum
#define TELQUAL_IS 0 /* option is... */
#define TELQUAL_SEND 1 /* send option */
#define TELQUAL_INFO 2 /* ENVIRON: informational version of IS */
#define BSD_VAR 1
#define BSD_VALUE 0
#define RFC_VAR 0
#define RFC_VALUE 1
#define CR 13
#define LF 10
#define NUL 0
#define iswritable(x) \
( (x) != IAC && \
(telnet->opt_states[o_we_bin.index] == ACTIVE || (x) != CR))
static const char *telopt(int opt)
{
#define telnet_str(x,y) case TELOPT_##x: return #x;
switch (opt) {
TELOPTS(telnet_str)
default:
return "<unknown>";
}
#undef telnet_str
}
struct Opt {
int send; /* what we initially send */
int nsend; /* -ve send if requested to stop it */
int ack, nak; /* +ve and -ve acknowledgements */
int option; /* the option code */
int index; /* index into telnet->opt_states[] */
enum {
REQUESTED, ACTIVE, INACTIVE, REALLY_INACTIVE
} initial_state;
};
enum {
OPTINDEX_NAWS,
OPTINDEX_TSPEED,
OPTINDEX_TTYPE,
OPTINDEX_OENV,
OPTINDEX_NENV,
OPTINDEX_ECHO,
OPTINDEX_WE_SGA,
OPTINDEX_THEY_SGA,
OPTINDEX_WE_BIN,
OPTINDEX_THEY_BIN,
NUM_OPTS
};
static const struct Opt o_naws =
{ WILL, WONT, DO, DONT, TELOPT_NAWS, OPTINDEX_NAWS, REQUESTED };
static const struct Opt o_tspeed =
{ WILL, WONT, DO, DONT, TELOPT_TSPEED, OPTINDEX_TSPEED, REQUESTED };
static const struct Opt o_ttype =
{ WILL, WONT, DO, DONT, TELOPT_TTYPE, OPTINDEX_TTYPE, REQUESTED };
static const struct Opt o_oenv =
{ WILL, WONT, DO, DONT, TELOPT_OLD_ENVIRON, OPTINDEX_OENV, INACTIVE };
static const struct Opt o_nenv =
{ WILL, WONT, DO, DONT, TELOPT_NEW_ENVIRON, OPTINDEX_NENV, REQUESTED };
static const struct Opt o_echo =
{ DO, DONT, WILL, WONT, TELOPT_ECHO, OPTINDEX_ECHO, REQUESTED };
static const struct Opt o_we_sga =
{ WILL, WONT, DO, DONT, TELOPT_SGA, OPTINDEX_WE_SGA, REQUESTED };
static const struct Opt o_they_sga =
{ DO, DONT, WILL, WONT, TELOPT_SGA, OPTINDEX_THEY_SGA, REQUESTED };
static const struct Opt o_we_bin =
{ WILL, WONT, DO, DONT, TELOPT_BINARY, OPTINDEX_WE_BIN, INACTIVE };
static const struct Opt o_they_bin =
{ DO, DONT, WILL, WONT, TELOPT_BINARY, OPTINDEX_THEY_BIN, INACTIVE };
static const struct Opt *const opts[] = {
&o_naws, &o_tspeed, &o_ttype, &o_oenv, &o_nenv, &o_echo,
&o_we_sga, &o_they_sga, &o_we_bin, &o_they_bin, NULL
};
typedef struct Telnet Telnet;
struct Telnet {
Socket *s;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
bool closed_on_socket_error;
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 21:58:42 +03:00
Seat *seat;
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
LogContext *logctx;
Ldisc *ldisc;
int term_width, term_height;
int opt_states[NUM_OPTS];
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
bool echoing, editing;
bool activated;
size_t bufsize;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
bool in_synch;
int sb_opt;
strbuf *sb_buf;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
bool session_started;
enum {
TOP_LEVEL, SEENIAC, SEENWILL, SEENWONT, SEENDO, SEENDONT,
SEENSB, SUBNEGOT, SUBNEG_IAC, SEENCR
} state;
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 22:52:21 +04:00
Conf *conf;
Pinger *pinger;
Plug plug;
Backend backend;
};
#define TELNET_MAX_BACKLOG 4096
#define SB_DELTA 1024
static void c_write(Telnet *telnet, const void *buf, size_t len)
{
size_t backlog = seat_stdout(telnet->seat, buf, len);
sk_set_frozen(telnet->s, backlog > TELNET_MAX_BACKLOG);
}
static void log_option(Telnet *telnet, const char *sender, int cmd, int option)
{
/*
* The strange-looking "<?""?>" below is there to avoid a
* trigraph - a double question mark followed by > maps to a
* closing brace character!
