putty/sshecc.c

2965 строки
81 KiB
C
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

/*
* Elliptic-curve crypto module for PuTTY
* Implements the three required curves, no optional curves
*
* NOTE: Only curves on prime field are handled by the maths functions
* in Weierstrass form using Jacobian co-ordinates.
*
* Montgomery form curves are supported for DH. (Curve25519)
*
* Edwards form curves are supported for DSA. (Ed25519)
*/
/*
* References:
*
* Elliptic curves in SSH are specified in RFC 5656:
* http://tools.ietf.org/html/rfc5656
*
* That specification delegates details of public key formatting and a
* lot of underlying mechanism to SEC 1:
* http://www.secg.org/sec1-v2.pdf
*
* Montgomery maths from:
* Handbook of elliptic and hyperelliptic curve cryptography, Chapter 13
* http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf
*
* Curve25519 spec from libssh (with reference to other things in the
* libssh code):
* https://git.libssh.org/users/aris/libssh.git/tree/doc/curve25519-sha256@libssh.org.txt
*
* Edwards DSA:
* http://ed25519.cr.yp.to/ed25519-20110926.pdf
*/
#include <stdlib.h>
#include <assert.h>
#include "ssh.h"
/* ----------------------------------------------------------------------
* Elliptic curve definitions
*/
static void initialise_wcurve(struct ec_curve *curve, int bits,
const unsigned char *p,
const unsigned char *a, const unsigned char *b,
const unsigned char *n, const unsigned char *Gx,
const unsigned char *Gy)
{
int length = bits / 8;
if (bits % 8) ++length;
curve->type = EC_WEIERSTRASS;
curve->fieldBits = bits;
curve->p = bignum_from_bytes(p, length);
/* Curve co-efficients */
curve->w.a = bignum_from_bytes(a, length);
curve->w.b = bignum_from_bytes(b, length);
/* Group order and generator */
curve->w.n = bignum_from_bytes(n, length);
curve->w.G.x = bignum_from_bytes(Gx, length);
curve->w.G.y = bignum_from_bytes(Gy, length);
curve->w.G.curve = curve;
curve->w.G.infinity = 0;
}
static void initialise_mcurve(struct ec_curve *curve, int bits,
const unsigned char *p,
const unsigned char *a, const unsigned char *b,
const unsigned char *Gx)
{
int length = bits / 8;
if (bits % 8) ++length;
curve->type = EC_MONTGOMERY;
curve->fieldBits = bits;
curve->p = bignum_from_bytes(p, length);
/* Curve co-efficients */
curve->m.a = bignum_from_bytes(a, length);
curve->m.b = bignum_from_bytes(b, length);
/* Generator */
curve->m.G.x = bignum_from_bytes(Gx, length);
curve->m.G.y = NULL;
curve->m.G.z = NULL;
curve->m.G.curve = curve;
curve->m.G.infinity = 0;
}
static void initialise_ecurve(struct ec_curve *curve, int bits,
const unsigned char *p,
const unsigned char *l, const unsigned char *d,
const unsigned char *Bx, const unsigned char *By)
{
int length = bits / 8;
if (bits % 8) ++length;
curve->type = EC_EDWARDS;
curve->fieldBits = bits;
curve->p = bignum_from_bytes(p, length);
/* Curve co-efficients */
curve->e.l = bignum_from_bytes(l, length);
curve->e.d = bignum_from_bytes(d, length);
/* Group order and generator */
curve->e.B.x = bignum_from_bytes(Bx, length);
curve->e.B.y = bignum_from_bytes(By, length);
curve->e.B.curve = curve;
curve->e.B.infinity = 0;
}
static struct ec_curve *ec_p256(void)
{
static struct ec_curve curve = { 0 };
static unsigned char initialised = 0;
if (!initialised)
{
static const unsigned char p[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
static const unsigned char a[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc
};
static const unsigned char b[] = {
0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b
};
static const unsigned char n[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84,
0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51
};
static const unsigned char Gx[] = {
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,
0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96
};
static const unsigned char Gy[] = {
0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b,
0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5
};
initialise_wcurve(&curve, 256, p, a, b, n, Gx, Gy);
curve.textname = curve.name = "nistp256";
/* Now initialised, no need to do it again */
initialised = 1;
}
return &curve;
}
static struct ec_curve *ec_p384(void)
{
static struct ec_curve curve = { 0 };
static unsigned char initialised = 0;
if (!initialised)
{
static const unsigned char p[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff
};
static const unsigned char a[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfc
};
static const unsigned char b[] = {
0xb3, 0x31, 0x2f, 0xa7, 0xe2, 0x3e, 0xe7, 0xe4,
0x98, 0x8e, 0x05, 0x6b, 0xe3, 0xf8, 0x2d, 0x19,
0x18, 0x1d, 0x9c, 0x6e, 0xfe, 0x81, 0x41, 0x12,
0x03, 0x14, 0x08, 0x8f, 0x50, 0x13, 0x87, 0x5a,
0xc6, 0x56, 0x39, 0x8d, 0x8a, 0x2e, 0xd1, 0x9d,
0x2a, 0x85, 0xc8, 0xed, 0xd3, 0xec, 0x2a, 0xef
};
static const unsigned char n[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xc7, 0x63, 0x4d, 0x81, 0xf4, 0x37, 0x2d, 0xdf,
0x58, 0x1a, 0x0d, 0xb2, 0x48, 0xb0, 0xa7, 0x7a,
0xec, 0xec, 0x19, 0x6a, 0xcc, 0xc5, 0x29, 0x73
};
static const unsigned char Gx[] = {
0xaa, 0x87, 0xca, 0x22, 0xbe, 0x8b, 0x05, 0x37,
0x8e, 0xb1, 0xc7, 0x1e, 0xf3, 0x20, 0xad, 0x74,
0x6e, 0x1d, 0x3b, 0x62, 0x8b, 0xa7, 0x9b, 0x98,
0x59, 0xf7, 0x41, 0xe0, 0x82, 0x54, 0x2a, 0x38,
0x55, 0x02, 0xf2, 0x5d, 0xbf, 0x55, 0x29, 0x6c,
0x3a, 0x54, 0x5e, 0x38, 0x72, 0x76, 0x0a, 0xb7
};
static const unsigned char Gy[] = {
0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f,
0x5d, 0x9e, 0x98, 0xbf, 0x92, 0x92, 0xdc, 0x29,
0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c,
0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0,
0x0a, 0x60, 0xb1, 0xce, 0x1d, 0x7e, 0x81, 0x9d,
0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f
};
initialise_wcurve(&curve, 384, p, a, b, n, Gx, Gy);
curve.textname = curve.name = "nistp384";
/* Now initialised, no need to do it again */
initialised = 1;
}
return &curve;
}
static struct ec_curve *ec_p521(void)
{
static struct ec_curve curve = { 0 };
static unsigned char initialised = 0;
if (!initialised)
{
static const unsigned char p[] = {
0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff
};
static const unsigned char a[] = {
0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xfc
};
static const unsigned char b[] = {
0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c,
0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
0x3f, 0x00
};
static const unsigned char n[] = {
0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xfa, 0x51, 0x86, 0x87, 0x83, 0xbf, 0x2f,
0x96, 0x6b, 0x7f, 0xcc, 0x01, 0x48, 0xf7, 0x09,
0xa5, 0xd0, 0x3b, 0xb5, 0xc9, 0xb8, 0x89, 0x9c,
0x47, 0xae, 0xbb, 0x6f, 0xb7, 0x1e, 0x91, 0x38,
0x64, 0x09
};
static const unsigned char Gx[] = {
0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04,
0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
0xbd, 0x66
};
static const unsigned char Gy[] = {
0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b,
0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
0x66, 0x50
};
initialise_wcurve(&curve, 521, p, a, b, n, Gx, Gy);
curve.textname = curve.name = "nistp521";
/* Now initialised, no need to do it again */
initialised = 1;
}
return &curve;
}
static struct ec_curve *ec_curve25519(void)
{
static struct ec_curve curve = { 0 };
static unsigned char initialised = 0;
if (!initialised)
{
static const unsigned char p[] = {
0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xed
};
static const unsigned char a[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x6d, 0x06
};
static const unsigned char b[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
};
static const unsigned char gx[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09
};
initialise_mcurve(&curve, 256, p, a, b, gx);
