/* * SHA-256 algorithm as described at * * http://csrc.nist.gov/cryptval/shs.html */ #include "ssh.h" #include /* ---------------------------------------------------------------------- * Core SHA256 algorithm: processes 16-word blocks into a message digest. */ #define ror(x,y) ( ((x) << (32-y)) | (((uint32)(x)) >> (y)) ) #define shr(x,y) ( (((uint32)(x)) >> (y)) ) #define Ch(x,y,z) ( ((x) & (y)) ^ (~(x) & (z)) ) #define Maj(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) #define bigsigma0(x) ( ror((x),2) ^ ror((x),13) ^ ror((x),22) ) #define bigsigma1(x) ( ror((x),6) ^ ror((x),11) ^ ror((x),25) ) #define smallsigma0(x) ( ror((x),7) ^ ror((x),18) ^ shr((x),3) ) #define smallsigma1(x) ( ror((x),17) ^ ror((x),19) ^ shr((x),10) ) static void SHA256_sw(SHA256_State *s, const unsigned char *q, int len); static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len); void SHA256_Core_Init(SHA256_State *s) { s->h[0] = 0x6a09e667; s->h[1] = 0xbb67ae85; s->h[2] = 0x3c6ef372; s->h[3] = 0xa54ff53a; s->h[4] = 0x510e527f; s->h[5] = 0x9b05688c; s->h[6] = 0x1f83d9ab; s->h[7] = 0x5be0cd19; } void SHA256_Block(SHA256_State *s, uint32 *block) { uint32 w[80]; uint32 a,b,c,d,e,f,g,h; static const int k[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; int t; for (t = 0; t < 16; t++) w[t] = block[t]; for (t = 16; t < 64; t++) w[t] = smallsigma1(w[t-2]) + w[t-7] + smallsigma0(w[t-15]) + w[t-16]; a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3]; e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7]; for (t = 0; t < 64; t+=8) { uint32 t1, t2; #define ROUND(j,a,b,c,d,e,f,g,h) \ t1 = h + bigsigma1(e) + Ch(e,f,g) + k[j] + w[j]; \ t2 = bigsigma0(a) + Maj(a,b,c); \ d = d + t1; h = t1 + t2; ROUND(t+0, a,b,c,d,e,f,g,h); ROUND(t+1, h,a,b,c,d,e,f,g); ROUND(t+2, g,h,a,b,c,d,e,f); ROUND(t+3, f,g,h,a,b,c,d,e); ROUND(t+4, e,f,g,h,a,b,c,d); ROUND(t+5, d,e,f,g,h,a,b,c); ROUND(t+6, c,d,e,f,g,h,a,b); ROUND(t+7, b,c,d,e,f,g,h,a); } s->h[0] += a; s->h[1] += b; s->h[2] += c; s->h[3] += d; s->h[4] += e; s->h[5] += f; s->h[6] += g; s->h[7] += h; } /* ---------------------------------------------------------------------- * Outer SHA256 algorithm: take an arbitrary length byte string, * convert it into 16-word blocks with the prescribed padding at * the end, and pass those blocks to the core SHA256 algorithm. */ #define BLKSIZE 64 static void SHA256_BinarySink_write(BinarySink *bs, const void *data, size_t len) { struct SHA256_State *s = BinarySink_DOWNCAST(bs, struct SHA256_State); SHA256_Bytes(s, data, len); } void SHA256_Init(SHA256_State *s) { SHA256_Core_Init(s); s->blkused = 0; s->lenhi = s->lenlo = 0; if (supports_sha_ni()) s->sha256 = &SHA256_ni; else s->sha256 = &SHA256_sw; BinarySink_INIT(s, SHA256_BinarySink_write); } void SHA256_Bytes(SHA256_State *s, const void *p, int len) { unsigned char *q = (unsigned char *)p; uint32 lenw = len; /* * Update the length field. */ s->lenlo += lenw; s->lenhi += (s->lenlo < lenw); (*(s->sha256))(s, q, len); } static void SHA256_sw(SHA256_State *s, const unsigned char *q, int len) { uint32 wordblock[16]; int i; if (s->blkused && s->blkused+len < BLKSIZE) { /* * Trivial case: just add to the block. */ memcpy(s->block + s->blkused, q, len); s->blkused += len; } else { /* * We must complete and process at least one block. */ while (s->blkused + len >= BLKSIZE) { memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused); q += BLKSIZE - s->blkused; len -= BLKSIZE - s->blkused; /* Now process the block. Gather bytes big-endian into words */ for (i = 0; i < 16; i++) { wordblock[i] = ( ((uint32)s->block[i*4+0]) << 24 ) | ( ((uint32)s->block[i*4+1]) << 16 ) | ( ((uint32)s->block[i*4+2]) << 8 ) | ( ((uint32)s->block[i*4+3]) << 0 ); } SHA256_Block(s, wordblock); s->blkused = 0; } memcpy(s->block, q, len); s->blkused = len; } } void SHA256_Final(SHA256_State *s, unsigned char *digest) { int i; int pad; unsigned char c[64]; uint32 lenhi, lenlo; if (s->blkused >= 56) pad = 56 + 64 - s->blkused; else pad = 56 - s->blkused; lenhi = (s->lenhi << 3) | (s->lenlo >> (32-3)); lenlo = (s->lenlo << 3); memset(c, 0, pad); c[0] = 0x80; SHA256_Bytes(s, &c, pad); c[0] = (lenhi >> 24) & 0xFF; c[1] = (lenhi >> 16) & 0xFF; c[2] = (lenhi >> 8) & 0xFF; c[3] = (lenhi >> 0) & 0xFF; c[4] = (lenlo >> 24) & 0xFF; c[5] = (lenlo >> 16) & 0xFF; c[6] = (lenlo >> 8) & 0xFF; c[7] = (lenlo >> 0) & 0xFF; SHA256_Bytes(s, &c, 8); for (i = 0; i < 8; i++) { digest[i*4+0] = (s->h[i] >> 24) & 0xFF; digest[i*4+1] = (s->h[i] >> 16) & 0xFF; digest[i*4+2] = (s->h[i] >> 8) & 0xFF; digest[i*4+3] = (s->h[i] >> 0) & 0xFF; } } void SHA256_Simple(const void *p, int len, unsigned char *output) { SHA256_State s; SHA256_Init(&s); SHA256_Bytes(&s, p, len); SHA256_Final(&s, output); smemclr(&s, sizeof(s)); } /* * Thin abstraction for things where hashes are pluggable. */ static void *sha256_init(void) { SHA256_State *s; s = snew(SHA256_State); SHA256_Init(s); return s; } static void *sha256_copy(const void *vold) { const SHA256_State *old = (const SHA256_State *)vold; SHA256_State *s; s = snew(SHA256_State); *s = *old; BinarySink_COPIED(s); return s; } static void sha256_free(void *handle) { SHA256_State *s = handle; smemclr(s, sizeof(*s)); sfree(s); } static void sha256_bytes(void *handle, const void *p, int len) { SHA256_State *s = handle; SHA256_Bytes(s, p, len); } static void sha256_final(void *handle, unsigned char *output) { SHA256_State *s = handle; SHA256_Final(s, output); sha256_free(s); } const struct ssh_hash ssh_sha256 = { sha256_init, sha256_copy, sha256_bytes, sha256_final, sha256_free, 32, "SHA-256" }; /* ---------------------------------------------------------------------- * The above is the SHA-256 algorithm itself. Now we implement the * HMAC wrapper on it. */ static void *sha256_make_context(void *cipher_ctx) { return snewn(3, SHA256_State); } static void sha256_free_context(void *handle) { smemclr(handle, 3 * sizeof(SHA256_State)); sfree(handle); } static void sha256_key_internal(void *handle, unsigned char *key, int len) { SHA256_State *keys = (SHA256_State *)handle; unsigned char foo[64]; int i; memset(foo, 0x36, 64); for (i = 0; i < len && i < 64; i++) foo[i] ^= key[i]; SHA256_Init(&keys[0]); SHA256_Bytes(&keys[0], foo, 64); memset(foo, 0x5C, 64); for (i = 0; i < len && i < 64; i++) foo[i] ^= key[i]; SHA256_Init(&keys[1]); SHA256_Bytes(&keys[1], foo, 64); smemclr(foo, 64); /* burn the evidence */ } static void sha256_key(void *handle, unsigned char *key) { sha256_key_internal(handle, key, 32); } static void hmacsha256_start(void *handle) { SHA256_State *keys = (SHA256_State *)handle; keys[2] = keys[0]; /* structure copy */ BinarySink_COPIED(&keys[2]); } static void hmacsha256_bytes(void *handle, unsigned char const *blk, int len) { SHA256_State *keys = (SHA256_State *)handle; SHA256_Bytes(&keys[2], (void *)blk, len); } static void hmacsha256_genresult(void *handle, unsigned char *hmac) { SHA256_State *keys = (SHA256_State *)handle; SHA256_State s; unsigned char intermediate[32]; s = keys[2]; /* structure copy */ BinarySink_COPIED(&s); SHA256_Final(&s, intermediate); s = keys[1]; /* structure copy */ BinarySink_COPIED(&s); SHA256_Bytes(&s, intermediate, 32); SHA256_Final(&s, hmac); } static