Make modinv able to return NULL if its inputs are not coprime, and

check for that return value everywhere it is used.

[originally from svn r9990]
This commit is contained in:
Simon Tatham 2013-08-04 19:34:07 +00:00
Родитель 9c054cf467
Коммит cb1df53360
4 изменённых файлов: 59 добавлений и 14 удалений

15
sshbn.c
Просмотреть файл

@ -869,6 +869,7 @@ Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
len = mod[0];
r = bn_power_2(BIGNUM_INT_BITS * len);
inv = modinv(mod, r);
assert(inv); /* cannot fail, since mod is odd and r is a power of 2 */
/*
* Multiply the base by r mod n, to get it into Montgomery
@ -1634,8 +1635,18 @@ Bignum modinv(Bignum number, Bignum modulus)
assert(modulus[modulus[0]] != 0);
while (bignum_cmp(b, One) != 0) {
Bignum t = newbn(b[0]);
Bignum q = newbn(a[0]);
Bignum t, q;
if (bignum_cmp(b, Zero) == 0) {
/*
* Found a common factor between the inputs, so we cannot
* return a modular inverse at all.
*/
return NULL;
}
t = newbn(b[0]);
q = newbn(a[0]);
bigdivmod(a, b, t, q);
while (t[0] > 1 && t[t[0]] == 0)
t[0]--;

Просмотреть файл

@ -286,6 +286,11 @@ static int dss_verifysig(void *key, char *sig, int siglen,
* Step 1. w <- s^-1 mod q.
*/
w = modinv(s, dss->q);
if (!w) {
freebn(r);
freebn(s);
return 0;
}
/*
* Step 2. u1 <- SHA(message) * w mod q.
@ -609,17 +614,33 @@ static unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen)
SHA512_Init(&ss);
SHA512_Bytes(&ss, digest512, sizeof(digest512));
SHA512_Bytes(&ss, digest, sizeof(digest));
SHA512_Final(&ss, digest512);
while (1) {
SHA512_State ss2 = ss; /* structure copy */
SHA512_Final(&ss2, digest512);
smemclr(&ss2, sizeof(ss2));
/*
* Now convert the result into a bignum, and reduce it mod q.
*/
proto_k = bignum_from_bytes(digest512, 64);
k = bigmod(proto_k, dss->q);
freebn(proto_k);
kinv = modinv(k, dss->q); /* k^-1 mod q */
if (!kinv) { /* very unlikely */
freebn(k);
/* Perturb the hash to think of a different k. */
SHA512_Bytes(&ss, "x", 1);
/* Go round and try again. */
continue;
}
break;
}
smemclr(&ss, sizeof(ss));
/*
* Now convert the result into a bignum, and reduce it mod q.
*/
proto_k = bignum_from_bytes(digest512, 64);
k = bigmod(proto_k, dss->q);
freebn(proto_k);
smemclr(digest512, sizeof(digest512));
/*
@ -630,7 +651,6 @@ static unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen)
freebn(gkp);
hash = bignum_from_bytes(digest, 20);
kinv = modinv(k, dss->q); /* k^-1 mod q */
hxr = bigmuladd(dss->x, r, hash); /* hash + x*r */
s = modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash + x*r) mod q */
freebn(hxr);

Просмотреть файл

@ -273,9 +273,18 @@ static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
bignum_cmp(random, key->modulus) >= 0) {
freebn(random);
continue;
} else {
break;
}
/*
* Also, make sure it has an inverse mod modulus.
*/
random_inverse = modinv(random, key->modulus);
if (!random_inverse) {
freebn(random);
continue;
}
break;
}
/*
@ -294,7 +303,6 @@ static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
*/
random_encrypted = crt_modpow(random, key->exponent,
key->modulus, key->p, key->q, key->iqmp);
random_inverse = modinv(random, key->modulus);
input_blinded = modmul(input, random_encrypted, key->modulus);
ret_blinded = crt_modpow(input_blinded, key->private_exponent,
key->modulus, key->p, key->q, key->iqmp);
@ -443,6 +451,8 @@ int rsa_verify(struct RSAKey *key)
freebn(key->iqmp);
key->iqmp = modinv(key->q, key->p);
if (!key->iqmp)
return 0;
}
/*

Просмотреть файл

@ -2,6 +2,8 @@
* RSA key generation.
*/
#include <assert.h>
#include "ssh.h"
#define RSA_EXPONENT 37 /* we like this prime */
@ -92,8 +94,10 @@ int rsa_generate(struct RSAKey *key, int bits, progfn_t pfn,
freebn(pm1);
freebn(qm1);
key->private_exponent = modinv(key->exponent, phi_n);
assert(key->private_exponent);
pfn(pfnparam, PROGFN_PROGRESS, 3, 4);
key->iqmp = modinv(key->q, key->p);
assert(key->iqmp);
pfn(pfnparam, PROGFN_PROGRESS, 3, 5);
/*