putty/sshzlib.c

1011 строки
31 KiB
C

/*
* Zlib (RFC1950 / RFC1951) compression for PuTTY.
*
* There will no doubt be criticism of my decision to reimplement
* Zlib compression from scratch instead of using the existing zlib
* code. People will cry `reinventing the wheel'; they'll claim
* that the `fundamental basis of OSS' is code reuse; they'll want
* to see a really good reason for me having chosen not to use the
* existing code.
*
* Well, here are my reasons. Firstly, I don't want to link the
* whole of zlib into the PuTTY binary; PuTTY is justifiably proud
* of its small size and I think zlib contains a lot of unnecessary
* baggage for the kind of compression that SSH requires.
*
* Secondly, I also don't like the alternative of using zlib.dll.
* Another thing PuTTY is justifiably proud of is its ease of
* installation, and the last thing I want to do is to start
* mandating DLLs. Not only that, but there are two _kinds_ of
* zlib.dll kicking around, one with C calling conventions on the
* exported functions and another with WINAPI conventions, and
* there would be a significant danger of getting the wrong one.
*
* Thirdly, there seems to be a difference of opinion on the IETF
* secsh mailing list about the correct way to round off a
* compressed packet and start the next. In particular, there's
* some talk of switching to a mechanism zlib isn't currently
* capable of supporting (see below for an explanation). Given that
* sort of uncertainty, I thought it might be better to have code
* that will support even the zlib-incompatible worst case.
*
* Fourthly, it's a _second implementation_. Second implementations
* are fundamentally a Good Thing in standardisation efforts. The
* difference of opinion mentioned above has arisen _precisely_
* because there has been only one zlib implementation and
* everybody has used it. I don't intend that this should happen
* again.
*/
#include <stdlib.h>
#include <assert.h>
/* FIXME */
#include <windows.h>
#include <stdio.h>
#include "putty.h"
#include "ssh.h"
/* ----------------------------------------------------------------------
* Basic LZ77 code. This bit is designed modularly, so it could be
* ripped out and used in a different LZ77 compressor. Go to it,
* and good luck :-)
*/
struct LZ77InternalContext;
struct LZ77Context {
struct LZ77InternalContext *ictx;
void *userdata;
void (*literal)(struct LZ77Context *ctx, unsigned char c);
void (*match)(struct LZ77Context *ctx, int distance, int len);
};
/*
* Initialise the private fields of an LZ77Context. It's up to the
* user to initialise the public fields.
*/
static int lz77_init(struct LZ77Context *ctx);
/*
* Supply data to be compressed. Will update the private fields of
* the LZ77Context, and will call literal() and match() to output.
*/
static void lz77_compress(struct LZ77Context *ctx,
unsigned char *data, int len);
/*
* Modifiable parameters.
*/
#define WINSIZE 32768 /* window size. Must be power of 2! */
#define HASHMAX 2039 /* one more than max hash value */
#define MAXMATCH 32 /* how many matches we track */
#define HASHCHARS 3 /* how many chars make a hash */
/*
* This compressor takes a less slapdash approach than the
* gzip/zlib one. Rather than allowing our hash chains to fall into
* disuse near the far end, we keep them doubly linked so we can
* _find_ the far end, and then every time we add a new byte to the
* window (thus rolling round by one and removing the previous
* byte), we can carefully remove the hash chain entry.
*/
#define INVALID -1 /* invalid hash _and_ invalid offset */
struct WindowEntry {
int next, prev; /* array indices within the window */
int hashval;
};
struct HashEntry {
int first; /* window index of first in chain */
};
struct Match {
int distance, len;
};
struct LZ77InternalContext {
struct WindowEntry win[WINSIZE];
unsigned char data[WINSIZE];
int winpos;
struct HashEntry hashtab[HASHMAX];
unsigned char pending[HASHCHARS];
int npending;
};
static int lz77_hash(unsigned char *data) {
return (257*data[0] + 263*data[1] + 269*data[2]) % HASHMAX;
}
static int lz77_init(struct LZ77Context *ctx) {
struct LZ77InternalContext *st;
int i;
st = (struct LZ77InternalContext *)smalloc(sizeof(*st));
if (!st)
return 0;
ctx->ictx = st;
for (i = 0; i < WINSIZE; i++)
st->win[i].next = st->win[i].prev = st->win[i].hashval = INVALID;
for (i = 0; i < HASHMAX; i++)
st->hashtab[i].first = INVALID;
st->winpos = 0;
st->npending = 0;
return 1;
}
static void lz77_advance(struct LZ77InternalContext *st,
unsigned char c, int hash) {
int off;
/*
* Remove the hash entry at winpos from the tail of its chain,
* or empty the chain if it's the only thing on the chain.