/* This curve doesn't need a name, because it's never used in
* any format that embeds the curve name */
curve.name = NULL;
curve.textname = "Curve25519";
/* Now initialised, no need to do it again */
initialised = 1;
}
return &curve;
}
static struct ec_curve *ec_ed25519(void)
{
static struct ec_curve curve = { 0 };
static unsigned char initialised = 0;
if (!initialised)
{
static const unsigned char q[] = {
0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xed
};
static const unsigned char l[32] = {
0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x14, 0xde, 0xf9, 0xde, 0xa2, 0xf7, 0x9c, 0xd6,
0x58, 0x12, 0x63, 0x1a, 0x5c, 0xf5, 0xd3, 0xed
};
static const unsigned char d[32] = {
0x52, 0x03, 0x6c, 0xee, 0x2b, 0x6f, 0xfe, 0x73,
0x8c, 0xc7, 0x40, 0x79, 0x77, 0x79, 0xe8, 0x98,
0x00, 0x70, 0x0a, 0x4d, 0x41, 0x41, 0xd8, 0xab,
0x75, 0xeb, 0x4d, 0xca, 0x13, 0x59, 0x78, 0xa3
};
static const unsigned char Bx[32] = {
0x21, 0x69, 0x36, 0xd3, 0xcd, 0x6e, 0x53, 0xfe,
0xc0, 0xa4, 0xe2, 0x31, 0xfd, 0xd6, 0xdc, 0x5c,
0x69, 0x2c, 0xc7, 0x60, 0x95, 0x25, 0xa7, 0xb2,
0xc9, 0x56, 0x2d, 0x60, 0x8f, 0x25, 0xd5, 0x1a
};
static const unsigned char By[32] = {
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x58
};
/* This curve doesn't need a name, because it's never used in
* any format that embeds the curve name */
curve.name = NULL;
initialise_ecurve(&curve, 256, q, l, d, Bx, By);
curve.textname = "Ed25519";
/* Now initialised, no need to do it again */
initialised = 1;
}
return &curve;
}
/* Return 1 if a is -3 % p, otherwise return 0
* This is used because there are some maths optimisations */
static int ec_aminus3(const struct ec_curve *curve)
{
int ret;
Bignum _p;
if (curve->type != EC_WEIERSTRASS) {
return 0;
}
_p = bignum_add_long(curve->w.a, 3);
ret = !bignum_cmp(curve->p, _p);
freebn(_p);
return ret;
}
/* ----------------------------------------------------------------------
* Elliptic curve field maths
*/
static Bignum ecf_add(const Bignum a, const Bignum b,
const struct ec_curve *curve)
{
Bignum a1, b1, ab, ret;
a1 = bigmod(a, curve->p);
b1 = bigmod(b, curve->p);
ab = bigadd(a1, b1);
freebn(a1);
freebn(b1);
ret = bigmod(ab, curve->p);
freebn(ab);
return ret;
}
static Bignum ecf_square(const Bignum a, const struct ec_curve *curve)
{
return modmul(a, a, curve->p);
}
static Bignum ecf_treble(const Bignum a, const struct ec_curve *curve)
{
Bignum ret, tmp;
/* Double */
tmp = bignum_lshift(a, 1);
/* Add itself (i.e. treble) */
ret = bigadd(tmp, a);
freebn(tmp);
/* Normalise */
while (bignum_cmp(ret, curve->p) >= 0)
{
tmp = bigsub(ret, curve->p);
assert(tmp);
freebn(ret);
ret = tmp;
}
return ret;
}
static Bignum ecf_double(const Bignum a, const struct ec_curve *curve)
{
Bignum ret = bignum_lshift(a, 1);
if (bignum_cmp(ret, curve->p) >= 0)
{
Bignum tmp = bigsub(ret, curve->p);
assert(tmp);
freebn(ret);
return tmp;
}
else
{
return ret;
}
}
/* ----------------------------------------------------------------------
* Memory functions
*/
void ec_point_free(struct ec_point *point)
{
if (point == NULL) return;
point->curve = 0;
if (point->x) freebn(point->x);
if (point->y) freebn(point->y);
if (point->z) freebn(point->z);
point->infinity = 0;
sfree(point);
}
static struct ec_point *ec_point_new(const struct ec_curve *curve,
const Bignum x, const Bignum y, const Bignum z,
unsigned char infinity)
{
struct ec_point *point = snewn(1, struct ec_point);
point->curve = curve;
point->x = x;
point->y = y;
point->z = z;
point->infinity = infinity ? 1 : 0;
return point;
}
static struct ec_point *ec_point_copy(const struct ec_point *a)
{
if (a == NULL) return NULL;
return ec_point_new(a->curve,
a->x ? copybn(a->x) : NULL,
a->y ? copybn(a->y) : NULL,
a->z ? copybn(a->z) : NULL,
a->infinity);
}
static int ec_point_verify(const struct ec_point *a)
{
if (a->infinity) {
return 1;
} else if (a->curve->type == EC_EDWARDS) {
/* Check y^2 - x^2 - 1 - d * x^2 * y^2 == 0 */
Bignum y2, x2, tmp, tmp2, tmp3;
int ret;
y2 = ecf_square(a->y, a->curve);
x2 = ecf_square(a->x, a->curve);
tmp = modmul(a->curve->e.d, x2, a->curve->p);
tmp2 = modmul(tmp, y2, a->curve->p);
freebn(tmp);
tmp = modsub(y2, x2, a->curve->p);
freebn(y2);
freebn(x2);
tmp3 = modsub(tmp, tmp2, a->curve->p);
freebn(tmp);
freebn(tmp2);
ret = !bignum_cmp(tmp3, One);
freebn(tmp3);
return ret;
} else if (a->curve->type == EC_WEIERSTRASS) {
/* Verify y^2 = x^3 + ax + b */
int ret = 0;
Bignum lhs = NULL, x3 = NULL, ax = NULL, x3ax = NULL, x3axm = NULL, x3axb = NULL, rhs = NULL;
Bignum Three = bignum_from_long(3);
lhs = modmul(a->y, a->y, a->curve->p);
/* This uses montgomery multiplication to optimise */
x3 = modpow(a->x, Three, a->curve->p);
freebn(Three);
ax = modmul(a->curve->w.a, a->x, a->curve->p);
x3ax = bigadd(x3, ax);
freebn(x3); x3 = NULL;
freebn(ax); ax = NULL;
x3axm = bigmod(x3ax, a->curve->p);
freebn(x3ax); x3ax = NULL;
x3axb = bigadd(x3axm, a->curve->w.b);
freebn(x3axm); x3axm = NULL;
rhs = bigmod(x3axb, a->curve->p);
freebn(x3axb);
ret = bignum_cmp(lhs, rhs) ? 0 : 1;
freebn(lhs);
freebn(rhs);
return ret;
} else {
return 0;
}
}
/* ----------------------------------------------------------------------
* Elliptic curve point maths
*/
/* Returns 1 on success and 0 on memory error */
static int ecp_normalise(struct ec_point *a)
{
if (!a) {
/* No point */
return 0;
}
if (a->infinity) {
/* Point is at infinity - i.e. normalised */
return 1;
}
if (a->curve->type == EC_WEIERSTRASS) {
/* In Jacobian Coordinates the triple (X, Y, Z) represents
the affine point (X / Z^2, Y / Z^3) */
Bignum Z2, Z2inv, Z3, Z3inv, tx, ty;
if (!a->x || !a->y) {
/* No point defined */
return 0;
} else if (!a->z) {
/* Already normalised */
return 1;
}
Z2 = ecf_square(a->z, a->curve);
Z2inv = modinv(Z2, a->curve->p);
if (!Z2inv) {
freebn(Z2);
return 0;
}
tx = modmul(a->x, Z2inv, a->curve->p);
freebn(Z2inv);
Z3 = modmul(Z2, a->z, a->curve->p);
freebn(Z2);
Z3inv = modinv(Z3, a->curve->p);
freebn(Z3);
if (!Z3inv) {
freebn(tx);
return 0;
}
ty = modmul(a->y, Z3inv, a->curve->p);
freebn(Z3inv);
freebn(a->x);
a->x = tx;
freebn(a->y);
a->y = ty;
freebn(a->z);
a->z = NULL;
return 1;
} else if (a->curve->type == EC_MONTGOMERY) {
/* In Montgomery (X : Z) represents the x co-ord (X / Z, ?) */
Bignum tmp, tmp2;
if (!a->x) {
/* No point defined */
return 0;
} else if (!a->z) {
/* Already normalised */
return 1;
}
tmp = modinv(a->z, a->curve->p);
if (!tmp) {
return 0;
}
tmp2 = modmul(a->x, tmp, a->curve->p);
freebn(tmp);
freebn(a->z);
a->z = NULL;
freebn(a->x);
a->x = tmp2;
return 1;
} else if (a->curve->type == EC_EDWARDS) {
/* Always normalised */
return 1;
} else {
return 0;
}
}
static struct ec_point *ecp_doublew(const struct ec_point *a, const int aminus3)
{
Bignum S, M, outx, outy, outz;
if (bignum_cmp(a->y, Zero) == 0)
{
/* Identity */
return ec_point_new(a->curve, NULL, NULL, NULL, 1);
}
/* S = 4*X*Y^2 */
{
Bignum Y2, XY2, _2XY2;
Y2 = ecf_square(a->y, a->curve);
XY2 = modmul(a->x, Y2, a->curve->p);
freebn(Y2);
_2XY2 = ecf_double(XY2, a->curve);
freebn(XY2);
S = ecf_double(_2XY2, a->curve);
freebn(_2XY2);
}
/* Faster calculation if a = -3 */
if (aminus3) {
/* if a = -3, then M can also be calculated as M = 3*(X + Z^2)*(X - Z^2) */
Bignum Z2, XpZ2, XmZ2, second;
if (a->z == NULL) {
Z2 = copybn(One);
} else {
Z2 = ecf_square(a->z, a->curve);
}
XpZ2 = ecf_add(a->x, Z2, a->curve);
XmZ2 = modsub(a->x, Z2, a->curve->p);
freebn(Z2);
second = modmul(XpZ2, XmZ2, a->curve->p);
freebn(XpZ2);
freebn(XmZ2);
M = ecf_treble(second, a->curve);
freebn(second);
} else {
/* M = 3*X^2 + a*Z^4 */
Bignum _3X2, X2, aZ4;
if (a->z == NULL) {
aZ4 = copybn(a->curve->w.a);
} else {
Bignum Z2, Z4;
Z2 = ecf_square(a->z, a->curve);
Z4 = ecf_square(Z2, a->curve);
freebn(Z2);
