/* * SHA-512 algorithm as described at * * http://csrc.nist.gov/cryptval/shs.html * * Modifications made for SHA-384 also */ #include #include "ssh.h" #define BLKSIZE 128 typedef struct { uint64_t h[8]; unsigned char block[BLKSIZE]; int blkused; uint64_t lenhi, lenlo; BinarySink_IMPLEMENTATION; } SHA512_State; /* * Arithmetic implementations. Note that AND, XOR and NOT can * overlap destination with one source, but the others can't. */ #define add(r,x,y) ( r = (x) + (y) ) #define rorB(r,x,y) ( r = ((x) >> (y)) | ((x) << (64-(y))) ) #define rorL(r,x,y) ( r = ((x) >> (y)) | ((x) << (64-(y))) ) #define shrB(r,x,y) ( r = (x) >> (y) ) #define shrL(r,x,y) ( r = (x) >> (y) ) #define and(r,x,y) ( r = (x) & (y) ) #define xor(r,x,y) ( r = (x) ^ (y) ) #define not(r,x) ( r = ~(x) ) #define INIT(h,l) ((((uint64_t)(h)) << 32) | (l)) #define BUILD(r,h,l) ( r = ((((uint64_t)(h)) << 32) | (l)) ) #define EXTRACT(h,l,r) ( h = (r) >> 32, l = (r) & 0xFFFFFFFFU ) /* ---------------------------------------------------------------------- * Core SHA512 algorithm: processes 16-doubleword blocks into a * message digest. */ #define Ch(r,t,x,y,z) ( not(t,x), and(r,t,z), and(t,x,y), xor(r,r,t) ) #define Maj(r,t,x,y,z) ( and(r,x,y), and(t,x,z), xor(r,r,t), \ and(t,y,z), xor(r,r,t) ) #define bigsigma0(r,t,x) ( rorL(r,x,28), rorB(t,x,34), xor(r,r,t), \ rorB(t,x,39), xor(r,r,t) ) #define bigsigma1(r,t,x) ( rorL(r,x,14), rorL(t,x,18), xor(r,r,t), \ rorB(t,x,41), xor(r,r,t) ) #define smallsigma0(r,t,x) ( rorL(r,x,1), rorL(t,x,8), xor(r,r,t), \ shrL(t,x,7), xor(r,r,t) ) #define smallsigma1(r,t,x) ( rorL(r,x,19), rorB(t,x,61), xor(r,r,t), \ shrL(t,x,6), xor(r,r,t) ) static void SHA512_Core_Init(SHA512_State *s) { static const uint64_t iv[] = { INIT(0x6a09e667, 0xf3bcc908), INIT(0xbb67ae85, 0x84caa73b), INIT(0x3c6ef372, 0xfe94f82b), INIT(0xa54ff53a, 0x5f1d36f1), INIT(0x510e527f, 0xade682d1), INIT(0x9b05688c, 0x2b3e6c1f), INIT(0x1f83d9ab, 0xfb41bd6b), INIT(0x5be0cd19, 0x137e2179), }; int i; for (i = 0; i < 8; i++) s->h[i] = iv[i]; } static void SHA384_Core_Init(SHA512_State *s) { static const uint64_t iv[] = { INIT(0xcbbb9d5d, 0xc1059ed8), INIT(0x629a292a, 0x367cd507), INIT(0x9159015a, 0x3070dd17), INIT(0x152fecd8, 0xf70e5939), INIT(0x67332667, 0xffc00b31), INIT(0x8eb44a87, 0x68581511), INIT(0xdb0c2e0d, 0x64f98fa7), INIT(0x47b5481d, 0xbefa4fa4), }; int i; for (i = 0; i < 8; i++) s->h[i] = iv[i]; } static void SHA512_Block(SHA512_State *s, uint64_t *block) { uint64_t w[80]; uint64_t a,b,c,d,e,f,g,h; static const uint64_t k[] = { INIT(0x428a2f98, 0xd728ae22), INIT(0x71374491, 0x23ef65cd), INIT(0xb5c0fbcf, 0xec4d3b2f), INIT(0xe9b5dba5, 0x8189dbbc), INIT(0x3956c25b, 0xf348b538), INIT(0x59f111f1, 0xb605d019), INIT(0x923f82a4, 0xaf194f9b), INIT(0xab1c5ed5, 0xda6d8118), INIT(0xd807aa98, 0xa3030242), INIT(0x12835b01, 0x45706fbe), INIT(0x243185be, 0x4ee4b28c), INIT(0x550c7dc3, 0xd5ffb4e2), INIT(0x72be5d74, 0xf27b896f), INIT(0x80deb1fe, 0x3b1696b1), INIT(0x9bdc06a7, 0x25c71235), INIT(0xc19bf174, 0xcf692694), INIT(0xe49b69c1, 0x9ef14ad2), INIT(0xefbe4786, 0x384f25e3), INIT(0x0fc19dc6, 0x8b8cd5b5), INIT(0x240ca1cc, 0x77ac9c65), INIT(0x2de92c6f, 0x592b0275), INIT(0x4a7484aa, 0x6ea6e483), INIT(0x5cb0a9dc, 0xbd41fbd4), INIT(0x76f988da, 0x831153b5), INIT(0x983e5152, 0xee66dfab), INIT(0xa831c66d, 0x2db43210), INIT(0xb00327c8, 