*/
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logeventf(telnet->logctx, "%s:\t%s %s", sender,
(cmd == WILL ? "WILL" : cmd == WONT ? "WONT" :
cmd == DO ? "DO" : cmd == DONT ? "DONT" : "<?""?>"),
telopt(option));
}
static void send_opt(Telnet *telnet, int cmd, int option)
{
unsigned char b[3];
b[0] = IAC;
b[1] = cmd;
b[2] = option;
telnet->bufsize = sk_write(telnet->s, b, 3);
log_option(telnet, "client", cmd, option);
}
static void deactivate_option(Telnet *telnet, const struct Opt *o)
{
if (telnet->opt_states[o->index] == REQUESTED ||
telnet->opt_states[o->index] == ACTIVE)
send_opt(telnet, o->nsend, o->option);
telnet->opt_states[o->index] = REALLY_INACTIVE;
}
/*
* Generate side effects of enabling or disabling an option.
*/
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
static void option_side_effects(
Telnet *telnet, const struct Opt *o, bool enabled)
{
if (o->option == TELOPT_ECHO && o->send == DO)
telnet->echoing = !enabled;
else if (o->option == TELOPT_SGA && o->send == DO)
telnet->editing = !enabled;
if (telnet->ldisc) /* cause ldisc to notice the change */
ldisc_echoedit_update(telnet->ldisc);
/* Ensure we get the minimum options */
if (!telnet->activated) {
if (telnet->opt_states[o_echo.index] == INACTIVE) {
telnet->opt_states[o_echo.index] = REQUESTED;
send_opt(telnet, o_echo.send, o_echo.option);
}
if (telnet->opt_states[o_we_sga.index] == INACTIVE) {
telnet->opt_states[o_we_sga.index] = REQUESTED;
send_opt(telnet, o_we_sga.send, o_we_sga.option);
}
if (telnet->opt_states[o_they_sga.index] == INACTIVE) {
telnet->opt_states[o_they_sga.index] = REQUESTED;
send_opt(telnet, o_they_sga.send, o_they_sga.option);
}
telnet->activated = true;
}
}
static void activate_option(Telnet *telnet, const struct Opt *o)
{
if (o->send == WILL && o->option == TELOPT_NAWS)
backend_size(&telnet->backend,
telnet->term_width, telnet->term_height);
if (o->send == WILL &&
(o->option == TELOPT_NEW_ENVIRON ||
o->option == TELOPT_OLD_ENVIRON)) {
/*
* We may only have one kind of ENVIRON going at a time.
* This is a hack, but who cares.
*/
deactivate_option(telnet, o->option ==
TELOPT_NEW_ENVIRON ? &o_oenv : &o_nenv);
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
option_side_effects(telnet, o, true);
}
static void refused_option(Telnet *telnet, const struct Opt *o)
{
if (o->send == WILL && o->option == TELOPT_NEW_ENVIRON &&
telnet->opt_states[o_oenv.index] == INACTIVE) {
send_opt(telnet, WILL, TELOPT_OLD_ENVIRON);
telnet->opt_states[o_oenv.index] = REQUESTED;
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
option_side_effects(telnet, o, false);
}
static void proc_rec_opt(Telnet *telnet, int cmd, int option)
{
const struct Opt *const *o;
log_option(telnet, "server", cmd, option);
for (o = opts; *o; o++) {
if ((*o)->option == option && (*o)->ack == cmd) {
switch (telnet->opt_states[(*o)->index]) {
case REQUESTED:
telnet->opt_states[(*o)->index] = ACTIVE;
activate_option(telnet, *o);
break;
case ACTIVE:
break;
case INACTIVE:
telnet->opt_states[(*o)->index] = ACTIVE;
send_opt(telnet, (*o)->send, option);
activate_option(telnet, *o);
break;
case REALLY_INACTIVE:
send_opt(telnet, (*o)->nsend, option);
break;
}
return;
} else if ((*o)->option == option && (*o)->nak == cmd) {
switch (telnet->opt_states[(*o)->index]) {
case REQUESTED:
telnet->opt_states[(*o)->index] = INACTIVE;
refused_option(telnet, *o);
break;
case ACTIVE:
telnet->opt_states[(*o)->index] = INACTIVE;
send_opt(telnet, (*o)->nsend, option);
option_side_effects(telnet, *o, false);
break;
case INACTIVE:
case REALLY_INACTIVE:
break;
}
return;
}
}
/*
* If we reach here, the option was one we weren't prepared to
* cope with. If the request was positive (WILL or DO), we send
* a negative ack to indicate refusal. If the request was
* negative (WONT / DONT), we must do nothing.