*/
if (st->win[st->winpos].prev != INVALID) {
st->win[st->win[st->winpos].prev].next = INVALID;
} else if (st->win[st->winpos].hashval != INVALID) {
st->hashtab[st->win[st->winpos].hashval].first = INVALID;
}
/*
* Create a new entry at winpos and add it to the head of its
* hash chain.
*/
st->win[st->winpos].hashval = hash;
st->win[st->winpos].prev = INVALID;
off = st->win[st->winpos].next = st->hashtab[hash].first;
st->hashtab[hash].first = st->winpos;
if (off != INVALID)
st->win[off].prev = st->winpos;
st->data[st->winpos] = c;
/*
* Advance the window pointer.
*/
st->winpos = (st->winpos + 1) & (WINSIZE-1);
}
#define CHARAT(k) ( (k)<0 ? st->data[(st->winpos+k)&(WINSIZE-1)] : data[k] )
static void lz77_compress(struct LZ77Context *ctx,
unsigned char *data, int len) {
struct LZ77InternalContext *st = ctx->ictx;
int i, hash, distance, off, nmatch, matchlen, advance;
struct Match defermatch, matches[MAXMATCH];
int deferchr;
/*
* Add any pending characters from last time to the window. (We
* might not be able to.)
*/
for (i = 0; i < st->npending; i++) {
unsigned char foo[HASHCHARS];
int j;
if (len + st->npending - i < HASHCHARS) {
/* Update the pending array. */
for (j = i; j < st->npending; j++)
st->pending[j-i] = st->pending[j];
break;
}
for (j = 0; j < HASHCHARS; j++)
foo[j] = (i + j < st->npending ? st->pending[i+j] :
data[i + j - st->npending]);
lz77_advance(st, foo[0], lz77_hash(foo));
}
st->npending -= i;
defermatch.len = 0;
while (len > 0) {
if (len >= HASHCHARS) {
/*
* Hash the next few characters.
*/
hash = lz77_hash(data);
/*
* Look the hash up in the corresponding hash chain and see
* what we can find.
*/
nmatch = 0;
for (off = st->hashtab[hash].first;
off != INVALID; off = st->win[off].next) {
/* distance = 1 if off == st->winpos-1 */
/* distance = WINSIZE if off == st->winpos */
distance = WINSIZE - (off + WINSIZE - st->winpos) % WINSIZE;
for (i = 0; i < HASHCHARS; i++)
if (CHARAT(i) != CHARAT(i-distance))
break;
if (i == HASHCHARS) {
matches[nmatch].distance = distance;
matches[nmatch].len = 3;
if (++nmatch >= MAXMATCH)
break;
}
}
} else {
nmatch = 0;
hash = INVALID;
}
if (nmatch > 0) {
/*
* We've now filled up matches[] with nmatch potential
* matches. Follow them down to find the longest. (We
* assume here that it's always worth favouring a
* longer match over a shorter one.)
*/
matchlen = HASHCHARS;
while (matchlen < len) {
int j;
for (i = j = 0; i < nmatch; i++) {
if (CHARAT(matchlen) ==
CHARAT(matchlen - matches[i].distance)) {
matches[j++] = matches[i];
}
}
if (j == 0)
break;
matchlen++;
nmatch = j;
}
/*
* We've now got all the longest matches. We favour the
* shorter distances, which means we go with matches[0].
* So see if we want to defer it or throw it away.
