Граф коммитов

7 Коммитов

Автор SHA1 Сообщение Дата
Simon Tatham 5d718ef64b Whitespace rationalisation of entire code base.
The number of people has been steadily increasing who read our source
code with an editor that thinks tab stops are 4 spaces apart, as
opposed to the traditional tty-derived 8 that the PuTTY code expects.

So I've been wondering for ages about just fixing it, and switching to
a spaces-only policy throughout the code. And I recently found out
about 'git blame -w', which should make this change not too disruptive
for the purposes of source-control archaeology; so perhaps now is the
time.

While I'm at it, I've also taken the opportunity to remove all the
trailing spaces from source lines (on the basis that git dislikes
them, and is the only thing that seems to have a strong opinion one
way or the other).
    
Apologies to anyone downstream of this code who has complicated patch
sets to rebase past this change. I don't intend it to be needed again.
2019-09-08 20:29:21 +01:00
Jacob Nevins 453cf99357 Fix minor server-triggered DoS in get_fxp_attrs.
If a server sent a very large number as extended_count, and didn't
actually send any extended attributes, we could loop around and around
calling get_string, which would carefully not overrun any buffer or
leak any memory, and we weren't paying attention to extended
attributes anyway, but it would still pointlessly consume CPU.

Now we bail as soon as the BinarySource flags an error. Current
callers will then spot the error and complain that the packet was
malformed.
2019-07-10 20:47:09 +01:00
Simon Tatham bde7b6b158 Change sensitive strbufs/sgrowarrays to the new _nm version.
The _nm strategy is slower, so I don't want to just change everything
over no matter what its contents. In this pass I've tried to catch
everything that holds the _really_ sensitive things like passwords,
private keys and session keys.
2019-03-02 06:54:17 +00:00
Simon Tatham e0a76971cc New array-growing macros: sgrowarray and sgrowarrayn.
The idea of these is that they centralise the common idiom along the
lines of

   if (logical_array_len >= physical_array_size) {
       physical_array_size = logical_array_len * 5 / 4 + 256;
       array = sresize(array, physical_array_size, ElementType);
   }

which happens at a zillion call sites throughout this code base, with
different random choices of the geometric factor and additive
constant, sometimes forgetting them completely, and generally doing a
lot of repeated work.

The new macro sgrowarray(array,size,n) has the semantics: here are the
array pointer and its physical size for you to modify, now please
ensure that the nth element exists, so I can write into it. And
sgrowarrayn(array,size,n,m) is the same except that it ensures that
the array has size at least n+m (so sgrowarray is just the special
case where m=1).

Now that this is a single centralised implementation that will be used
everywhere, I've also gone to more effort in the implementation, with
careful overflow checks that would have been painful to put at all the
previous call sites.

This commit also switches over every use of sresize(), apart from a
few where I really didn't think it would gain anything. A consequence
of that is that a lot of array-size variables have to have their types
changed to size_t, because the macros require that (they address-take
the size to pass to the underlying function).
2019-02-28 20:15:38 +00:00
Simon Tatham acc21c4c0f Stop using unqualified {GET,PUT}_32BIT.
Those were a reasonable abbreviation when the code almost never had to
deal with little-endian numbers, but they've crept into enough places
now (e.g. the ECC formatting) that I think I'd now prefer that every
use of the integer read/write macros was clearly marked with its
endianness.

So all uses of GET_??BIT and PUT_??BIT are now qualified. The special
versions in x11fwd.c, which used variable endianness because so does
the X11 protocol, are suffixed _X11 to make that clear, and where that
pushed line lengths over 80 characters I've taken the opportunity to
name a local variable to remind me of what that extra parameter
actually does.
2019-02-04 20:32:31 +00:00
Simon Tatham 3214563d8e Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.

PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.

I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!

To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.

In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
 - the 'multisel' field in dialog.h's list box structure, for which
   the GTK front end in particular recognises a difference between 1
   and 2 but nearly everything else treats as boolean
 - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
   something about the specific location of the urgent pointer, but
   most clients only care about 0 vs 'something nonzero'
 - the return value of wc_match, where -1 indicates a syntax error in
   the wildcard.
 - the return values from SSH-1 RSA-key loading functions, which use
   -1 for 'wrong passphrase' and 0 for all other failures (so any
   caller which already knows it's not loading an _encrypted private_
   key can treat them as boolean)
 - term->esc_query, and the 'query' parameter in toggle_mode in
   terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
   but can also hold -1 for some other intervening character that we
   don't support.

In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
 - the return value of plug_accepting uses the POSIXish convention of
   0=success and nonzero=error; I think if I made it bool then I'd
   also want to reverse its sense, and that's a job for a separate
   piece of work.
 - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
   represent the default and alternate screens. There's no obvious
   reason why one of those should be considered 'true' or 'positive'
   or 'success' - they're just indices - so I've left it as int.

ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.

In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.

Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-03 13:45:00 +00:00
Simon Tatham a081dd0a4c Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.

(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)

The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.

(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)

In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.

I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-21 10:02:10 +01:00