*/
if (cmd == WILL || cmd == DO)
send_opt(telnet, (cmd == WILL ? DONT : WONT), option);
}
static void process_subneg(Telnet *telnet)
{
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 22:52:21 +04:00
unsigned char *b, *p, *q;
int var, value, n, bsize;
char *e, *eval, *ekey, *user;
switch (telnet->sb_opt) {
case TELOPT_TSPEED:
if (telnet->sb_buf->len == 1 && telnet->sb_buf->u[0] == TELQUAL_SEND) {
char *termspeed = conf_get_str(telnet->conf, CONF_termspeed);
b = snewn(20 + strlen(termspeed), unsigned char);
b[0] = IAC;
b[1] = SB;
b[2] = TELOPT_TSPEED;
b[3] = TELQUAL_IS;
strcpy((char *)(b + 4), termspeed);
n = 4 + strlen(termspeed);
b[n] = IAC;
b[n + 1] = SE;
telnet->bufsize = sk_write(telnet->s, b, n + 2);
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logevent(telnet->logctx, "server:\tSB TSPEED SEND");
logeventf(telnet->logctx, "client:\tSB TSPEED IS %s", termspeed);
sfree(b);
} else
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logevent(telnet->logctx, "server:\tSB TSPEED <something weird>");
break;
case TELOPT_TTYPE:
if (telnet->sb_buf->len == 1 && telnet->sb_buf->u[0] == TELQUAL_SEND) {
char *termtype = conf_get_str(telnet->conf, CONF_termtype);
b = snewn(20 + strlen(termtype), unsigned char);
b[0] = IAC;
b[1] = SB;
b[2] = TELOPT_TTYPE;
b[3] = TELQUAL_IS;
for (n = 0; termtype[n]; n++)
b[n + 4] = (termtype[n] >= 'a' && termtype[n] <= 'z' ?
termtype[n] + 'A' - 'a' :
termtype[n]);
b[n + 4] = IAC;
b[n + 5] = SE;
telnet->bufsize = sk_write(telnet->s, b, n + 6);
b[n + 4] = 0;
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logevent(telnet->logctx, "server:\tSB TTYPE SEND");
logeventf(telnet->logctx, "client:\tSB TTYPE IS %s", b + 4);
sfree(b);
} else
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logevent(telnet->logctx, "server:\tSB TTYPE <something weird>\r\n");
break;
case TELOPT_OLD_ENVIRON:
case TELOPT_NEW_ENVIRON:
p = telnet->sb_buf->u;
q = p + telnet->sb_buf->len;
if (p < q && *p == TELQUAL_SEND) {
p++;
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logeventf(telnet->logctx, "server:\tSB %s SEND",
telopt(telnet->sb_opt));
if (telnet->sb_opt == TELOPT_OLD_ENVIRON) {
if (conf_get_bool(telnet->conf, CONF_rfc_environ)) {
value = RFC_VALUE;
var = RFC_VAR;
} else {
value = BSD_VALUE;
var = BSD_VAR;
}
/*
* Try to guess the sense of VAR and VALUE.
*/
while (p < q) {
if (*p == RFC_VAR) {
value = RFC_VALUE;
var = RFC_VAR;
} else if (*p == BSD_VAR) {
value = BSD_VALUE;
var = BSD_VAR;
}
p++;
}
} else {
/*
* With NEW_ENVIRON, the sense of VAR and VALUE
* isn't in doubt.