*/
matches[0].len = matchlen;
if (defermatch.len > 0) {
if (matches[0].len > defermatch.len + 1) {
/* We have a better match. Emit the deferred char,
* and defer this match. */
ctx->literal(ctx, (unsigned char)deferchr);
defermatch = matches[0];
deferchr = data[0];
advance = 1;
} else {
/* We don't have a better match. Do the deferred one. */
ctx->match(ctx, defermatch.distance, defermatch.len);
advance = defermatch.len - 1;
defermatch.len = 0;
}
} else {
/* There was no deferred match. Defer this one. */
defermatch = matches[0];
deferchr = data[0];
advance = 1;
}
} else {
/*
* We found no matches. Emit the deferred match, if
* any; otherwise emit a literal.
*/
if (defermatch.len > 0) {
ctx->match(ctx, defermatch.distance, defermatch.len);
advance = defermatch.len - 1;
defermatch.len = 0;
} else {
ctx->literal(ctx, data[0]);
advance = 1;
}
}
/*
* Now advance the position by `advance' characters,
* keeping the window and hash chains consistent.
*/
while (advance > 0) {
if (len >= HASHCHARS) {
lz77_advance(st, *data, lz77_hash(data));
} else {
st->pending[st->npending++] = *data;
}
data++;
len--;
advance--;
}
}
}
/* ----------------------------------------------------------------------
* Zlib compression. We always use the static Huffman tree option.
* Mostly this is because it's hard to scan a block in advance to
* work out better trees; dynamic trees are great when you're
* compressing a large file under no significant time constraint,
* but when you're compressing little bits in real time, things get
* hairier.
*
* I suppose it's possible that I could compute Huffman trees based
* on the frequencies in the _previous_ block, as a sort of
* heuristic, but I'm not confident that the gain would balance out
* having to transmit the trees.
*/
static struct LZ77Context ectx;
struct Outbuf {
unsigned char *outbuf;
int outlen, outsize;
unsigned long outbits;
int noutbits;
int firstblock;
};
static void outbits(struct Outbuf *out, unsigned long bits, int nbits) {
assert(out->noutbits + nbits <= 32);
out->outbits |= bits << out->noutbits;
out->noutbits += nbits;
while (out->noutbits >= 8) {
if (out->outlen >= out->outsize) {
out->outsize = out->outlen + 64;
out->outbuf = srealloc(out->outbuf, out->outsize);
}
out->outbuf[out->outlen++] = (unsigned char)(out->outbits & 0xFF);
out->outbits >>= 8;
out->noutbits -= 8;
}
}
static const unsigned char mirrorbytes[256] = {
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
};
typedef struct {
int code, extrabits, min, max;
} coderecord;
static const coderecord lencodes[] = {
{257, 0, 3,3},
{258, 0, 4,4},
{259, 0, 5,5},
{260, 0, 6,6},
{261, 0, 7,7},
{262, 0, 8,8},
{263, 0, 9,9},
{264, 0, 10,10},
{265, 1, 11,12},
{266, 1, 13,14},
{267, 1, 15,16},
{268, 1, 17,18},
{269, 2, 19,22},
{270, 2, 23,26},
{271, 2, 27,30},
{272, 2, 31,34},
{273, 3, 35,42},
{274, 3, 43,50},
{275, 3, 51,58},
{276, 3, 59,66},
{277, 4, 67,82},
{278, 4, 83,98},
{279, 4, 99,114},
{280, 4, 115,130},
{281, 5, 131,162},
{282, 5, 163,194},
{283, 5, 195,226},
{284, 5, 227,257},
{285, 0, 258,258},
};
static const coderecord distcodes[] = {
{0, 0, 1,1},
{1, 0, 2,2},
{2, 0, 3,3},
{3, 0, 4,4},
{4, 1, 5,6},
{5, 1, 7,8},
{6, 2, 9,12},
{7, 2, 13,16},
{8, 3, 17,24},
{9, 3, 25,32},
{10, 4, 33,48},
{11, 4, 49,64},
{12, 5, 65,96},
{13, 5, 97,128},
{14, 6, 129,192},
{15, 6, 193,256},
{16, 7, 257,384},
{17, 7, 385,512},
{18, 8, 513,768},
{19, 8, 769,1024},
{20, 9, 1025,1536},
{21, 9, 1537,2048},
{22, 10, 2049,3072},
{23, 10, 3073,4096},
{24, 11, 4097,6144},
{25, 11, 6145,8192},
{26, 12, 8193,12288},
{27, 12, 12289,16384},
{28, 13, 16385,24576},
{29, 13, 24577,32768},
};
static void zlib_literal(struct LZ77Context *ectx, unsigned char c) {
struct Outbuf *out = (struct Outbuf *)ectx->userdata;
if (c <= 143) {
/* 0 through 143 are 8 bits long starting at 00110000. */
outbits(out, mirrorbytes[0x30 + c], 8);
} else {
/* 144 through 255 are 9 bits long starting at 110010000. */
outbits(out, 1 + 2*mirrorbytes[0x90 - 144 + c], 9);
}
}
static void zlib_match(struct LZ77Context *ectx, int distance, int len) {
const coderecord *d, *l;
int i, j, k;
struct Outbuf *out = (struct Outbuf *)ectx->userdata;
while (len > 0) {
int thislen;
/*
* We can transmit matches of lengths 3 through 258
* inclusive. So if len exceeds 258, we must transmit in
* several steps, with 258 or less in each step.