aZ4 = modmul(a->curve->w.a, Z4, a->curve->p);
freebn(Z4);
}
X2 = modmul(a->x, a->x, a->curve->p);
_3X2 = ecf_treble(X2, a->curve);
freebn(X2);
M = ecf_add(_3X2, aZ4, a->curve);
freebn(_3X2);
freebn(aZ4);
}
/* X' = M^2 - 2*S */
{
Bignum M2, _2S;
M2 = ecf_square(M, a->curve);
_2S = ecf_double(S, a->curve);
outx = modsub(M2, _2S, a->curve->p);
freebn(M2);
freebn(_2S);
}
/* Y' = M*(S - X') - 8*Y^4 */
{
Bignum SX, MSX, Eight, Y2, Y4, _8Y4;
SX = modsub(S, outx, a->curve->p);
freebn(S);
MSX = modmul(M, SX, a->curve->p);
freebn(SX);
freebn(M);
Y2 = ecf_square(a->y, a->curve);
Y4 = ecf_square(Y2, a->curve);
freebn(Y2);
Eight = bignum_from_long(8);
_8Y4 = modmul(Eight, Y4, a->curve->p);
freebn(Eight);
freebn(Y4);
outy = modsub(MSX, _8Y4, a->curve->p);
freebn(MSX);
freebn(_8Y4);
}
/* Z' = 2*Y*Z */
{
Bignum YZ;
if (a->z == NULL) {
YZ = copybn(a->y);
} else {
YZ = modmul(a->y, a->z, a->curve->p);
}
outz = ecf_double(YZ, a->curve);
freebn(YZ);
}
return ec_point_new(a->curve, outx, outy, outz, 0);
}
static struct ec_point *ecp_doublem(const struct ec_point *a)
{
Bignum z, outx, outz, xpz, xmz;
z = a->z;
if (!z) {
z = One;
}
/* 4xz = (x + z)^2 - (x - z)^2 */
{
Bignum tmp;
tmp = ecf_add(a->x, z, a->curve);
xpz = ecf_square(tmp, a->curve);
freebn(tmp);
tmp = modsub(a->x, z, a->curve->p);
xmz = ecf_square(tmp, a->curve);
freebn(tmp);
}
/* outx = (x + z)^2 * (x - z)^2 */
outx = modmul(xpz, xmz, a->curve->p);
/* outz = 4xz * ((x - z)^2 + ((A + 2) / 4)*4xz) */
{
Bignum _4xz, tmp, tmp2, tmp3;
tmp = bignum_from_long(2);
tmp2 = ecf_add(a->curve->m.a, tmp, a->curve);
freebn(tmp);
_4xz = modsub(xpz, xmz, a->curve->p);
freebn(xpz);
tmp = modmul(tmp2, _4xz, a->curve->p);
freebn(tmp2);
tmp2 = bignum_from_long(4);
tmp3 = modinv(tmp2, a->curve->p);
freebn(tmp2);
if (!tmp3) {
freebn(tmp);
freebn(_4xz);
freebn(outx);
freebn(xmz);
return NULL;
}
tmp2 = modmul(tmp, tmp3, a->curve->p);
freebn(tmp);
freebn(tmp3);
tmp = ecf_add(xmz, tmp2, a->curve);
freebn(xmz);
freebn(tmp2);
outz = modmul(_4xz, tmp, a->curve->p);
freebn(_4xz);
freebn(tmp);
}
return ec_point_new(a->curve, outx, NULL, outz, 0);
}
/* Forward declaration for Edwards curve doubling */
static struct ec_point *ecp_add(const struct ec_point *a,
const struct ec_point *b,
const int aminus3);
static struct ec_point *ecp_double(const struct ec_point *a, const int aminus3)
{
if (a->infinity)
{
/* Identity */
return ec_point_new(a->curve, NULL, NULL, NULL, 1);
}
if (a->curve->type == EC_EDWARDS)
{
return ecp_add(a, a, aminus3);
}
else if (a->curve->type == EC_WEIERSTRASS)
{
return ecp_doublew(a, aminus3);
}
else
{
return ecp_doublem(a);
}
}
static struct ec_point *ecp_addw(const struct ec_point *a,
const struct ec_point *b,
const int aminus3)
{
Bignum U1, U2, S1, S2, outx, outy, outz;
/* U1 = X1*Z2^2 */
/* S1 = Y1*Z2^3 */
if (b->z) {
Bignum Z2, Z3;
Z2 = ecf_square(b->z, a->curve);
U1 = modmul(a->x, Z2, a->curve->p);
Z3 = modmul(Z2, b->z, a->curve->p);
freebn(Z2);
S1 = modmul(a->y, Z3, a->curve->p);
freebn(Z3);
} else {
U1 = copybn(a->x);
S1 = copybn(a->y);
}
/* U2 = X2*Z1^2 */
/* S2 = Y2*Z1^3 */
if (a->z) {
Bignum Z2, Z3;
Z2 = ecf_square(a->z, b->curve);
U2 = modmul(b->x, Z2, b->curve->p);
Z3 = modmul(Z2, a->z, b->curve->p);
freebn(Z2);
S2 = modmul(b->y, Z3, b->curve->p);
freebn(Z3);
} else {
U2 = copybn(b->x);
S2 = copybn(b->y);
}
/* Check if multiplying by self */
if (bignum_cmp(U1, U2) == 0)
{
freebn(U1);
freebn(U2);
if (bignum_cmp(S1, S2) == 0)
{
freebn(S1);
freebn(S2);
return ecp_double(a, aminus3);
}
else
{
freebn(S1);
freebn(S2);
/* Infinity */
return ec_point_new(a->curve, NULL, NULL, NULL, 1);
}
}
{
Bignum H, R, UH2, H3;
/* H = U2 - U1 */
H = modsub(U2, U1, a->curve->p);
freebn(U2);
/* R = S2 - S1 */
R = modsub(S2, S1, a->curve->p);
freebn(S2);
/* X3 = R^2 - H^3 - 2*U1*H^2 */
{
Bignum R2, H2, _2UH2, first;
H2 = ecf_square(H, a->curve);
UH2 = modmul(U1, H2, a->curve->p);
freebn(U1);
H3 = modmul(H2, H, a->curve->p);
freebn(H2);
R2 = ecf_square(R, a->curve);
_2UH2 = ecf_double(UH2, a->curve);
first = modsub(R2, H3, a->curve->p);
freebn(R2);
outx = modsub(first, _2UH2, a->curve->p);
freebn(first);
freebn(_2UH2);
}
/* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
{
Bignum RUH2mX, UH2mX, SH3;
UH2mX = modsub(UH2, outx, a->curve->p);
freebn(UH2);
RUH2mX = modmul(R, UH2mX, a->curve->p);
freebn(UH2mX);
freebn(R);
SH3 = modmul(S1, H3, a->curve->p);
freebn(S1);
freebn(H3);
outy = modsub(RUH2mX, SH3, a->curve->p);
freebn(RUH2mX);
freebn(SH3);
}
/* Z3 = H*Z1*Z2 */
if (a->z && b->z) {
Bignum ZZ;
ZZ = modmul(a->z, b->z, a->curve->p);
outz = modmul(H, ZZ, a->curve->p);
freebn(H);
freebn(ZZ);
} else if (a->z) {
outz = modmul(H, a->z, a->curve->p);
freebn(H);
} else if (b->z) {
outz = modmul(H, b->z, a->curve->p);
freebn(H);
} else {
outz = H;
}
}
return ec_point_new(a->curve, outx, outy, outz, 0);
}
static struct ec_point *ecp_addm(const struct ec_point *a,
const struct ec_point *b,
const struct ec_point *base)
{
Bignum outx, outz, az, bz;
az = a->z;
if (!az) {
az = One;
}
bz = b->z;
if (!bz) {
bz = One;
}
/* a-b is maintained at 1 due to Montgomery ladder implementation */
/* Xa+b = Za-b * ((Xa - Za)*(Xb + Zb) + (Xa + Za)*(Xb - Zb))^2 */
/* Za+b = Xa-b * ((Xa - Za)*(Xb + Zb) - (Xa + Za)*(Xb - Zb))^2 */
{
Bignum tmp, tmp2, tmp3, tmp4;
/* (Xa + Za) * (Xb - Zb) */
tmp = ecf_add(a->x, az, a->curve);
tmp2 = modsub(b->x, bz, a->curve->p);
tmp3 = modmul(tmp, tmp2, a->curve->p);
freebn(tmp);
freebn(tmp2);
/* (Xa - Za) * (Xb + Zb) */
tmp = modsub(a->x, az, a->curve->p);
tmp2 = ecf_add(b->x, bz, a->curve);
tmp4 = modmul(tmp, tmp2, a->curve->p);
freebn(tmp);
freebn(tmp2);
tmp = ecf_add(tmp3, tmp4, a->curve);
outx = ecf_square(tmp, a->curve);
freebn(tmp);
tmp = modsub(tmp3, tmp4, a->curve->p);
freebn(tmp3);
freebn(tmp4);
tmp2 = ecf_square(tmp, a->curve);
freebn(tmp);
outz = modmul(base->x, tmp2, a->curve->p);
freebn(tmp2);
}
return ec_point_new(a->curve, outx, NULL, outz, 0);
}
static struct ec_point *ecp_adde(const struct ec_point *a,
const struct ec_point *b)
{
Bignum outx, outy, dmul;
/* outx = (a->x * b->y + b->x * a->y) /
* (1 + a->curve->e.d * a->x * b->x * a->y * b->y) */
{
Bignum tmp, tmp2, tmp3, tmp4;
tmp = modmul(a->x, b->y, a->curve->p);
tmp2 = modmul(b->x, a->y, a->curve->p);
tmp3 = ecf_add(tmp, tmp2, a->curve);
tmp4 = modmul(tmp, tmp2, a->curve->p);
freebn(tmp);
freebn(tmp2);
dmul = modmul(a->curve->e.d, tmp4, a->curve->p);
freebn(tmp4);
tmp = ecf_add(One, dmul, a->curve);
tmp2 = modinv(tmp, a->curve->p);
freebn(tmp);
if (!tmp2)
{
freebn(tmp3);
freebn(dmul);
return NULL;
}
outx = modmul(tmp3, tmp2, a->curve->p);
freebn(tmp3);
freebn(tmp2);
}
/* outy = (a->y * b->y + a->x * b->x) /
* (1 - a->curve->e.d * a->x * b->x * a->y * b->y) */
{
Bignum tmp, tmp2, tmp3, tmp4;
tmp = modsub(One, dmul, a->curve->p);
freebn(dmul);
tmp2 = modinv(tmp, a->curve->p);
freebn(tmp);
if (!tmp2)
{
freebn(outx);
return NULL;
}
tmp = modmul(a->y, b->y, a->curve->p);
tmp3 = modmul(a->x, b->x, a->curve->p);
tmp4 = ecf_add(tmp, tmp3, a->curve);
freebn(tmp);
freebn(tmp3);
outy = modmul(tmp4, tmp2, a->curve->p);
freebn(tmp4);
freebn(tmp2);
}
return ec_point_new(a->curve, outx, outy, NULL, 0);
}
static struct ec_point *ecp_add(const struct ec_point *a,
const struct ec_point *b,
const int aminus3)
{
if (a->curve != b->curve) {
return NULL;
}
/* Check if multiplying by infinity */
if (a->infinity) return ec_point_copy(b);
if (b->infinity) return ec_point_copy(a);
if (a->curve->type == EC_EDWARDS)
{
return ecp_adde(a, b);
}
if (a->curve->type == EC_WEIERSTRASS)
{
return ecp_addw(a, b, aminus3);
}
return NULL;
}
static struct ec_point *ecp_mul_(const struct ec_point *a, const Bignum b, int aminus3)
{
struct ec_point *A, *ret;
int bits, i;
A = ec_point_copy(a);