*/
value = RFC_VALUE;
var = RFC_VAR;
}
bsize = 20;
for (eval = conf_get_str_strs(telnet->conf, CONF_environmt,
NULL, &ekey);
eval != NULL;
eval = conf_get_str_strs(telnet->conf, CONF_environmt,
ekey, &ekey))
bsize += strlen(ekey) + strlen(eval) + 2;
user = get_remote_username(telnet->conf);
if (user)
bsize += 6 + strlen(user);
b = snewn(bsize, unsigned char);
b[0] = IAC;
b[1] = SB;
b[2] = telnet->sb_opt;
b[3] = TELQUAL_IS;
n = 4;
for (eval = conf_get_str_strs(telnet->conf, CONF_environmt,
NULL, &ekey);
eval != NULL;
eval = conf_get_str_strs(telnet->conf, CONF_environmt,
ekey, &ekey)) {
b[n++] = var;
for (e = ekey; *e; e++)
b[n++] = *e;
b[n++] = value;
for (e = eval; *e; e++)
b[n++] = *e;
}
if (user) {
b[n++] = var;
b[n++] = 'U';
b[n++] = 'S';
b[n++] = 'E';
b[n++] = 'R';
b[n++] = value;
for (e = user; *e; e++)
b[n++] = *e;
}
b[n++] = IAC;
b[n++] = SE;
telnet->bufsize = sk_write(telnet->s, b, n);
if (n == 6) {
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logeventf(telnet->logctx, "client:\tSB %s IS <nothing>",
telopt(telnet->sb_opt));
} else {
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logeventf(telnet->logctx, "client:\tSB %s IS:",
telopt(telnet->sb_opt));
for (eval = conf_get_str_strs(telnet->conf, CONF_environmt,
NULL, &ekey);
eval != NULL;
eval = conf_get_str_strs(telnet->conf, CONF_environmt,
ekey, &ekey)) {
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logeventf(telnet->logctx, "\t%s=%s", ekey, eval);
}
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
if (user)
logeventf(telnet->logctx, "\tUSER=%s", user);
}
sfree(b);
sfree(user);
}
break;
}
}
static void do_telnet_read(Telnet *telnet, const char *buf, size_t len)
{
strbuf *outbuf = strbuf_new_nm();
while (len--) {
int c = (unsigned char) *buf++;
switch (telnet->state) {
case TOP_LEVEL:
case SEENCR:
if (c == NUL && telnet->state == SEENCR)
telnet->state = TOP_LEVEL;
else if (c == IAC)
telnet->state = SEENIAC;
else {
if (!telnet->in_synch)
put_byte(outbuf, c);
#if 1
/* I can't get the F***ing winsock to insert the urgent IAC
* into the right position! Even with SO_OOBINLINE it gives
* it to recv too soon. And of course the DM byte (that
* arrives in the same packet!) appears several K later!!
*
* Oh well, we do get the DM in the right place so I'll
* just stop hiding on the next 0xf2 and hope for the best.
*/
else if (c == DM)
telnet->in_synch = false;
#endif
if (c == CR && telnet->opt_states[o_they_bin.index] != ACTIVE)
telnet->state = SEENCR;
else
telnet->state = TOP_LEVEL;
}
break;
case SEENIAC:
if (c == DO)
telnet->state = SEENDO;
else if (c == DONT)
telnet->state = SEENDONT;
else if (c == WILL)
telnet->state = SEENWILL;
else if (c == WONT)
telnet->state = SEENWONT;
else if (c == SB)
telnet->state = SEENSB;
else if (c == DM) {
telnet->in_synch = false;
telnet->state = TOP_LEVEL;
} else {
/* ignore everything else; print it if it's IAC */
if (c == IAC) {
put_byte(outbuf, c);
}
telnet->state = TOP_LEVEL;
}
break;
case SEENWILL:
proc_rec_opt(telnet, WILL, c);
telnet->state = TOP_LEVEL;
break;
case SEENWONT:
proc_rec_opt(telnet, WONT, c);
telnet->state = TOP_LEVEL;
break;
case SEENDO:
proc_rec_opt(telnet, DO, c);
telnet->state = TOP_LEVEL;
break;
case SEENDONT:
proc_rec_opt(telnet, DONT, c);
telnet->state = TOP_LEVEL;
break;
case SEENSB:
telnet->sb_opt = c;
strbuf_clear(telnet->sb_buf);
telnet->state = SUBNEGOT;
break;
case SUBNEGOT:
if (c == IAC)
telnet->state = SUBNEG_IAC;
else {
subneg_addchar:
put_byte(telnet->sb_buf, c);
telnet->state = SUBNEGOT; /* in case we came here by goto */
}
break;
case SUBNEG_IAC:
if (c != SE)
goto subneg_addchar; /* yes, it's a hack, I know, but... */
else {
process_subneg(telnet);
telnet->state = TOP_LEVEL;
}
break;
}
if (outbuf->len >= 4096) {
c_write(telnet, outbuf->u, outbuf->len);
strbuf_clear(outbuf);
}
}
if (outbuf->len)
c_write(telnet, outbuf->u, outbuf->len);
strbuf_free(outbuf);
}
static void telnet_log(Plug *plug, PlugLogType type, SockAddr *addr, int port,
const char *error_msg, int error_code)
{
Telnet *telnet = container_of(plug, Telnet, plug);
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 21:58:42 +03:00
backend_socket_log(telnet->seat, telnet->logctx, type, addr, port,
error_msg, error_code, telnet->conf,
telnet->session_started);
}
static void telnet_closing(Plug *plug, const char *error_msg, int error_code,
bool calling_back)
{
Telnet *telnet = container_of(plug, Telnet, plug);
/*
* We don't implement independent EOF in each direction for Telnet
* connections; as soon as we get word that the remote side has
* sent us EOF, we wind up the whole connection.