*
* Specifically: if len >= 261, we can transmit 258 and be
* sure of having at least 3 left for the next step. And if
* len <= 258, we can just transmit len. But if len == 259
* or 260, we must transmit len-3.
*/
thislen = (len > 260 ? 258 : len <= 258 ? len : len-3);
len -= thislen;
/*
* Binary-search to find which length code we're
* transmitting.
*/
i = -1; j = sizeof(lencodes)/sizeof(*lencodes);
while (j - i >= 2) {
k = (j+i)/2;
if (thislen < lencodes[k].min)
j = k;
else if (thislen > lencodes[k].max)
i = k;
else {
l = &lencodes[k];
break; /* found it! */
}
}
/*
* Transmit the length code. 256-279 are seven bits
* starting at 0000000; 280-287 are eight bits starting at
* 11000000.
*/
if (l->code <= 279) {
outbits(out, mirrorbytes[(l->code-256)*2], 7);
} else {
outbits(out, mirrorbytes[0xc0 - 280 + l->code], 8);
}
/*
* Transmit the extra bits.
*/
if (l->extrabits)
outbits(out, thislen - l->min, l->extrabits);
/*
* Binary-search to find which distance code we're
* transmitting.
*/
i = -1; j = sizeof(distcodes)/sizeof(*distcodes);
while (j - i >= 2) {
k = (j+i)/2;
if (distance < distcodes[k].min)
j = k;
else if (distance > distcodes[k].max)
i = k;
else {
d = &distcodes[k];
break; /* found it! */
}
}
/*
* Transmit the distance code. Five bits starting at 00000.
*/
outbits(out, mirrorbytes[d->code*8], 5);
/*
* Transmit the extra bits.
*/
if (d->extrabits)
outbits(out, distance - d->min, d->extrabits);
}
}
void zlib_compress_init(void) {
struct Outbuf *out;
lz77_init(&ectx);
ectx.literal = zlib_literal;
ectx.match = zlib_match;
out = smalloc(sizeof(struct Outbuf));
out->outbits = out->noutbits = 0;
out->firstblock = 1;
ectx.userdata = out;
logevent("Initialised zlib (RFC1950) compression");
}
int zlib_compress_block(unsigned char *block, int len,
unsigned char **outblock, int *outlen) {
struct Outbuf *out = (struct Outbuf *)ectx.userdata;
out->outbuf = NULL;
out->outlen = out->outsize = 0;
/*
* If this is the first block, output the Zlib (RFC1950) header
* bytes 78 9C. (Deflate compression, 32K window size, default
* algorithm.)
*/
if (out->firstblock) {
outbits(out, 0x9C78, 16);
out->firstblock = 0;
/*
* Start a Deflate (RFC1951) fixed-trees block. We transmit
* a zero bit (BFINAL=0), followed by a zero bit and a one
* bit (BTYPE=01). Of course these are in the wrong order
* (01 0).
*/
outbits(out, 2, 3);
}
/*
* Do the compression.