ret = ec_point_new(a->curve, NULL, NULL, NULL, 1);
bits = bignum_bitcount(b);
for (i = 0; i < bits; ++i)
{
if (bignum_bit(b, i))
{
struct ec_point *tmp = ecp_add(ret, A, aminus3);
ec_point_free(ret);
ret = tmp;
}
if (i+1 != bits)
{
struct ec_point *tmp = ecp_double(A, aminus3);
ec_point_free(A);
A = tmp;
}
}
ec_point_free(A);
return ret;
}
static struct ec_point *ecp_mulw(const struct ec_point *a, const Bignum b)
{
struct ec_point *ret = ecp_mul_(a, b, ec_aminus3(a->curve));
if (!ecp_normalise(ret)) {
ec_point_free(ret);
return NULL;
}
return ret;
}
static struct ec_point *ecp_mule(const struct ec_point *a, const Bignum b)
{
int i;
struct ec_point *ret;
ret = ec_point_new(a->curve, NULL, NULL, NULL, 1);
for (i = bignum_bitcount(b); i >= 0 && ret; --i)
{
{
struct ec_point *tmp = ecp_double(ret, 0);
ec_point_free(ret);
ret = tmp;
}
if (ret && bignum_bit(b, i))
{
struct ec_point *tmp = ecp_add(ret, a, 0);
ec_point_free(ret);
ret = tmp;
}
}
return ret;
}
static struct ec_point *ecp_mulm(const struct ec_point *p, const Bignum n)
{
struct ec_point *P1, *P2;
int bits, i;
/* P1 <- P and P2 <- [2]P */
P2 = ecp_double(p, 0);
P1 = ec_point_copy(p);
/* for i = bits 2 down to 0 */
bits = bignum_bitcount(n);
for (i = bits - 2; i >= 0; --i)
{
if (!bignum_bit(n, i))
{
/* P2 <- P1 + P2 */
struct ec_point *tmp = ecp_addm(P1, P2, p);
ec_point_free(P2);
P2 = tmp;
/* P1 <- [2]P1 */
tmp = ecp_double(P1, 0);
ec_point_free(P1);
P1 = tmp;
}
else
{
/* P1 <- P1 + P2 */
struct ec_point *tmp = ecp_addm(P1, P2, p);
ec_point_free(P1);
P1 = tmp;
/* P2 <- [2]P2 */
tmp = ecp_double(P2, 0);
ec_point_free(P2);
P2 = tmp;
}
}
ec_point_free(P2);
if (!ecp_normalise(P1)) {
ec_point_free(P1);
return NULL;
}
return P1;
}
/* Not static because it is used by sshecdsag.c to generate a new key */
struct ec_point *ecp_mul(const struct ec_point *a, const Bignum b)
{
if (a->curve->type == EC_WEIERSTRASS) {
return ecp_mulw(a, b);
} else if (a->curve->type == EC_EDWARDS) {
return ecp_mule(a, b);
} else {
return ecp_mulm(a, b);
}
}
static struct ec_point *ecp_summul(const Bignum a, const Bignum b,
const struct ec_point *point)
{
struct ec_point *aG, *bP, *ret;
int aminus3;
if (point->curve->type != EC_WEIERSTRASS) {
return NULL;
}
aminus3 = ec_aminus3(point->curve);
aG = ecp_mul_(&point->curve->w.G, a, aminus3);
if (!aG) return NULL;
bP = ecp_mul_(point, b, aminus3);
if (!bP) {
ec_point_free(aG);
return NULL;
}
ret = ecp_add(aG, bP, aminus3);
ec_point_free(aG);
ec_point_free(bP);
if (!ecp_normalise(ret)) {
ec_point_free(ret);
return NULL;
}
return ret;
}
static Bignum *ecp_edx(const struct ec_curve *curve, const Bignum y)
{
/* Get the x value on the given Edwards curve for a given y */
Bignum x, xx;
/* xx = (y^2 - 1) / (d * y^2 + 1) */
{
Bignum tmp, tmp2, tmp3;
tmp = ecf_square(y, curve);
tmp2 = modmul(curve->e.d, tmp, curve->p);
tmp3 = ecf_add(tmp2, One, curve);
freebn(tmp2);
tmp2 = modinv(tmp3, curve->p);
freebn(tmp3);
if (!tmp2) {
freebn(tmp);
return NULL;
}
tmp3 = modsub(tmp, One, curve->p);
freebn(tmp);
xx = modmul(tmp3, tmp2, curve->p);
freebn(tmp3);
freebn(tmp2);
}
/* x = xx^((p + 3) / 8) */
{
Bignum tmp, tmp2;
tmp = bignum_add_long(curve->p, 3);
tmp2 = bignum_rshift(tmp, 3);
freebn(tmp);
x = modpow(xx, tmp2, curve->p);
freebn(tmp2);
}
/* if x^2 - xx != 0 then x = x*(2^((p - 1) / 4)) */
{
Bignum tmp, tmp2;
tmp = ecf_square(x, curve);
tmp2 = modsub(tmp, xx, curve->p);
freebn(tmp);
freebn(xx);
if (bignum_cmp(tmp2, Zero)) {
Bignum tmp3;
freebn(tmp2);
tmp = modsub(curve->p, One, curve->p);
tmp2 = bignum_rshift(tmp, 2);
freebn(tmp);
tmp = bignum_from_long(2);
tmp3 = modpow(tmp, tmp2, curve->p);
freebn(tmp);
freebn(tmp2);
tmp = modmul(x, tmp3, curve->p);
freebn(x);
freebn(tmp3);
x = tmp;
} else {
freebn(tmp2);
}
}
/* if x % 2 != 0 then x = p - x */
if (bignum_bit(x, 0)) {
Bignum tmp = modsub(curve->p, x, curve->p);
freebn(x);
x = tmp;
}
return x;
}
/* ----------------------------------------------------------------------
* Public point from private
*/
struct ec_point *ec_public(const Bignum privateKey, const struct ec_curve *curve)
{
if (curve->type == EC_WEIERSTRASS) {
return ecp_mul(&curve->w.G, privateKey);
} else if (curve->type == EC_EDWARDS) {
/* hash = H(sk) (where hash creates 2 * fieldBits)
* b = fieldBits
* a = 2^(b-2) + SUM(2^i * h_i) for i = 2 -> b-2
* publicKey = aB */
struct ec_point *ret;
unsigned char hash[512/8];
Bignum a;
int i, keylen;
SHA512_State s;
SHA512_Init(&s);
keylen = curve->fieldBits / 8;
for (i = 0; i < keylen; ++i) {
unsigned char b = bignum_byte(privateKey, i);
SHA512_Bytes(&s, &b, 1);
}
SHA512_Final(&s, hash);
/* The second part is simply turning the hash into a Bignum,
* however the 2^(b-2) bit *must* be set, and the bottom 3
* bits *must* not be */
hash[0] &= 0xf8; /* Unset bottom 3 bits (if set) */
hash[31] &= 0x7f; /* Unset above (b-2) */
hash[31] |= 0x40; /* Set 2^(b-2) */
/* Chop off the top part and convert to int */
a = bignum_from_bytes_le(hash, 32);
ret = ecp_mul(&curve->e.B, a);
freebn(a);
return ret;
} else {
return NULL;
}
}
/* ----------------------------------------------------------------------
* Basic sign and verify routines
*/
static int _ecdsa_verify(const struct ec_point *publicKey,
const unsigned char *data, const int dataLen,
const Bignum r, const Bignum s)
{
int z_bits, n_bits;
Bignum z;
int valid = 0;
if (publicKey->curve->type != EC_WEIERSTRASS) {
return 0;
}
/* Sanity checks */
if (bignum_cmp(r, Zero) == 0 || bignum_cmp(r, publicKey->curve->w.n) >= 0
|| bignum_cmp(s, Zero) == 0 || bignum_cmp(s, publicKey->curve->w.n) >= 0)
{
return 0;
}
/* z = left most bitlen(curve->n) of data */
z = bignum_from_bytes(data, dataLen);
n_bits = bignum_bitcount(publicKey->curve->w.n);
z_bits = bignum_bitcount(z);
if (z_bits > n_bits)
{
Bignum tmp = bignum_rshift(z, z_bits - n_bits);
freebn(z);
z = tmp;
}
/* Ensure z in range of n */
{
Bignum tmp = bigmod(z, publicKey->curve->w.n);
freebn(z);
z = tmp;
}
/* Calculate signature */
{
Bignum w, x, u1, u2;
struct ec_point *tmp;
w = modinv(s, publicKey->curve->w.n);
if (!w) {
freebn(z);
return 0;
}
u1 = modmul(z, w, publicKey->curve->w.n);
u2 = modmul(r, w, publicKey->curve->w.n);
freebn(w);
tmp = ecp_summul(u1, u2, publicKey);
freebn(u1);
freebn(u2);
if (!tmp) {
freebn(z);
return 0;
}
x = bigmod(tmp->x, publicKey->curve->w.n);
ec_point_free(tmp);
valid = (bignum_cmp(r, x) == 0) ? 1 : 0;
freebn(x);
}
freebn(z);
return valid;
}
static void _ecdsa_sign(const Bignum privateKey, const struct ec_curve *curve,
const unsigned char *data, const int dataLen,
Bignum *r, Bignum *s)
{
unsigned char digest[20];
int z_bits, n_bits;
Bignum z, k;
struct ec_point *kG;
*r = NULL;
*s = NULL;
if (curve->type != EC_WEIERSTRASS) {
return;
}
/* z = left most bitlen(curve->n) of data */
z = bignum_from_bytes(data, dataLen);
n_bits = bignum_bitcount(curve->w.n);
z_bits = bignum_bitcount(z);
if (z_bits > n_bits)
{
Bignum tmp;
tmp = bignum_rshift(z, z_bits - n_bits);
freebn(z);
z = tmp;
}
/* Generate k between 1 and curve->n, using the same deterministic
* k generation system we use for conventional DSA. */
SHA_Simple(data, dataLen, digest);
k = dss_gen_k("ECDSA deterministic k generator", curve->w.n, privateKey,
digest, sizeof(digest));
kG = ecp_mul(&curve->w.G, k);
if (!kG) {
freebn(z);
freebn(k);
return;
}
/* r = kG.x mod n */
*r = bigmod(kG->x, curve->w.n);
ec_point_free(kG);
/* s = (z + r * priv)/k mod n */
{
Bignum rPriv, zMod, first, firstMod, kInv;
rPriv = modmul(*r, privateKey, curve->w.n);
zMod = bigmod(z, curve->w.n);
freebn(z);
first = bigadd(rPriv, zMod);
freebn(rPriv);
freebn(zMod);
firstMod = bigmod(first, curve->w.n);
freebn(first);
kInv = modinv(k, curve->w.n);
freebn(k);
if (!kInv) {
freebn(firstMod);
freebn(*r);
return;
}