*/
if (telnet->s) {
sk_close(telnet->s);
telnet->s = NULL;
if (error_msg)
telnet->closed_on_socket_error = true;
seat_notify_remote_exit(telnet->seat);
}
if (error_msg) {
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logevent(telnet->logctx, error_msg);
seat_connection_fatal(telnet->seat, "%s", error_msg);
}
/* Otherwise, the remote side closed the connection normally. */
}
static void telnet_receive(
Plug *plug, int urgent, const char *data, size_t len)
{
Telnet *telnet = container_of(plug, Telnet, plug);
if (urgent)
telnet->in_synch = true;
telnet->session_started = true;
do_telnet_read(telnet, data, len);
}
static void telnet_sent(Plug *plug, size_t bufsize)
{
Telnet *telnet = container_of(plug, Telnet, plug);
telnet->bufsize = bufsize;
}
static const PlugVtable Telnet_plugvt = {
telnet_log,
telnet_closing,
telnet_receive,
telnet_sent
};
/*
* Called to set up the Telnet connection.
*
* Returns an error message, or NULL on success.
*
* Also places the canonical host name into `realhost'. It must be
* freed by the caller.
*/
static const char *telnet_init(const BackendVtable *vt, Seat *seat,
Backend **backend_handle, LogContext *logctx,
Conf *conf, const char *host, int port,
char **realhost, bool nodelay, bool keepalive)
{
SockAddr *addr;
const char *err;
Telnet *telnet;
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 22:52:21 +04:00
char *loghost;
int addressfamily;
/* No local authentication phase in this protocol */
seat_set_trust_status(seat, false);
telnet = snew(Telnet);
telnet->plug.vt = &Telnet_plugvt;
telnet->backend.vt = vt;
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 22:52:21 +04:00
telnet->conf = conf_copy(conf);
telnet->s = NULL;
telnet->closed_on_socket_error = false;
telnet->echoing = true;
telnet->editing = true;
telnet->activated = false;
telnet->sb_buf = strbuf_new();
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 21:58:42 +03:00
telnet->seat = seat;
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
telnet->logctx = logctx;
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 22:52:21 +04:00
telnet->term_width = conf_get_int(telnet->conf, CONF_width);
telnet->term_height = conf_get_int(telnet->conf, CONF_height);
telnet->state = TOP_LEVEL;
telnet->ldisc = NULL;
telnet->pinger = NULL;
telnet->session_started = true;
*backend_handle = &telnet->backend;
/*
* Try to find host.
*/
addressfamily = conf_get_int(telnet->conf, CONF_addressfamily);
addr = name_lookup(host, port, realhost, telnet->conf, addressfamily,
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
telnet->logctx, "Telnet connection");
if ((err = sk_addr_error(addr)) != NULL) {
sk_addr_free(addr);
return err;
}
if (port < 0)
port = 23; /* default telnet port */
/*
* Open socket.
*/
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
telnet->s = new_connection(addr, *realhost, port, false, true, nodelay,
keepalive, &telnet->plug, telnet->conf);
if ((err = sk_socket_error(telnet->s)) != NULL)
return err;
telnet->pinger = pinger_new(telnet->conf, &telnet->backend);
/*
* Initialise option states.