void sha256_do_hmac(void *handle, unsigned char *blk, int len, unsigned long seq, unsigned char *hmac) { unsigned char seqbuf[4]; PUT_32BIT_MSB_FIRST(seqbuf, seq); hmacsha256_start(handle); hmacsha256_bytes(handle, seqbuf, 4); hmacsha256_bytes(handle, blk, len); hmacsha256_genresult(handle, hmac); } static void sha256_generate(void *handle, unsigned char *blk, int len, unsigned long seq) { sha256_do_hmac(handle, blk, len, seq, blk + len); } static int hmacsha256_verresult(void *handle, unsigned char const *hmac) { unsigned char correct[32]; hmacsha256_genresult(handle, correct); return smemeq(correct, hmac, 32); } static int sha256_verify(void *handle, unsigned char *blk, int len, unsigned long seq) { unsigned char correct[32]; sha256_do_hmac(handle, blk, len, seq, correct); return smemeq(correct, blk + len, 32); } const struct ssh_mac ssh_hmac_sha256 = { sha256_make_context, sha256_free_context, sha256_key, sha256_generate, sha256_verify, hmacsha256_start, hmacsha256_bytes, hmacsha256_genresult, hmacsha256_verresult, "hmac-sha2-256", "hmac-sha2-256-etm@openssh.com", 32, 32, "HMAC-SHA-256" }; #ifdef TEST #include #include #include int main(void) { unsigned char digest[32]; int i, j, errors; struct { const char *teststring; unsigned char digest[32]; } tests[] = { { "abc", { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad, } }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1, } }, }; errors = 0; for (i = 0; i < sizeof(tests) / sizeof(*tests); i++) { SHA256_Simple(tests[i].teststring, strlen(tests[i].teststring), digest); for (j = 0; j < 32; j++) { if (digest[j] != tests[i].digest[j]) { fprintf(stderr, "\"%s\" digest byte %d should be 0x%02x, is 0x%02x\n", tests[i].teststring, j, tests[i].digest[j], digest[j]); errors++; } } } printf("%d errors\n", errors); return 0; } #endif #ifdef COMPILER_SUPPORTS_SHA_NI #if defined _MSC_VER && defined _M_AMD64 # include #endif /* * Set target architecture for Clang and GCC */ #if !defined(__clang__) && defined(__GNUC__) # pragma GCC target("sha") # pragma GCC target("sse4.1") #endif #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5)) # define FUNC_ISA __attribute__ ((target("sse4.1,sha"))) #else # define FUNC_ISA #endif #include #include #include #if defined(__clang__) || defined(__GNUC__) #include #endif /* SHA256 implementation using new instructions The code is based on Jeffrey Walton's SHA256 implementation: https://github.com/noloader/SHA-Intrinsics */ FUNC_ISA static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) { if (s->blkused && s->blkused+len < BLKSIZE) { /* * Trivial case: just add to the block. */ memcpy(s->block + s->blkused, q, len); s->blkused += len; } else { __m128i STATE0, STATE1; __m128i MSG, TMP; __m128i MSG0, MSG1, MSG2, MSG3; __m128i ABEF_SAVE, CDGH_SAVE; const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL); /* Load initial values */ TMP = _mm_loadu_si128((const __m128i*) &s->h[0]); STATE1 = _mm_loadu_si128((const __m128i*) &s->h[4]); TMP = _mm_shuffle_epi32(TMP, 0xB1); /* CDAB */ STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); /* EFGH */ STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); /* ABEF */ STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); /* CDGH */ /* * We must complete and process at least one block. */ while (s->blkused + len >= BLKSIZE) { memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused); q += BLKSIZE - s->blkused; len -= BLKSIZE - s->blkused; /* Save current state */ ABEF_SAVE = STATE0; CDGH_SAVE = STATE1; /* Rounds 0-3 */ MSG = _mm_loadu_si128((const __m128i*) (s->block + 0)); MSG0 = _mm_shuffle_epi8(MSG, MASK); MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); /* Rounds 4-7 */ MSG1 = _mm_loadu_si128((const __m128i*) (s->block + 16)); MSG1 = _mm_shuffle_epi8(MSG1, MASK); MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1); /* Rounds 8-11 */ MSG2 = _mm_loadu_si128((const __m128i*) (s->block + 32)); MSG2 = _mm_shuffle_epi8(MSG2, MASK); MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2); /* Rounds 12-15 */ MSG3 = _mm_loadu_si128((const __m128i*) (s->block + 48)); MSG3 = _mm_shuffle_epi8(MSG3, MASK); MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG3, MSG2, 4); MSG0 = _mm_add_epi32(MSG0, TMP); MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3); /* Rounds 16-19 */ MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG0, MSG3, 4); MSG1 = _mm_add_epi32(MSG1, TMP); MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0); /* Rounds 20-23 */ MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG1, MSG0, 4); MSG2 = _mm_add_epi32(MSG2, TMP); MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1); /* Rounds 24-27 */ MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG2, MSG1, 4); MSG3 = _mm_add_epi32(MSG3, TMP); MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2); /* Rounds 28-31 */ MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG3, MSG2, 4); MSG0 = _mm_add_epi32(MSG0, TMP); MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3); /* Rounds 32-35 */ MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG0, MSG3, 4); MSG1 = _mm_add_epi32(MSG1, TMP); MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0); /* Rounds 36-39 */ MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG1, MSG0, 4); MSG2 = _mm_add_epi32(MSG2, TMP); MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1); /* Rounds 40-43 */ MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG2, MSG1, 4); MSG3 = _mm_add_epi32(MSG3, TMP); MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2); /* Rounds 44-47 */ MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG3, MSG2, 4); MSG0 = _mm_add_epi32(MSG0, TMP); MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3); /* Rounds 48-51 */ MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG0, MSG3, 4); MSG1 = _mm_add_epi32(MSG1, TMP); MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0); /* Rounds 52-55 */ MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG1, MSG0, 4); MSG2 = _mm_add_epi32(MSG2, TMP); MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); /* Rounds 56-59 */ MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG2, MSG1, 4); MSG3 = _mm_add_epi32(MSG3, TMP); MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); /* Rounds 60-63 */ MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); /* Combine state */ STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE); STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE); s->blkused = 0; } TMP = _mm_shuffle_epi32(STATE0, 0x1B); /* FEBA */ STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); /* DCHG */ STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); /* DCBA */ STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); /* ABEF */ /* Save state */ _mm_storeu_si128((__m128i*) &s->h[0], STATE0); _mm_storeu_si128((__m128i*) &s->h[4], STATE1); memcpy(s->block, q, len); s->blkused = len; } } /* * Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980 */ static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len) { SHA256_ni_(s, q, len); } #else /* COMPILER_SUPPORTS_AES_NI */ static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len) { assert(0); } #endif /* COMPILER_SUPPORTS_AES_NI */