*s = modmul(firstMod, kInv, curve->w.n);
freebn(firstMod);
freebn(kInv);
}
}
/* ----------------------------------------------------------------------
* Misc functions
*/
static void getstring(const char **data, int *datalen,
const char **p, int *length)
{
*p = NULL;
if (*datalen < 4)
return;
*length = toint(GET_32BIT(*data));
if (*length < 0)
return;
*datalen -= 4;
*data += 4;
if (*datalen < *length)
return;
*p = *data;
*data += *length;
*datalen -= *length;
}
static Bignum getmp(const char **data, int *datalen)
{
const char *p;
int length;
getstring(data, datalen, &p, &length);
if (!p)
return NULL;
if (p[0] & 0x80)
return NULL; /* negative mp */
return bignum_from_bytes((unsigned char *)p, length);
}
static Bignum getmp_le(const char **data, int *datalen)
{
const char *p;
int length;
getstring(data, datalen, &p, &length);
if (!p)
return NULL;
return bignum_from_bytes_le((const unsigned char *)p, length);
}
static int decodepoint_ed(const char *p, int length, struct ec_point *point)
{
/* Got some conversion to do, first read in the y co-ord */
int negative;
point->y = bignum_from_bytes_le((const unsigned char*)p, length);
if ((unsigned)bignum_bitcount(point->y) > point->curve->fieldBits) {
freebn(point->y);
point->y = NULL;
return 0;
}
/* Read x bit and then reset it */
negative = bignum_bit(point->y, point->curve->fieldBits - 1);
bignum_set_bit(point->y, point->curve->fieldBits - 1, 0);
/* Get the x from the y */
point->x = ecp_edx(point->curve, point->y);
if (!point->x) {
freebn(point->y);
point->y = NULL;
return 0;
}
if (negative) {
Bignum tmp = modsub(point->curve->p, point->x, point->curve->p);
freebn(point->x);
point->x = tmp;
}
/* Verify the point is on the curve */
if (!ec_point_verify(point)) {
freebn(point->x);
point->x = NULL;
freebn(point->y);
point->y = NULL;
return 0;
}
return 1;
}
static int decodepoint(const char *p, int length, struct ec_point *point)
{
if (point->curve->type == EC_EDWARDS) {
return decodepoint_ed(p, length, point);
}
if (length < 1 || p[0] != 0x04) /* Only support uncompressed point */
return 0;
/* Skip compression flag */
++p;
--length;
/* The two values must be equal length */
if (length % 2 != 0) {
point->x = NULL;
point->y = NULL;
point->z = NULL;
return 0;
}
length = length / 2;
point->x = bignum_from_bytes((const unsigned char *)p, length);
p += length;
point->y = bignum_from_bytes((const unsigned char *)p, length);
point->z = NULL;
/* Verify the point is on the curve */
if (!ec_point_verify(point)) {
freebn(point->x);
point->x = NULL;
freebn(point->y);
point->y = NULL;
return 0;
}
return 1;
}
static int getmppoint(const char **data, int *datalen, struct ec_point *point)
{
const char *p;
int length;
getstring(data, datalen, &p, &length);
if (!p) return 0;
return decodepoint(p, length, point);
}
/* ----------------------------------------------------------------------
* Exposed ECDSA interface
*/
struct ecsign_extra {
struct ec_curve *(*curve)(void);
const struct ssh_hash *hash;
/* These fields are used by the OpenSSH PEM format importer/exporter */
const unsigned char *oid;
int oidlen;
};
static void ecdsa_freekey(void *key)
{
struct ec_key *ec = (struct ec_key *) key;
if (!ec) return;
if (ec->publicKey.x)
freebn(ec->publicKey.x);
if (ec->publicKey.y)
freebn(ec->publicKey.y);
if (ec->publicKey.z)
freebn(ec->publicKey.z);
if (ec->privateKey)
freebn(ec->privateKey);
sfree(ec);
}
static void *ecdsa_newkey(const struct ssh_signkey *self,
const char *data, int len)
{
const struct ecsign_extra *extra =
(const struct ecsign_extra *)self->extra;
const char *p;
int slen;
struct ec_key *ec;
struct ec_curve *curve;
getstring(&data, &len, &p, &slen);
if (!p) {
return NULL;
}
curve = extra->curve();
assert(curve->type == EC_WEIERSTRASS || curve->type == EC_EDWARDS);
/* Curve name is duplicated for Weierstrass form */
if (curve->type == EC_WEIERSTRASS) {
getstring(&data, &len, &p, &slen);
if (!match_ssh_id(slen, p, curve->name)) return NULL;
}
ec = snew(struct ec_key);
ec->signalg = self;
ec->publicKey.curve = curve;
ec->publicKey.infinity = 0;
ec->publicKey.x = NULL;
ec->publicKey.y = NULL;
ec->publicKey.z = NULL;
if (!getmppoint(&data, &len, &ec->publicKey)) {
ecdsa_freekey(ec);
return NULL;
}
ec->privateKey = NULL;
if (!ec->publicKey.x || !ec->publicKey.y ||
bignum_cmp(ec->publicKey.x, curve->p) >= 0 ||
bignum_cmp(ec->publicKey.y, curve->p) >= 0)
{
ecdsa_freekey(ec);
ec = NULL;
}
return ec;
}
static char *ecdsa_fmtkey(void *key)
{
struct ec_key *ec = (struct ec_key *) key;
char *p;
int len, i, pos, nibbles;
static const char hex[] = "0123456789abcdef";
if (!ec->publicKey.x || !ec->publicKey.y || !ec->publicKey.curve)
return NULL;
len = 4 + 2 + 1; /* 2 x "0x", punctuation, \0 */
if (ec->publicKey.curve->name)
len += strlen(ec->publicKey.curve->name); /* Curve name */
len += 4 * (bignum_bitcount(ec->publicKey.x) + 15) / 16;
len += 4 * (bignum_bitcount(ec->publicKey.y) + 15) / 16;
p = snewn(len, char);
pos = 0;
if (ec->publicKey.curve->name)
pos += sprintf(p + pos, "%s,", ec->publicKey.curve->name);
pos += sprintf(p + pos, "0x");
nibbles = (3 + bignum_bitcount(ec->publicKey.x)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;) {
p[pos++] =
hex[(bignum_byte(ec->publicKey.x, i / 2) >> (4 * (i % 2))) & 0xF];
}
pos += sprintf(p + pos, ",0x");
nibbles = (3 + bignum_bitcount(ec->publicKey.y)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;) {
p[pos++] =
hex[(bignum_byte(ec->publicKey.y, i / 2) >> (4 * (i % 2))) & 0xF];
}
p[pos] = '\0';
return p;
}
static unsigned char *ecdsa_public_blob(void *key, int *len)
{
struct ec_key *ec = (struct ec_key *) key;
int pointlen, bloblen, fullnamelen, namelen;
int i;
unsigned char *blob, *p;
fullnamelen = strlen(ec->signalg->name);
if (ec->publicKey.curve->type == EC_EDWARDS) {
/* Edwards compressed form "ssh-ed25519" point y[:-1] + x[0:1] */
pointlen = ec->publicKey.curve->fieldBits / 8;
/* Can't handle this in our loop */
if (pointlen < 2) return NULL;
bloblen = 4 + fullnamelen + 4 + pointlen;
blob = snewn(bloblen, unsigned char);
p = blob;
PUT_32BIT(p, fullnamelen);
p += 4;
memcpy(p, ec->signalg->name, fullnamelen);
p += fullnamelen;
PUT_32BIT(p, pointlen);
p += 4;
/* Unset last bit of y and set first bit of x in its place */
for (i = 0; i < pointlen - 1; ++i) {
*p++ = bignum_byte(ec->publicKey.y, i);
}
/* Unset last bit of y and set first bit of x in its place */
*p = bignum_byte(ec->publicKey.y, i) & 0x7f;
*p++ |= bignum_bit(ec->publicKey.x, 0) << 7;
} else if (ec->publicKey.curve->type == EC_WEIERSTRASS) {
assert(ec->publicKey.curve->name);
namelen = strlen(ec->publicKey.curve->name);
pointlen = (bignum_bitcount(ec->publicKey.curve->p) + 7) / 8;
/*
* string "ecdsa-sha2-<name>", string "<name>", 0x04 point x, y.
*/
bloblen = 4 + fullnamelen + 4 + namelen + 4 + 1 + (pointlen * 2);
blob = snewn(bloblen, unsigned char);
p = blob;
PUT_32BIT(p, fullnamelen);
p += 4;
memcpy(p, ec->signalg->name, fullnamelen);
p += fullnamelen;
PUT_32BIT(p, namelen);
p += 4;
memcpy(p, ec->publicKey.curve->name, namelen);
p += namelen;
PUT_32BIT(p, (2 * pointlen) + 1);
p += 4;
*p++ = 0x04;
for (i = pointlen; i--;) {
*p++ = bignum_byte(ec->publicKey.x, i);
}
for (i = pointlen; i--;) {
*p++ = bignum_byte(ec->publicKey.y, i);
}
} else {
return NULL;
}
assert(p == blob + bloblen);
*len = bloblen;
return blob;
}
static unsigned char *ecdsa_private_blob(void *key, int *len)
{
struct ec_key *ec = (struct ec_key *) key;
int keylen, bloblen;
int i;
unsigned char *blob, *p;
if (!ec->privateKey) return NULL;
if (ec->publicKey.curve->type == EC_EDWARDS) {
/* Unsigned */
keylen = (bignum_bitcount(ec->privateKey) + 7) / 8;
} else {
/* Signed */
keylen = (bignum_bitcount(ec->privateKey) + 8) / 8;
}
/*
* mpint privateKey. Total 4 + keylen.