*/
lz77_compress(&ectx, block, len);
/*
* End the block (by transmitting code 256, which is 0000000 in
* fixed-tree mode), and transmit some empty blocks to ensure
* we have emitted the byte containing the last piece of
* genuine data. There are three ways we can do this:
*
* - Minimal flush. Output end-of-block and then open a new
* static block. This takes 9 bits, which is guaranteed to
* flush out the last genuine code in the closed block; but
* allegedly zlib can't handle it.
*
* - Zlib partial flush. Output EOB, open and close an empty
* static block, and _then_ open the new block. This is the
* best zlib can handle.
*
* - Zlib sync flush. Output EOB, then an empty _uncompressed_
* block (000, then sync to byte boundary, then send bytes
* 00 00 FF FF). Then open the new block.
*
* For the moment, we will use Zlib partial flush.
*/
outbits(out, 0, 7); /* close block */
outbits(out, 2, 3+7); /* empty static block */
outbits(out, 2, 3); /* open new block */
*outblock = out->outbuf;
*outlen = out->outlen;
return 1;
}
/* ----------------------------------------------------------------------
* Zlib decompression. Of course, even though our compressor always
* uses static trees, our _decompressor_ has to be capable of
* handling dynamic trees if it sees them.
*/
/*
* The way we work the Huffman decode is to have a table lookup on
* the first N bits of the input stream (in the order they arrive,
* of course, i.e. the first bit of the Huffman code is in bit 0).
* Each table entry lists the number of bits to consume, plus
* either an output code or a pointer to a secondary table.
*/
struct zlib_table;
struct zlib_tableentry;
struct zlib_tableentry {
unsigned char nbits;
int code;
struct zlib_table *nexttable;
};
struct zlib_table {
int mask; /* mask applied to input bit stream */
struct zlib_tableentry *table;
};
#define MAXCODELEN 16
#define MAXSYMS 288
/*
* Build a single-level decode table for elements
* [minlength,maxlength) of the provided code/length tables, and
* recurse to build subtables.
*/
static struct zlib_table *zlib_mkonetab(int *codes, unsigned char *lengths,
int nsyms,
int pfx, int pfxbits, int bits) {
struct zlib_table *tab = smalloc(sizeof(struct zlib_table));
int pfxmask = (1 << pfxbits) - 1;
int nbits, i, j, code;
tab->table = smalloc((1 << bits) * sizeof(struct zlib_tableentry));
tab->mask = (1 << bits) - 1;
for (code = 0; code <= tab->mask; code++) {
tab->table[code].code = -1;
tab->table[code].nbits = 0;
tab->table[code].nexttable = NULL;
}
for (i = 0; i < nsyms; i++) {
if (lengths[i] <= pfxbits || (codes[i] & pfxmask) != pfx)
continue;
code = (codes[i] >> pfxbits) & tab->mask;
for (j = code; j <= tab->mask; j += 1 << (lengths[i]-pfxbits)) {
tab->table[j].code = i;
nbits = lengths[i] - pfxbits;
if (tab->table[j].nbits < nbits)
tab->table[j].nbits = nbits;
}
}
for (code = 0; code <= tab->mask; code++) {
if (tab->table[code].nbits <= bits)
continue;
/* Generate a subtable. */
tab->table[code].code = -1;
nbits = tab->table[code].nbits - bits;
if (nbits > 7)
nbits = 7;
tab->table[code].nbits = bits;
tab->table[code].nexttable = zlib_mkonetab(codes, lengths, nsyms,
pfx | (code << pfxbits),
pfxbits + bits, nbits);
}
return tab;
}
/*
* Build a decode table, given a set of Huffman tree lengths.
*/
static struct zlib_table *zlib_mktable(unsigned char *lengths, int nlengths) {
int count[MAXCODELEN], startcode[MAXCODELEN], codes[MAXSYMS];
int code, maxlen;
int i, j;
/* Count the codes of each length. */
maxlen = 0;
for (i = 1; i < MAXCODELEN; i++) count[i] = 0;
for (i = 0; i < nlengths; i++) {
count[lengths[i]]++;
if (maxlen < lengths[i])
maxlen = lengths[i];
}
/* Determine the starting code for each length block. */
code = 0;
for (i = 1; i < MAXCODELEN; i++) {
startcode[i] = code;
code += count[i];
code <<= 1;
}
/* Determine the code for each symbol. Mirrored, of course. */
for (i = 0; i < nlengths; i++) {
code = startcode[lengths[i]]++;
codes[i] = 0;
for (j = 0; j < lengths[i]; j++) {
codes[i] = (codes[i] << 1) | (code & 1);
code >>= 1;
}
}
/*
* Now we have the complete list of Huffman codes. Build a
* table.
