putty/windows/winhsock.c

284 строки
7.4 KiB
C

/*
* General mechanism for wrapping up reading/writing of Windows
* HANDLEs into a PuTTY Socket abstraction.
*/
#include <stdio.h>
#include <assert.h>
#include <limits.h>
#define DEFINE_PLUG_METHOD_MACROS
#include "tree234.h"
#include "putty.h"
#include "network.h"
typedef struct Socket_handle_tag *Handle_Socket;
struct Socket_handle_tag {
const struct socket_function_table *fn;
/* the above variable absolutely *must* be the first in this structure */
HANDLE send_H, recv_H;
struct handle *send_h, *recv_h;
/*
* Freezing one of these sockets is a slightly fiddly business,
* because the reads from the handle are happening in a separate
* thread as blocking system calls and so once one is in progress
* it can't sensibly be interrupted. Hence, after the user tries
* to freeze one of these sockets, it's unavoidable that we may
* receive one more load of data before we manage to get
* winhandl.c to stop reading.
*/
enum {
UNFROZEN, /* reading as normal */
FREEZING, /* have been set to frozen but winhandl is still reading */
FROZEN, /* really frozen - winhandl has been throttled */
THAWING /* we're gradually releasing our remaining data */
} frozen;
/* We buffer data here if we receive it from winhandl while frozen. */
bufchain inputdata;
char *error;
Plug plug;
void *privptr;
};
static int handle_gotdata(struct handle *h, void *data, int len)
{
Handle_Socket ps = (Handle_Socket) handle_get_privdata(h);
if (len < 0) {
return plug_closing(ps->plug, "Read error from handle",
0, 0);
} else if (len == 0) {
return plug_closing(ps->plug, NULL, 0, 0);
} else {
assert(ps->frozen != FREEZING && ps->frozen != THAWING);
if (ps->frozen == FREEZING) {
/*
* If we've received data while this socket is supposed to
* be frozen (because the read winhandl.c started before
* sk_set_frozen was called has now returned) then buffer
* the data for when we unfreeze.
*/
bufchain_add(&ps->inputdata, data, len);
/*
* And return a very large backlog, to prevent further
* data arriving from winhandl until we unfreeze.
*/
return INT_MAX;
} else {
return plug_receive(ps->plug, 0, data, len);
}
}
}
static void handle_sentdata(struct handle *h, int new_backlog)
{
Handle_Socket ps = (Handle_Socket) handle_get_privdata(h);
plug_sent(ps->plug, new_backlog);
}
static Plug sk_handle_plug(Socket s, Plug p)
{
Handle_Socket ps = (Handle_Socket) s;
Plug ret = ps->plug;
if (p)
ps->plug = p;
return ret;
}
static void sk_handle_close(Socket s)
{
Handle_Socket ps = (Handle_Socket) s;
handle_free(ps->send_h);
handle_free(ps->recv_h);
CloseHandle(ps->send_H);
if (ps->recv_H != ps->send_H)
CloseHandle(ps->recv_H);
bufchain_clear(&ps->inputdata);
sfree(ps);
}
static int sk_handle_write(Socket s, const char *data, int len)
{
Handle_Socket ps = (Handle_Socket) s;
return handle_write(ps->send_h, data, len);
}
static int sk_handle_write_oob(Socket s, const char *data, int len)
{
/*
* oob data is treated as inband; nasty, but nothing really
* better we can do
*/
return sk_handle_write(s, data, len);
}
static void sk_handle_write_eof(Socket s)
{
Handle_Socket ps = (Handle_Socket) s;
handle_write_eof(ps->send_h);
}
static void sk_handle_flush(Socket s)
{
/* Handle_Socket ps = (Handle_Socket) s; */
/* do nothing */
}
static void sk_handle_set_private_ptr(Socket s, void *ptr)
{
Handle_Socket ps = (Handle_Socket) s;
ps->privptr = ptr;
}
static void *sk_handle_get_private_ptr(Socket s)
{
Handle_Socket ps = (Handle_Socket) s;
return ps->privptr;
}
static void handle_socket_unfreeze(void *psv)
{
Handle_Socket ps = (Handle_Socket) psv;
void *data;
int len, new_backlog;
/*
* If we've been put into a state other than THAWING since the
* last callback, then we're done.
*/
if (ps->frozen != THAWING)
return;
/*
* Get some of the data we've buffered.
*/
bufchain_prefix(&ps->inputdata, &data, &len);
assert(len > 0);
/*
* Hand it off to the plug.
*/
new_backlog = plug_receive(ps->plug, 0, data, len);
if (bufchain_size(&ps->inputdata) > 0) {
/*
* If there's still data in our buffer, stay in THAWING state,
* and reschedule ourself.
*/
queue_toplevel_callback(handle_socket_unfreeze, ps);
} else {
/*
* Otherwise, we've successfully thawed!
*/
ps->frozen = UNFROZEN;
handle_unthrottle(ps->recv_h, new_backlog);
}
}
static void sk_handle_set_frozen(Socket s, int is_frozen)
{
Handle_Socket ps = (Handle_Socket) s;
if (is_frozen) {
switch (ps->frozen) {
case FREEZING:
case FROZEN:
return; /* nothing to do */
case THAWING:
/*
* We were in the middle of emptying our bufchain, and got
* frozen again. In that case, winhandl.c is already
* throttled, so just return to FROZEN state. The toplevel
* callback will notice and disable itself.
*/
ps->frozen = FROZEN;
break;
case UNFROZEN:
/*
* The normal case. Go to FREEZING, and expect one more
* load of data from winhandl if we're unlucky.
*/
ps->frozen = FREEZING;
break;
}
} else {
switch (ps->frozen) {
case UNFROZEN:
case THAWING:
return; /* nothing to do */
case FREEZING:
/*
* If winhandl didn't send us any data throughout the time
* we were frozen, then we'll still be in this state and
* can just unfreeze in the trivial way.
*/
assert(bufchain_size(&ps->inputdata) == 0);
ps->frozen = UNFROZEN;
break;
case FROZEN:
/*
* If we have buffered data, go to THAWING and start
* releasing it in top-level callbacks.
*/
ps->frozen = THAWING;
queue_toplevel_callback(handle_socket_unfreeze, ps);
}
}
}
static const char *sk_handle_socket_error(Socket s)
{
Handle_Socket ps = (Handle_Socket) s;
return ps->error;
}
Socket make_handle_socket(HANDLE send_H, HANDLE recv_H, Plug plug,
int overlapped)
{
static const struct socket_function_table socket_fn_table = {
sk_handle_plug,
sk_handle_close,
sk_handle_write,
sk_handle_write_oob,
sk_handle_write_eof,
sk_handle_flush,
sk_handle_set_private_ptr,
sk_handle_get_private_ptr,
sk_handle_set_frozen,
sk_handle_socket_error
};
Handle_Socket ret;
int flags = (overlapped ? HANDLE_FLAG_OVERLAPPED : 0);
ret = snew(struct Socket_handle_tag);
ret->fn = &socket_fn_table;
ret->plug = plug;
ret->error = NULL;
ret->frozen = UNFROZEN;
bufchain_init(&ret->inputdata);
ret->recv_H = recv_H;
ret->recv_h = handle_input_new(ret->recv_H, handle_gotdata, ret, flags);
ret->send_H = send_H;
ret->send_h = handle_output_new(ret->send_H, handle_sentdata, ret, flags);
return (Socket) ret;
}