*/
bloblen = 4 + keylen;
blob = snewn(bloblen, unsigned char);
p = blob;
PUT_32BIT(p, keylen);
p += 4;
if (ec->publicKey.curve->type == EC_EDWARDS) {
/* Little endian */
for (i = 0; i < keylen; ++i)
*p++ = bignum_byte(ec->privateKey, i);
} else {
for (i = keylen; i--;)
*p++ = bignum_byte(ec->privateKey, i);
}
assert(p == blob + bloblen);
*len = bloblen;
return blob;
}
static void *ecdsa_createkey(const struct ssh_signkey *self,
const unsigned char *pub_blob, int pub_len,
const unsigned char *priv_blob, int priv_len)
{
struct ec_key *ec;
struct ec_point *publicKey;
const char *pb = (const char *) priv_blob;
ec = (struct ec_key*)ecdsa_newkey(self, (const char *) pub_blob, pub_len);
if (!ec) {
return NULL;
}
if (ec->publicKey.curve->type != EC_WEIERSTRASS
&& ec->publicKey.curve->type != EC_EDWARDS) {
ecdsa_freekey(ec);
return NULL;
}
if (ec->publicKey.curve->type == EC_EDWARDS) {
ec->privateKey = getmp_le(&pb, &priv_len);
} else {
ec->privateKey = getmp(&pb, &priv_len);
}
if (!ec->privateKey) {
ecdsa_freekey(ec);
return NULL;
}
/* Check that private key generates public key */
publicKey = ec_public(ec->privateKey, ec->publicKey.curve);
if (!publicKey ||
bignum_cmp(publicKey->x, ec->publicKey.x) ||
bignum_cmp(publicKey->y, ec->publicKey.y))
{
ecdsa_freekey(ec);
ec = NULL;
}
ec_point_free(publicKey);
return ec;
}
static void *ed25519_openssh_createkey(const struct ssh_signkey *self,
const unsigned char **blob, int *len)
{
struct ec_key *ec;
struct ec_point *publicKey;
const char *p, *q;
int plen, qlen;
getstring((const char**)blob, len, &p, &plen);
if (!p)
{
return NULL;
}
ec = snew(struct ec_key);
ec->signalg = self;
ec->publicKey.curve = ec_ed25519();
ec->publicKey.infinity = 0;
ec->privateKey = NULL;
ec->publicKey.x = NULL;
ec->publicKey.z = NULL;
ec->publicKey.y = NULL;
if (!decodepoint_ed(p, plen, &ec->publicKey))
{
ecdsa_freekey(ec);
return NULL;
}
getstring((const char**)blob, len, &q, &qlen);
if (!q)
return NULL;
if (qlen != 64)
return NULL;
ec->privateKey = bignum_from_bytes_le((const unsigned char *)q, 32);
/* Check that private key generates public key */
publicKey = ec_public(ec->privateKey, ec->publicKey.curve);
if (!publicKey ||
bignum_cmp(publicKey->x, ec->publicKey.x) ||
bignum_cmp(publicKey->y, ec->publicKey.y))
{
ecdsa_freekey(ec);
ec = NULL;
}
ec_point_free(publicKey);
/* The OpenSSH format for ed25519 private keys also for some
* reason encodes an extra copy of the public key in the second
* half of the secret-key string. Check that that's present and
* correct as well, otherwise the key we think we've imported
* won't behave identically to the way OpenSSH would have treated
* it. */
if (plen != 32 || 0 != memcmp(q + 32, p, 32)) {
ecdsa_freekey(ec);
return NULL;
}
return ec;
}
static int ed25519_openssh_fmtkey(void *key, unsigned char *blob, int len)
{
struct ec_key *ec = (struct ec_key *) key;
int pointlen;
int keylen;
int bloblen;
int i;
if (ec->publicKey.curve->type != EC_EDWARDS) {
return 0;
}
pointlen = (bignum_bitcount(ec->publicKey.y) + 7) / 8;
keylen = (bignum_bitcount(ec->privateKey) + 7) / 8;
bloblen = 4 + pointlen + 4 + keylen + pointlen;
if (bloblen > len)
return bloblen;
/* Encode the public point */
PUT_32BIT(blob, pointlen);
blob += 4;
for (i = 0; i < pointlen - 1; ++i) {
*blob++ = bignum_byte(ec->publicKey.y, i);
}
/* Unset last bit of y and set first bit of x in its place */
*blob = bignum_byte(ec->publicKey.y, i) & 0x7f;
*blob++ |= bignum_bit(ec->publicKey.x, 0) << 7;
PUT_32BIT(blob, keylen + pointlen);
blob += 4;
for (i = 0; i < keylen; ++i) {
*blob++ = bignum_byte(ec->privateKey, i);
}
/* Now encode an extra copy of the public point as the second half
* of the private key string, as the OpenSSH format for some
* reason requires */
for (i = 0; i < pointlen - 1; ++i) {
*blob++ = bignum_byte(ec->publicKey.y, i);
}
/* Unset last bit of y and set first bit of x in its place */
*blob = bignum_byte(ec->publicKey.y, i) & 0x7f;
*blob++ |= bignum_bit(ec->publicKey.x, 0) << 7;
return bloblen;
}
static void *ecdsa_openssh_createkey(const struct ssh_signkey *self,
const unsigned char **blob, int *len)
{
const struct ecsign_extra *extra =
(const struct ecsign_extra *)self->extra;
const char **b = (const char **) blob;
const char *p;
int slen;
struct ec_key *ec;
struct ec_curve *curve;
struct ec_point *publicKey;
getstring(b, len, &p, &slen);
if (!p) {
return NULL;
}
curve = extra->curve();
assert(curve->type == EC_WEIERSTRASS);
ec = snew(struct ec_key);
ec->signalg = self;
ec->publicKey.curve = curve;
ec->publicKey.infinity = 0;
ec->publicKey.x = NULL;
ec->publicKey.y = NULL;
ec->publicKey.z = NULL;
if (!getmppoint(b, len, &ec->publicKey)) {
ecdsa_freekey(ec);
return NULL;
}
ec->privateKey = NULL;
if (!ec->publicKey.x || !ec->publicKey.y ||
bignum_cmp(ec->publicKey.x, curve->p) >= 0 ||
bignum_cmp(ec->publicKey.y, curve->p) >= 0)
{
ecdsa_freekey(ec);
return NULL;
}
ec->privateKey = getmp(b, len);
if (ec->privateKey == NULL)
{
ecdsa_freekey(ec);
return NULL;
}
/* Now check that the private key makes the public key */
publicKey = ec_public(ec->privateKey, ec->publicKey.curve);
if (!publicKey)
{
ecdsa_freekey(ec);
return NULL;
}
if (bignum_cmp(ec->publicKey.x, publicKey->x) ||
bignum_cmp(ec->publicKey.y, publicKey->y))
{
/* Private key doesn't make the public key on the given curve */
ecdsa_freekey(ec);
ec_point_free(publicKey);
return NULL;
}
ec_point_free(publicKey);
return ec;
}
static int ecdsa_openssh_fmtkey(void *key, unsigned char *blob, int len)
{
struct ec_key *ec = (struct ec_key *) key;
int pointlen;
int namelen;
int bloblen;
int i;
if (ec->publicKey.curve->type != EC_WEIERSTRASS) {
return 0;
}
pointlen = (bignum_bitcount(ec->publicKey.curve->p) + 7) / 8;
namelen = strlen(ec->publicKey.curve->name);
bloblen =
4 + namelen /* <LEN> nistpXXX */
+ 4 + 1 + (pointlen * 2) /* <LEN> 0x04 pX pY */
+ ssh2_bignum_length(ec->privateKey);
if (bloblen > len)
return bloblen;
bloblen = 0;
PUT_32BIT(blob+bloblen, namelen);
bloblen += 4;
memcpy(blob+bloblen, ec->publicKey.curve->name, namelen);
bloblen += namelen;
PUT_32BIT(blob+bloblen, 1 + (pointlen * 2));
bloblen += 4;
blob[bloblen++] = 0x04;
for (i = pointlen; i--; )
blob[bloblen++] = bignum_byte(ec->publicKey.x, i);
for (i = pointlen; i--; )
blob[bloblen++] = bignum_byte(ec->publicKey.y, i);
pointlen = (bignum_bitcount(ec->privateKey) + 8) / 8;
PUT_32BIT(blob+bloblen, pointlen);
bloblen += 4;
for (i = pointlen; i--; )
blob[bloblen++] = bignum_byte(ec->privateKey, i);
return bloblen;
}
static int ecdsa_pubkey_bits(const struct ssh_signkey *self,
const void *blob, int len)
{
struct ec_key *ec;
int ret;
ec = (struct ec_key*)ecdsa_newkey(self, (const char *) blob, len);
if (!ec)
return -1;
ret = ec->publicKey.curve->fieldBits;
ecdsa_freekey(ec);
return ret;
}
static int ecdsa_verifysig(void *key, const char *sig, int siglen,
const char *data, int datalen)
{
struct ec_key *ec = (struct ec_key *) key;
const struct ecsign_extra *extra =
(const struct ecsign_extra *)ec->signalg->extra;
const char *p;
int slen;
int digestLen;
int ret;
if (!ec->publicKey.x || !ec->publicKey.y || !ec->publicKey.curve)
return 0;
/* Check the signature starts with the algorithm name */
getstring(&sig, &siglen, &p, &slen);
if (!p) {
return 0;
}
if (!match_ssh_id(slen, p, ec->signalg->name)) {
return 0;
}
getstring(&sig, &siglen, &p, &slen);
if (ec->publicKey.curve->type == EC_EDWARDS) {
struct ec_point *r;
Bignum s, h;
/* Check that the signature is two times the length of a point */
if (slen != (ec->publicKey.curve->fieldBits / 8) * 2) {
return 0;
}
/* Check it's the 256 bit field so that SHA512 is the correct hash */
if (ec->publicKey.curve->fieldBits != 256) {
return 0;
}
/* Get the signature */
r = ec_point_new(ec->publicKey.curve, NULL, NULL, NULL, 0);
if (!r) {
return 0;
}
if (!decodepoint(p, ec->publicKey.curve->fieldBits / 8, r)) {
ec_point_free(r);
return 0;
}
s = bignum_from_bytes_le((unsigned char*)p + (ec->publicKey.curve->fieldBits / 8),
ec->publicKey.curve->fieldBits / 8);
/* Get the hash of the encoded value of R + encoded value of pk + message */
{
int i, pointlen;
unsigned char b;
unsigned char digest[512 / 8];
SHA512_State hs;
SHA512_Init(&hs);
/* Add encoded r (no need to encode it again, it was in the signature) */
SHA512_Bytes(&hs, p, ec->publicKey.curve->fieldBits / 8);
/* Encode pk and add it */
pointlen = ec->publicKey.curve->fieldBits / 8;
for (i = 0; i < pointlen - 1; ++i) {
b = bignum_byte(ec->publicKey.y, i);
SHA512_Bytes(&hs, &b, 1);
}
/* Unset last bit of y and set first bit of x in its place */