0x98fb213f), INIT(0xbf597fc7, 0xbeef0ee4), INIT(0xc6e00bf3, 0x3da88fc2), INIT(0xd5a79147, 0x930aa725), INIT(0x06ca6351, 0xe003826f), INIT(0x14292967, 0x0a0e6e70), INIT(0x27b70a85, 0x46d22ffc), INIT(0x2e1b2138, 0x5c26c926), INIT(0x4d2c6dfc, 0x5ac42aed), INIT(0x53380d13, 0x9d95b3df), INIT(0x650a7354, 0x8baf63de), INIT(0x766a0abb, 0x3c77b2a8), INIT(0x81c2c92e, 0x47edaee6), INIT(0x92722c85, 0x1482353b), INIT(0xa2bfe8a1, 0x4cf10364), INIT(0xa81a664b, 0xbc423001), INIT(0xc24b8b70, 0xd0f89791), INIT(0xc76c51a3, 0x0654be30), INIT(0xd192e819, 0xd6ef5218), INIT(0xd6990624, 0x5565a910), INIT(0xf40e3585, 0x5771202a), INIT(0x106aa070, 0x32bbd1b8), INIT(0x19a4c116, 0xb8d2d0c8), INIT(0x1e376c08, 0x5141ab53), INIT(0x2748774c, 0xdf8eeb99), INIT(0x34b0bcb5, 0xe19b48a8), INIT(0x391c0cb3, 0xc5c95a63), INIT(0x4ed8aa4a, 0xe3418acb), INIT(0x5b9cca4f, 0x7763e373), INIT(0x682e6ff3, 0xd6b2b8a3), INIT(0x748f82ee, 0x5defb2fc), INIT(0x78a5636f, 0x43172f60), INIT(0x84c87814, 0xa1f0ab72), INIT(0x8cc70208, 0x1a6439ec), INIT(0x90befffa, 0x23631e28), INIT(0xa4506ceb, 0xde82bde9), INIT(0xbef9a3f7, 0xb2c67915), INIT(0xc67178f2, 0xe372532b), INIT(0xca273ece, 0xea26619c), INIT(0xd186b8c7, 0x21c0c207), INIT(0xeada7dd6, 0xcde0eb1e), INIT(0xf57d4f7f, 0xee6ed178), INIT(0x06f067aa, 0x72176fba), INIT(0x0a637dc5, 0xa2c898a6), INIT(0x113f9804, 0xbef90dae), INIT(0x1b710b35, 0x131c471b), INIT(0x28db77f5, 0x23047d84), INIT(0x32caab7b, 0x40c72493), INIT(0x3c9ebe0a, 0x15c9bebc), INIT(0x431d67c4, 0x9c100d4c), INIT(0x4cc5d4be, 0xcb3e42b6), INIT(0x597f299c, 0xfc657e2a), INIT(0x5fcb6fab, 0x3ad6faec), INIT(0x6c44198c, 0x4a475817), }; int t; for (t = 0; t < 16; t++) w[t] = block[t]; for (t = 16; t < 80; t++) { uint64_t p, q, r, tmp; smallsigma1(p, tmp, w[t-2]); smallsigma0(q, tmp, w[t-15]); add(r, p, q); add(p, r, w[t-7]); add(w[t], p, w[t-16]); } a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3]; e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7]; for (t = 0; t < 80; t+=8) { uint64_t tmp, p, q, r; #define ROUND(j,a,b,c,d,e,f,g,h) do { \ bigsigma1(p, tmp, e); \ Ch(q, tmp, e, f, g); \ add(r, p, q); \ add(p, r, k[j]) ; \ add(q, p, w[j]); \ add(r, q, h); \ bigsigma0(p, tmp, a); \ Maj(tmp, q, a, b, c); \ add(q, tmp, p); \ add(p, r, d); \ d = p; \ add(h, q, r); \ } while (0) ROUND(t+0, a,b,c,d,e,f,g,h); ROUND(t+1, h,a,b,c,d,e,f,g); ROUND(t+2, g,h,a,b,c,d,e,f); ROUND(t+3, f,g,h,a,b,c,d,e); ROUND(t+4, e,f,g,h,a,b,c,d); ROUND(t+5, d,e,f,g,h,a,b,c); ROUND(t+6, c,d,e,f,g,h,a,b); ROUND(t+7, b,c,d,e,f,g,h,a); } { uint64_t tmp; #define UPDATE(state, local) ( tmp = state, add(state, tmp, local) ) UPDATE(s->h[0], a); UPDATE(s->h[1], b); UPDATE(s->h[2], c); UPDATE(s->h[3], d); UPDATE(s->h[4], e); UPDATE(s->h[5], f); UPDATE(s->h[6], g); UPDATE(s->h[7], h); } } /* ---------------------------------------------------------------------- * Outer SHA512 algorithm: take an arbitrary length byte string, * convert it into 16-doubleword blocks with the prescribed padding * at the end, and pass those blocks to the core SHA512 algorithm. */ static void SHA512_BinarySink_write(BinarySink *bs, const void *p, size_t len); static void SHA512_Init(SHA512_State *s) { SHA512_Core_Init(s); s->blkused = 0; s->lenhi = s->lenlo = 0; BinarySink_INIT(s, SHA512_BinarySink_write); } static void SHA384_Init(SHA512_State *s) { SHA384_Core_Init(s); s->blkused = 0; s->lenhi = s->lenlo = 0; BinarySink_INIT(s, SHA512_BinarySink_write); } static void SHA512_BinarySink_write(BinarySink *bs, const void *p, size_t len) { SHA512_State *s = BinarySink_DOWNCAST(bs, SHA512_State); unsigned char *q = (unsigned char *)p; uint64_t wordblock[16]; int i; /* * Update the length field. */ s->lenlo += len; s->lenhi += (s->lenlo < len); if (s->blkused && s->blkused+len < BLKSIZE) { /* * Trivial case: just add to the block. */ memcpy(s->block + s->blkused, q, len); s->blkused += len; } else { /* * We must complete and process at least one block. */ while (s->blkused + len >= BLKSIZE) { memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused); q += BLKSIZE - s->blkused; len -= BLKSIZE - s->blkused; /* Now process the block. Gather bytes big-endian into words */ for (i = 0; i < 16; i++) wordblock[i] = GET_64BIT_MSB_FIRST(s->block + i*8); SHA512_Block(s, wordblock); s->blkused = 0; } memcpy(s->block, q, len); s->blkused = len; } } static void SHA512_Final(SHA512_State *s, unsigned char *digest) { int i; int pad; unsigned char c[BLKSIZE]; uint64_t lenhi, lenlo; if (s->blkused >= BLKSIZE-16) pad = (BLKSIZE-16) + BLKSIZE - s->blkused; else pad = (BLKSIZE-16) - s->blkused; lenhi = (s->lenhi << 3) | (s->lenlo >> (32-3)); lenlo = (s->lenlo << 3); memset(c, 0, pad); c[0] = 0x80; put_data(s, &c, pad); put_uint64(s, lenhi); put_uint64(s, lenlo); for (i = 0; i < 8; i++) PUT_64BIT_MSB_FIRST(digest + i*8, s->h[i]); } static void SHA384_Final(SHA512_State *s, unsigned char *digest) { unsigned char biggerDigest[512 / 8]; SHA512_Final(s, biggerDigest); memcpy(digest, biggerDigest, 384 / 8); } /* * Thin abstraction for things where hashes are pluggable. */ struct sha512_hash { SHA512_State state; ssh_hash hash; }; static ssh_hash *sha512_new(const ssh_hashalg *alg) { struct sha512_hash *h = snew(struct sha512_hash); h->hash.vt = alg; BinarySink_DELEGATE_INIT(&h->hash, &h->state); return ssh_hash_reset(&h->hash); } static void sha512_reset(ssh_hash *hash) { struct sha512_hash *h = container_of(hash, struct sha512_hash, hash); SHA512_Init(&h->state); } static void sha512_copyfrom(ssh_hash *hashnew, ssh_hash *hashold) { struct sha512_hash *hold = container_of(hashold, struct sha512_hash, hash); struct sha512_hash *hnew = container_of(hashnew, struct sha512_hash, hash); hnew->state = hold->state; BinarySink_COPIED(&hnew->state); } static void sha512_free(ssh_hash *hash) { struct sha512_hash *h = container_of(hash, struct sha512_hash, hash); smemclr(h, sizeof(*h)); sfree(h); } static void sha512_digest(ssh_hash *hash, unsigned char *output) { struct sha512_hash *h = container_of(hash, struct sha512_hash, hash); SHA512_Final(&h->state, output); } const ssh_hashalg ssh_sha512 = { sha512_new, sha512_reset, sha512_copyfrom, sha512_digest, sha512_free, 64, BLKSIZE, HASHALG_NAMES_BARE("SHA-512"), }; static void sha384_reset(ssh_hash *hash) { struct sha512_hash *h = container_of(hash, struct sha512_hash, hash); SHA384_Init(&h->state); } static void sha384_digest(ssh_hash *hash, unsigned char *output) { struct sha512_hash *h = container_of(hash, struct sha512_hash, hash); SHA384_Final(&h->state, output); } const ssh_hashalg ssh_sha384 = { sha512_new, sha384_reset, sha512_copyfrom, sha384_digest, sha512_free, 48, BLKSIZE, HASHALG_NAMES_BARE("SHA-384"), };