*/
if (conf_get_bool(telnet->conf, CONF_passive_telnet)) {
const struct Opt *const *o;
for (o = opts; *o; o++)
telnet->opt_states[(*o)->index] = INACTIVE;
} else {
const struct Opt *const *o;
for (o = opts; *o; o++) {
telnet->opt_states[(*o)->index] = (*o)->initial_state;
if (telnet->opt_states[(*o)->index] == REQUESTED)
send_opt(telnet, (*o)->send, (*o)->option);
}
telnet->activated = true;
}
/*
* Set up SYNCH state.
*/
telnet->in_synch = false;
/*
* We can send special commands from the start.
*/
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 21:58:42 +03:00
seat_update_specials_menu(telnet->seat);
/*
* loghost overrides realhost, if specified.
*/
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 22:52:21 +04:00
loghost = conf_get_str(telnet->conf, CONF_loghost);
if (*loghost) {
char *colon;
sfree(*realhost);
*realhost = dupstr(loghost);
colon = host_strrchr(*realhost, ':');
if (colon)
*colon++ = '\0';
}
return NULL;
}
static void telnet_free(Backend *be)
{
Telnet *telnet = container_of(be, Telnet, backend);
strbuf_free(telnet->sb_buf);
if (telnet->s)
sk_close(telnet->s);
if (telnet->pinger)
pinger_free(telnet->pinger);
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 22:52:21 +04:00
conf_free(telnet->conf);
sfree(telnet);
}
/*
* Reconfigure the Telnet backend. There's no immediate action
* necessary, in this backend: we just save the fresh config for
* any subsequent negotiations.
*/
static void telnet_reconfig(Backend *be, Conf *conf)
{
Telnet *telnet = container_of(be, Telnet, backend);
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 22:52:21 +04:00
pinger_reconfig(telnet->pinger, telnet->conf, conf);
conf_free(telnet->conf);
telnet->conf = conf_copy(conf);
}
/*
* Called to send data down the Telnet connection.
*/
static size_t telnet_send(Backend *be, const char *buf, size_t len)
{
Telnet *telnet = container_of(be, Telnet, backend);
unsigned char *p, *end;
static const unsigned char iac[2] = { IAC, IAC };
static const unsigned char cr[2] = { CR, NUL };
#if 0
static const unsigned char nl[2] = { CR, LF };
#endif
if (telnet->s == NULL)
return 0;
p = (unsigned char *)buf;
end = (unsigned char *)(buf + len);
while (p < end) {
unsigned char *q = p;
while (p < end && iswritable(*p))
p++;
telnet->bufsize = sk_write(telnet->s, q, p - q);
while (p < end && !iswritable(*p)) {
telnet->bufsize =
sk_write(telnet->s, *p == IAC ? iac : cr, 2);
p++;
}
}
return telnet->bufsize;
}
/*
* Called to query the current socket sendability status.
*/
static size_t telnet_sendbuffer(Backend *be)
{
Telnet *telnet = container_of(be, Telnet, backend);
return telnet->bufsize;
}
/*
* Called to set the size of the window from Telnet's POV.
*/
static void telnet_size(Backend *be, int width, int height)
{
Telnet *telnet = container_of(be, Telnet, backend);
unsigned char b[24];
int n;
telnet->term_width = width;
telnet->term_height = height;
if (telnet->s == NULL || telnet->opt_states[o_naws.index] != ACTIVE)
return;
n = 0;
b[n++] = IAC;
b[n++] = SB;
b[n++] = TELOPT_NAWS;
b[n++] = telnet->term_width >> 8;
if (b[n-1] == IAC) b[n++] = IAC; /* duplicate any IAC byte occurs */
b[n++] = telnet->term_width & 0xFF;
if (b[n-1] == IAC) b[n++] = IAC; /* duplicate any IAC byte occurs */
b[n++] = telnet->term_height >> 8;
if (b[n-1] == IAC) b[n++] = IAC; /* duplicate any IAC byte occurs */
b[n++] = telnet->term_height & 0xFF;
if (b[n-1] == IAC) b[n++] = IAC; /* duplicate any IAC byte occurs */
b[n++] = IAC;
b[n++] = SE;
telnet->bufsize = sk_write(telnet->s, b, n);
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 21:26:18 +03:00
logeventf(telnet->logctx, "client:\tSB NAWS %d,%d",
telnet->term_width, telnet->term_height);
}
/*
* Send Telnet special codes.