b = bignum_byte(ec->publicKey.y, i) & 0x7f;
b |= bignum_bit(ec->publicKey.x, 0) << 7;
SHA512_Bytes(&hs, &b, 1);
/* Add the message itself */
SHA512_Bytes(&hs, data, datalen);
/* Get the hash */
SHA512_Final(&hs, digest);
/* Convert to Bignum */
h = bignum_from_bytes_le(digest, sizeof(digest));
}
/* Verify sB == r + h*publicKey */
{
struct ec_point *lhs, *rhs, *tmp;
/* lhs = sB */
lhs = ecp_mul(&ec->publicKey.curve->e.B, s);
freebn(s);
if (!lhs) {
ec_point_free(r);
freebn(h);
return 0;
}
/* rhs = r + h*publicKey */
tmp = ecp_mul(&ec->publicKey, h);
freebn(h);
if (!tmp) {
ec_point_free(lhs);
ec_point_free(r);
return 0;
}
rhs = ecp_add(r, tmp, 0);
ec_point_free(r);
ec_point_free(tmp);
if (!rhs) {
ec_point_free(lhs);
return 0;
}
/* Check the point is the same */
ret = !bignum_cmp(lhs->x, rhs->x);
if (ret) {
ret = !bignum_cmp(lhs->y, rhs->y);
if (ret) {
ret = 1;
}
}
ec_point_free(lhs);
ec_point_free(rhs);
}
} else {
Bignum r, s;
unsigned char digest[512 / 8];
void *hashctx;
r = getmp(&p, &slen);
if (!r) return 0;
s = getmp(&p, &slen);
if (!s) {
freebn(r);
return 0;
}
digestLen = extra->hash->hlen;
assert(digestLen <= sizeof(digest));
hashctx = extra->hash->init();
extra->hash->bytes(hashctx, data, datalen);
extra->hash->final(hashctx, digest);
/* Verify the signature */
ret = _ecdsa_verify(&ec->publicKey, digest, digestLen, r, s);
freebn(r);
freebn(s);
}
return ret;
}
static unsigned char *ecdsa_sign(void *key, const char *data, int datalen,
int *siglen)
{
struct ec_key *ec = (struct ec_key *) key;
const struct ecsign_extra *extra =
(const struct ecsign_extra *)ec->signalg->extra;
unsigned char digest[512 / 8];
int digestLen;
Bignum r = NULL, s = NULL;
unsigned char *buf, *p;
int rlen, slen, namelen;
int i;
if (!ec->privateKey || !ec->publicKey.curve) {
return NULL;
}
if (ec->publicKey.curve->type == EC_EDWARDS) {
struct ec_point *rp;
int pointlen = ec->publicKey.curve->fieldBits / 8;
/* hash = H(sk) (where hash creates 2 * fieldBits)
* b = fieldBits
* a = 2^(b-2) + SUM(2^i * h_i) for i = 2 -> b-2
* r = H(h[b/8:b/4] + m)
* R = rB
* S = (r + H(encodepoint(R) + encodepoint(pk) + m) * a) % l */
{
unsigned char hash[512/8];
unsigned char b;
Bignum a;
SHA512_State hs;
SHA512_Init(&hs);
for (i = 0; i < pointlen; ++i) {
unsigned char b = (unsigned char)bignum_byte(ec->privateKey, i);
SHA512_Bytes(&hs, &b, 1);
}
SHA512_Final(&hs, hash);
/* The second part is simply turning the hash into a
* Bignum, however the 2^(b-2) bit *must* be set, and the
* bottom 3 bits *must* not be */
hash[0] &= 0xf8; /* Unset bottom 3 bits (if set) */
hash[31] &= 0x7f; /* Unset above (b-2) */
hash[31] |= 0x40; /* Set 2^(b-2) */
/* Chop off the top part and convert to int */
a = bignum_from_bytes_le(hash, 32);
SHA512_Init(&hs);
SHA512_Bytes(&hs,
hash+(ec->publicKey.curve->fieldBits / 8),
(ec->publicKey.curve->fieldBits / 4)
- (ec->publicKey.curve->fieldBits / 8));
SHA512_Bytes(&hs, data, datalen);
SHA512_Final(&hs, hash);
r = bignum_from_bytes_le(hash, 512/8);
rp = ecp_mul(&ec->publicKey.curve->e.B, r);
if (!rp) {
freebn(r);
freebn(a);
return NULL;
}
/* Now calculate s */
SHA512_Init(&hs);
/* Encode the point R */
for (i = 0; i < pointlen - 1; ++i) {
b = bignum_byte(rp->y, i);
SHA512_Bytes(&hs, &b, 1);
}
/* Unset last bit of y and set first bit of x in its place */
b = bignum_byte(rp->y, i) & 0x7f;
b |= bignum_bit(rp->x, 0) << 7;
SHA512_Bytes(&hs, &b, 1);
/* Encode the point pk */
for (i = 0; i < pointlen - 1; ++i) {
b = bignum_byte(ec->publicKey.y, i);
SHA512_Bytes(&hs, &b, 1);
}
/* Unset last bit of y and set first bit of x in its place */
b = bignum_byte(ec->publicKey.y, i) & 0x7f;
b |= bignum_bit(ec->publicKey.x, 0) << 7;
SHA512_Bytes(&hs, &b, 1);
/* Add the message */
SHA512_Bytes(&hs, data, datalen);
SHA512_Final(&hs, hash);
{
Bignum tmp, tmp2;
tmp = bignum_from_bytes_le(hash, 512/8);
tmp2 = modmul(tmp, a, ec->publicKey.curve->e.l);
freebn(a);
freebn(tmp);
tmp = bigadd(r, tmp2);
freebn(r);
freebn(tmp2);
s = bigmod(tmp, ec->publicKey.curve->e.l);
freebn(tmp);
}
}
/* Format the output */
namelen = strlen(ec->signalg->name);
*siglen = 4+namelen+4+((ec->publicKey.curve->fieldBits / 8)*2);
buf = snewn(*siglen, unsigned char);
p = buf;
PUT_32BIT(p, namelen);
p += 4;
memcpy(p, ec->signalg->name, namelen);
p += namelen;
PUT_32BIT(p, ((ec->publicKey.curve->fieldBits / 8)*2));
p += 4;
/* Encode the point */
pointlen = ec->publicKey.curve->fieldBits / 8;
for (i = 0; i < pointlen - 1; ++i) {
*p++ = bignum_byte(rp->y, i);
}
/* Unset last bit of y and set first bit of x in its place */
*p = bignum_byte(rp->y, i) & 0x7f;
*p++ |= bignum_bit(rp->x, 0) << 7;
ec_point_free(rp);
/* Encode the int */
for (i = 0; i < pointlen; ++i) {
*p++ = bignum_byte(s, i);
}
freebn(s);
} else {
void *hashctx;
digestLen = extra->hash->hlen;
assert(digestLen <= sizeof(digest));
hashctx = extra->hash->init();
extra->hash->bytes(hashctx, data, datalen);
extra->hash->final(hashctx, digest);
/* Do the signature */
_ecdsa_sign(ec->privateKey, ec->publicKey.curve, digest, digestLen, &r, &s);
if (!r || !s) {
if (r) freebn(r);
if (s) freebn(s);
return NULL;
}
rlen = (bignum_bitcount(r) + 8) / 8;
slen = (bignum_bitcount(s) + 8) / 8;
namelen = strlen(ec->signalg->name);
/* Format the output */
*siglen = 8+namelen+rlen+slen+8;
buf = snewn(*siglen, unsigned char);
p = buf;
PUT_32BIT(p, namelen);
p += 4;
memcpy(p, ec->signalg->name, namelen);
p += namelen;
PUT_32BIT(p, rlen + slen + 8);
p += 4;
PUT_32BIT(p, rlen);
p += 4;
for (i = rlen; i--;)
*p++ = bignum_byte(r, i);
PUT_32BIT(p, slen);
p += 4;
for (i = slen; i--;)
*p++ = bignum_byte(s, i);
freebn(r);
freebn(s);
}
return buf;
}
const struct ecsign_extra sign_extra_ed25519 = {
ec_ed25519, NULL,
NULL, 0,
};
const struct ssh_signkey ssh_ecdsa_ed25519 = {
ecdsa_newkey,
ecdsa_freekey,
ecdsa_fmtkey,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_createkey,
ed25519_openssh_createkey,
ed25519_openssh_fmtkey,
2 /* point, private exponent */,
ecdsa_pubkey_bits,
ecdsa_verifysig,
ecdsa_sign,
"ssh-ed25519",
"ssh-ed25519",
&sign_extra_ed25519,
};
/* OID: 1.2.840.10045.3.1.7 (ansiX9p256r1) */
static const unsigned char nistp256_oid[] = {
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
};
const struct ecsign_extra sign_extra_nistp256 = {
ec_p256, &ssh_sha256,
nistp256_oid, lenof(nistp256_oid),
};
const struct ssh_signkey ssh_ecdsa_nistp256 = {
ecdsa_newkey,
ecdsa_freekey,
ecdsa_fmtkey,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_createkey,
ecdsa_openssh_createkey,
ecdsa_openssh_fmtkey,
3 /* curve name, point, private exponent */,
ecdsa_pubkey_bits,
ecdsa_verifysig,
ecdsa_sign,
"ecdsa-sha2-nistp256",
"ecdsa-sha2-nistp256",
&sign_extra_nistp256,
};
/* OID: 1.3.132.0.34 (secp384r1) */
static const unsigned char nistp384_oid[] = {
0x2b, 0x81, 0x04, 0x00, 0x22
};
const struct ecsign_extra sign_extra_nistp384 = {
ec_p384, &ssh_sha384,
nistp384_oid, lenof(nistp384_oid),
};
const struct ssh_signkey ssh_ecdsa_nistp384 = {
ecdsa_newkey,
ecdsa_freekey,
ecdsa_fmtkey,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_createkey,
ecdsa_openssh_createkey,
ecdsa_openssh_fmtkey,
3 /* curve name, point, private exponent */,
ecdsa_pubkey_bits,
ecdsa_verifysig,
ecdsa_sign,
"ecdsa-sha2-nistp384",
"ecdsa-sha2-nistp384",
&sign_extra_nistp384,
};
/* OID: 1.3.132.0.35 (secp521r1) */
static const unsigned char nistp521_oid[] = {
0x2b, 0x81, 0x04, 0x00, 0x23
};
const struct ecsign_extra sign_extra_nistp521 = {
ec_p521, &ssh_sha512,
nistp521_oid, lenof(nistp521_oid),
};
const struct ssh_signkey ssh_ecdsa_nistp521 = {
ecdsa_newkey,
ecdsa_freekey,
ecdsa_fmtkey,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_createkey,
ecdsa_openssh_createkey,
ecdsa_openssh_fmtkey,
3 /* curve name, point, private exponent */,
ecdsa_pubkey_bits,
ecdsa_verifysig,
ecdsa_sign,
"ecdsa-sha2-nistp521",
"ecdsa-sha2-nistp521",
&sign_extra_nistp521,
};
/* ----------------------------------------------------------------------
* Exposed ECDH interface
*/
struct eckex_extra {
struct ec_curve *(*curve)(void);
};
static Bignum ecdh_calculate(const Bignum private,
const struct ec_point *public)
{
struct ec_point *p;
Bignum ret;
p = ecp_mul(public, private);
if (!p) return NULL;
ret = p->x;
p->x = NULL;
if (p->curve->type == EC_MONTGOMERY) {
/*
* Endianness-swap. The Curve25519 algorithm definition
* assumes you were doing your computation in arrays of 32
* little-endian bytes, and now specifies that you take your
* final one of those and convert it into a bignum in
* _network_ byte order, i.e. big-endian.
