The idea of these is that they centralise the common idiom along the
lines of
if (logical_array_len >= physical_array_size) {
physical_array_size = logical_array_len * 5 / 4 + 256;
array = sresize(array, physical_array_size, ElementType);
}
which happens at a zillion call sites throughout this code base, with
different random choices of the geometric factor and additive
constant, sometimes forgetting them completely, and generally doing a
lot of repeated work.
The new macro sgrowarray(array,size,n) has the semantics: here are the
array pointer and its physical size for you to modify, now please
ensure that the nth element exists, so I can write into it. And
sgrowarrayn(array,size,n,m) is the same except that it ensures that
the array has size at least n+m (so sgrowarray is just the special
case where m=1).
Now that this is a single centralised implementation that will be used
everywhere, I've also gone to more effort in the implementation, with
careful overflow checks that would have been painful to put at all the
previous call sites.
This commit also switches over every use of sresize(), apart from a
few where I really didn't think it would gain anything. A consequence
of that is that a lot of array-size variables have to have their types
changed to size_t, because the macros require that (they address-take
the size to pass to the underlying function).
This replaces all the macros like ssh_key_sign() and win_draw_text()
which take an object containing a vtable pointer and do the
dereferencing to find the actual concrete method to call. Now they're
all inline functions, which means more sensible type-checking and more
comprehensible error reports when the types go wrong, and also means
that there's no risk of double-evaluating the object argument.
This is a general cleanup which has been overdue for some time: lots
of length fields are now the machine word type rather than the (in
practice) fixed 'int'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
The annoying int64.h is completely retired, since C99 guarantees a
64-bit integer type that you can actually treat like an ordinary
integer. Also, I've replaced the local typedefs uint32 and word32
(scattered through different parts of the crypto code) with the
standard uint32_t.
Like the SFTP server, this is implemented in-process rather than by
invoking a separate scp server binary.
It also uses the internal SftpServer abstraction for access to the
server's filesystem, which means that when (or if) I implement an
alternative SftpServer implementing a dummy file system for test suite
purposes, this scp server should automatically start using it too.
As a bonus, the new scpserver.c contains a large comment documenting
my understanding of the SCP protocol, which I previously didn't have
even a de-facto or post-hoc spec for. I don't claim it's authoritative
- it's all reverse-engineered from my own code and observing other
implementations in action - but at least it'll make it easier to
refresh my own memory of what's going on the next time I need to do
something to either this code or PSCP.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
It's not used anywhere, but this would make it one step easier to add
a mode argument to PSFTP's mkdir command, if anyone needs it. Mostly
the point is to get rid of the FIXME comment in fxp_mkdir_send itself.
This is the first major piece of code converted to the new
unmarshalling system, and allows me to remove all the sftp_pkt_get*
functions in sftp.c that were previously duplicating standard decode
logic.
This is a cleanup I started to notice a need for during the BinarySink
work. It removes a lot of faffing about casting things to char * or
unsigned char * so that some API will accept them, even though lots of
such APIs really take a plain 'block of raw binary data' argument and
don't care what C thinks the signedness of that data might be - they
may well reinterpret it back and forth internally.
So I've tried to arrange for all the function call APIs that ought to
have a void * (or const void *) to have one, and those that need to do
pointer arithmetic on the parameter internally can cast it back at the
top of the function. That saves endless ad-hoc casts at the call
sites.
It is possible for SSH_FXP_CLOSE requests to fail. This can happen if the
server buffers writes and an error occurs flushing the data to disk while
processing the SSH_FXP_CLOSE request. If the close fails, sftp_put_file now
returns an error as well.
Formerly PuTTY's SFTP code would transmit (or buffer) a megabyte of data
before even starting to look for acknowledgements, but wouldn't allow
there to be more than a megabyte of unacknowledged data at a time. Now,
instead, it pays attention to whether the transmit path is blocked, and
transmits iff it isn't.
This should mean that SFTP goes faster over long fat pipes, and also
doesn't end up buffering so much over thin ones.
I practice, I tend to run into other performance limitations (such as
TCP or SSH-2 windows) before this enhancement looks particularly good,
but with an artificial lag of 250 ms on the loopback interface this
patch almost doubles my upload speed, so I think it's worthwhile.
Having found a lot of unfixed constness issues in recent development,
I thought perhaps it was time to get proactive, so I compiled the
whole codebase with -Wwrite-strings. That turned up a huge load of
const problems, which I've fixed in this commit: the Unix build now
goes cleanly through with -Wwrite-strings, and the Windows build is as
close as I could get it (there are some lingering issues due to
occasional Windows API functions like AcquireCredentialsHandle not
having the right constness).
Notable fallout beyond the purely mechanical changing of types:
- the stuff saved by cmdline_save_param() is now explicitly
dupstr()ed, and freed in cmdline_run_saved.
- I couldn't make both string arguments to cmdline_process_param()
const, because it intentionally writes to one of them in the case
where it's the argument to -pw (in the vain hope of being at least
slightly friendly to 'ps'), so elsewhere I had to temporarily
dupstr() something for the sake of passing it to that function
- I had to invent a silly parallel version of const_cmp() so I could
pass const string literals in to lookup functions.
- stripslashes() in pscp.c and psftp.c has the annoying strchr nature
I think I have to consider this to be a separate but related change to
the wishlist item 'pscp-filemodes'; that was written before the Unix
port existed, and referred to the ability to configure the permissions
used for files copied from Windows to Unix - which is still not done.
[originally from svn r9260]
sftp.c, and psftp.c now uses that instead of going it alone. Should
in principle be easily installed in PSCP as well, but I haven't done
it yet; also it only handles downloads, not uploads, and finally it
doesn't yet properly calculate the correct number of parallel
requests to queue. Still, it's a start, and in my own tests it
seemed to perform as expected (download speed suddenly became
roughly what you'd expect from the available bandwidth, and
decreased by roughly the expected number of round-trip times).
[originally from svn r3468]
has been split into a send half and a receive half, so that callers
can set several requests in motion at a time and deal with the
responses in whatever order they arrive.
[originally from svn r3318]
scp1 if it can't. Currently not very tested - I checked it in as
soon as it completed a successful recursive copy in both directions.
Also, one known bug: you can't specify a remote wildcard, because by
the nature of SFTP we'll need to implement the wildcard engine on
the client side. I do intend to do this (and use the same wildcard
engine in PSFTP as well) but I haven't got round to it yet.
[originally from svn r1208]