*/
static void telnet_special(Backend *be, SessionSpecialCode code, int arg)
{
Telnet *telnet = container_of(be, Telnet, backend);
unsigned char b[2];
if (telnet->s == NULL)
return;
b[0] = IAC;
switch (code) {
case SS_AYT:
b[1] = AYT;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_BRK:
b[1] = BREAK;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_EC:
b[1] = EC;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_EL:
b[1] = EL;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_GA:
b[1] = GA;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_NOP:
b[1] = NOP;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_ABORT:
b[1] = ABORT;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_AO:
b[1] = AO;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_IP:
b[1] = IP;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_SUSP:
b[1] = SUSP;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_EOR:
b[1] = EOR;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_EOF:
b[1] = xEOF;
telnet->bufsize = sk_write(telnet->s, b, 2);
break;
case SS_EOL:
/* In BINARY mode, CR-LF becomes just CR -
* and without the NUL suffix too. */
if (telnet->opt_states[o_we_bin.index] == ACTIVE)
telnet->bufsize = sk_write(telnet->s, "\r", 1);
else
telnet->bufsize = sk_write(telnet->s, "\r\n", 2);
break;
case SS_SYNCH:
b[1] = DM;
telnet->bufsize = sk_write(telnet->s, b, 1);
telnet->bufsize = sk_write_oob(telnet->s, b + 1, 1);
break;
case SS_PING:
if (telnet->opt_states[o_they_sga.index] == ACTIVE) {
b[1] = NOP;
telnet->bufsize = sk_write(telnet->s, b, 2);
}
break;
default:
break; /* never heard of it */
}
}
static const SessionSpecial *telnet_get_specials(Backend *be)
{
static const SessionSpecial specials[] = {
{"Are You There", SS_AYT},
{"Break", SS_BRK},
{"Synch", SS_SYNCH},
{"Erase Character", SS_EC},
{"Erase Line", SS_EL},
{"Go Ahead", SS_GA},
{"No Operation", SS_NOP},
{NULL, SS_SEP},
{"Abort Process", SS_ABORT},
{"Abort Output", SS_AO},
{"Interrupt Process", SS_IP},
{"Suspend Process", SS_SUSP},
{NULL, SS_SEP},
{"End Of Record", SS_EOR},
{"End Of File", SS_EOF},
{NULL, SS_EXITMENU}
};
return specials;
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
static bool telnet_connected(Backend *be)
{
Telnet *telnet = container_of(be, Telnet, backend);
return telnet->s != NULL;
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
static bool telnet_sendok(Backend *be)
{
/* Telnet *telnet = container_of(be, Telnet, backend); */
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
return true;
}
static void telnet_unthrottle(Backend *be, size_t backlog)
{
Telnet *telnet = container_of(be, Telnet, backend);
sk_set_frozen(telnet->s, backlog > TELNET_MAX_BACKLOG);
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
static bool telnet_ldisc(Backend *be, int option)
{
Telnet *telnet = container_of(be, Telnet, backend);
if (option == LD_ECHO)
return telnet->echoing;
if (option == LD_EDIT)
return telnet->editing;
return false;
}
static void telnet_provide_ldisc(Backend *be, Ldisc *ldisc)
{
Telnet *telnet = container_of(be, Telnet, backend);
telnet->ldisc = ldisc;
}
static int telnet_exitcode(Backend *be)
{
Telnet *telnet = container_of(be, Telnet, backend);
if (telnet->s != NULL)
return -1; /* still connected */
else if (telnet->closed_on_socket_error)
return INT_MAX; /* a socket error counts as an unclean exit */
else
/* Telnet doesn't transmit exit codes back to the client */
return 0;
}
/*
* cfg_info for Telnet does nothing at all.
*/
static int telnet_cfg_info(Backend *be)
{
return 0;
}
const struct BackendVtable telnet_backend = {
telnet_init,
telnet_free,
telnet_reconfig,
telnet_send,
telnet_sendbuffer,
telnet_size,
telnet_special,
telnet_get_specials,
telnet_connected,
telnet_exitcode,
telnet_sendok,
telnet_ldisc,
telnet_provide_ldisc,
telnet_unthrottle,
telnet_cfg_info,
NULL /* test_for_upstream */,
"telnet", "Telnet",
PROT_TELNET,
23
};