*
* In particular, the spec says, you convert the _whole_ 32
* bytes into a bignum. That is, on the rare occasions that
* p->x has come out with the most significant 8 bits zero, we
* have to imagine that being represented by a 32-byte string
* with the last byte being zero, so that has to be converted
* into an SSH-2 bignum with the _low_ byte zero, i.e. a
* multiple of 256.
*/
int i;
int bytes = (p->curve->fieldBits+7) / 8;
unsigned char *byteorder = snewn(bytes, unsigned char);
for (i = 0; i < bytes; ++i) {
byteorder[i] = bignum_byte(ret, i);
}
freebn(ret);
ret = bignum_from_bytes(byteorder, bytes);
smemclr(byteorder, bytes);
sfree(byteorder);
}
ec_point_free(p);
return ret;
}
const char *ssh_ecdhkex_curve_textname(const struct ssh_kex *kex)
{
const struct eckex_extra *extra = (const struct eckex_extra *)kex->extra;
struct ec_curve *curve = extra->curve();
return curve->textname;
}
void *ssh_ecdhkex_newkey(const struct ssh_kex *kex)
{
const struct eckex_extra *extra = (const struct eckex_extra *)kex->extra;
struct ec_curve *curve;
struct ec_key *key;
struct ec_point *publicKey;
curve = extra->curve();
key = snew(struct ec_key);
key->signalg = NULL;
key->publicKey.curve = curve;
if (curve->type == EC_MONTGOMERY) {
unsigned char bytes[32] = {0};
int i;
for (i = 0; i < sizeof(bytes); ++i)
{
bytes[i] = (unsigned char)random_byte();
}
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
key->privateKey = bignum_from_bytes(bytes, sizeof(bytes));
for (i = 0; i < sizeof(bytes); ++i)
{
((volatile char*)bytes)[i] = 0;
}
if (!key->privateKey) {
sfree(key);
return NULL;
}
publicKey = ecp_mul(&key->publicKey.curve->m.G, key->privateKey);
if (!publicKey) {
freebn(key->privateKey);
sfree(key);
return NULL;
}
key->publicKey.x = publicKey->x;
key->publicKey.y = publicKey->y;
key->publicKey.z = NULL;
sfree(publicKey);
} else {
key->privateKey = bignum_random_in_range(One, key->publicKey.curve->w.n);
if (!key->privateKey) {
sfree(key);
return NULL;
}
publicKey = ecp_mul(&key->publicKey.curve->w.G, key->privateKey);
if (!publicKey) {
freebn(key->privateKey);
sfree(key);
return NULL;
}
key->publicKey.x = publicKey->x;
key->publicKey.y = publicKey->y;
key->publicKey.z = NULL;
sfree(publicKey);
}
return key;
}
char *ssh_ecdhkex_getpublic(void *key, int *len)
{
struct ec_key *ec = (struct ec_key*)key;
char *point, *p;
int i;
int pointlen;
pointlen = (bignum_bitcount(ec->publicKey.curve->p) + 7) / 8;
if (ec->publicKey.curve->type == EC_WEIERSTRASS) {
*len = 1 + pointlen * 2;
} else {
*len = pointlen;
}
point = (char*)snewn(*len, char);
p = point;
if (ec->publicKey.curve->type == EC_WEIERSTRASS) {
*p++ = 0x04;
for (i = pointlen; i--;) {
*p++ = bignum_byte(ec->publicKey.x, i);
}
for (i = pointlen; i--;) {
*p++ = bignum_byte(ec->publicKey.y, i);
}
} else {
for (i = 0; i < pointlen; ++i) {
*p++ = bignum_byte(ec->publicKey.x, i);
}
}
return point;
}
Bignum ssh_ecdhkex_getkey(void *key, char *remoteKey, int remoteKeyLen)
{
struct ec_key *ec = (struct ec_key*) key;
struct ec_point remote;
Bignum ret;
if (ec->publicKey.curve->type == EC_WEIERSTRASS) {
remote.curve = ec->publicKey.curve;
remote.infinity = 0;
if (!decodepoint(remoteKey, remoteKeyLen, &remote)) {
return NULL;
}
} else {
/* Point length has to be the same length */
if (remoteKeyLen != (bignum_bitcount(ec->publicKey.curve->p) + 7) / 8) {
return NULL;
}
remote.curve = ec->publicKey.curve;
remote.infinity = 0;
remote.x = bignum_from_bytes_le((unsigned char*)remoteKey, remoteKeyLen);
remote.y = NULL;
remote.z = NULL;
}
ret = ecdh_calculate(ec->privateKey, &remote);
if (remote.x) freebn(remote.x);
if (remote.y) freebn(remote.y);
return ret;
}
void ssh_ecdhkex_freekey(void *key)
{
ecdsa_freekey(key);
}
static const struct eckex_extra kex_extra_curve25519 = { ec_curve25519 };
static const struct ssh_kex ssh_ec_kex_curve25519 = {
"curve25519-sha256@libssh.org", NULL, KEXTYPE_ECDH,
&ssh_sha256, &kex_extra_curve25519,
};
const struct eckex_extra kex_extra_nistp256 = { ec_p256 };
static const struct ssh_kex ssh_ec_kex_nistp256 = {
"ecdh-sha2-nistp256", NULL, KEXTYPE_ECDH,
&ssh_sha256, &kex_extra_nistp256,
};
const struct eckex_extra kex_extra_nistp384 = { ec_p384 };
static const struct ssh_kex ssh_ec_kex_nistp384 = {
"ecdh-sha2-nistp384", NULL, KEXTYPE_ECDH,
&ssh_sha384, &kex_extra_nistp384,
};
const struct eckex_extra kex_extra_nistp521 = { ec_p521 };
static const struct ssh_kex ssh_ec_kex_nistp521 = {
"ecdh-sha2-nistp521", NULL, KEXTYPE_ECDH,
&ssh_sha512, &kex_extra_nistp521,
};
static const struct ssh_kex *const ec_kex_list[] = {
&ssh_ec_kex_curve25519,
&ssh_ec_kex_nistp256,
&ssh_ec_kex_nistp384,
&ssh_ec_kex_nistp521,
};
const struct ssh_kexes ssh_ecdh_kex = {
sizeof(ec_kex_list) / sizeof(*ec_kex_list),
ec_kex_list
};
/* ----------------------------------------------------------------------
* Helper functions for finding key algorithms and returning auxiliary
* data.
*/
const struct ssh_signkey *ec_alg_by_oid(int len, const void *oid,
const struct ec_curve **curve)
{
static const struct ssh_signkey *algs_with_oid[] = {
&ssh_ecdsa_nistp256,
&ssh_ecdsa_nistp384,
&ssh_ecdsa_nistp521,
};
int i;
for (i = 0; i < lenof(algs_with_oid); i++) {
const struct ssh_signkey *alg = algs_with_oid[i];
const struct ecsign_extra *extra =
(const struct ecsign_extra *)alg->extra;
if (len == extra->oidlen && !memcmp(oid, extra->oid, len)) {
*curve = extra->curve();
return alg;
}
}
return NULL;
}
const unsigned char *ec_alg_oid(const struct ssh_signkey *alg,
int *oidlen)
{
const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra;
*oidlen = extra->oidlen;
return extra->oid;
}
const int ec_nist_alg_and_curve_by_bits(int bits,
const struct ec_curve **curve,
const struct ssh_signkey **alg)
{
switch (bits) {
case 256: *alg = &ssh_ecdsa_nistp256; break;
case 384: *alg = &ssh_ecdsa_nistp384; break;
case 521: *alg = &ssh_ecdsa_nistp521; break;
default: return FALSE;
}
*curve = ((struct ecsign_extra *)(*alg)->extra)->curve();
return TRUE;
}
const int ec_ed_alg_and_curve_by_bits(int bits,
const struct ec_curve **curve,
const struct ssh_signkey **alg)
{
switch (bits) {
case 256: *alg = &ssh_ecdsa_ed25519; break;
default: return FALSE;
}
*curve = ((struct ecsign_extra *)(*alg)->extra)->curve();
return TRUE;
}