*/
return zlib_mkonetab(codes, lengths, nlengths, 0, 0,
maxlen < 9 ? maxlen : 9);
}
static struct zlib_decompress_ctx {
struct zlib_table *staticlentable, *staticdisttable;
struct zlib_table *currlentable, *currdisttable, *lenlentable;
enum {
START, OUTSIDEBLK,
TREES_HDR, TREES_LENLEN, TREES_LEN, TREES_LENREP,
INBLK, GOTLENSYM, GOTLEN, GOTDISTSYM,
UNCOMP_LEN, UNCOMP_NLEN, UNCOMP_DATA
} state;
int sym, hlit, hdist, hclen, lenptr, lenextrabits, lenaddon, len, lenrep;
int uncomplen;
unsigned char lenlen[19];
unsigned char lengths[286+32];
unsigned long bits;
int nbits;
unsigned char window[WINSIZE];
int winpos;
unsigned char *outblk;
int outlen, outsize;
} dctx;
void zlib_decompress_init(void) {
unsigned char lengths[288];
memset(lengths, 8, 144);
memset(lengths+144, 9, 256-144);
memset(lengths+256, 7, 280-256);
memset(lengths+280, 8, 288-280);
dctx.staticlentable = zlib_mktable(lengths, 288);
memset(lengths, 5, 32);
dctx.staticdisttable = zlib_mktable(lengths, 32);
dctx.state = START; /* even before header */
dctx.currlentable = dctx.currdisttable = dctx.lenlentable = NULL;
dctx.bits = 0;
dctx.nbits = 0;
logevent("Initialised zlib (RFC1950) decompression");
}
int zlib_huflookup(unsigned long *bitsp, int *nbitsp, struct zlib_table *tab) {
unsigned long bits = *bitsp;
int nbits = *nbitsp;
while (1) {
struct zlib_tableentry *ent;
ent = &tab->table[bits & tab->mask];
if (ent->nbits > nbits)
return -1; /* not enough data */
bits >>= ent->nbits;
nbits -= ent->nbits;
if (ent->code == -1)
tab = ent->nexttable;
else {
*bitsp = bits;
*nbitsp = nbits;
return ent->code;
}
}
}
static void zlib_emit_char(int c) {
dctx.window[dctx.winpos] = c;
dctx.winpos = (dctx.winpos + 1) & (WINSIZE-1);
if (dctx.outlen >= dctx.outsize) {
dctx.outsize = dctx.outlen + 512;
dctx.outblk = srealloc(dctx.outblk, dctx.outsize);
}
dctx.outblk[dctx.outlen++] = c;
}
#define EATBITS(n) ( dctx.nbits -= (n), dctx.bits >>= (n) )
int zlib_decompress_block(unsigned char *block, int len,
unsigned char **outblock, int *outlen) {
const coderecord *rec;
int code, blktype, rep, dist, nlen;
static const unsigned char lenlenmap[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
dctx.outblk = NULL;
dctx.outsize = dctx.outlen = 0;
while (len > 0 || dctx.nbits > 0) {
while (dctx.nbits < 24 && len > 0) {
dctx.bits |= (*block++) << dctx.nbits;
dctx.nbits += 8;
len--;
}
switch (dctx.state) {
case START:
/* Expect 16-bit zlib header, which we'll dishonourably ignore. */
if (dctx.nbits < 16)
goto finished; /* done all we can */
EATBITS(16);
dctx.state = OUTSIDEBLK;
break;
case OUTSIDEBLK:
/* Expect 3-bit block header. */
if (dctx.nbits < 3)
goto finished; /* done all we can */
EATBITS(1);
blktype = dctx.bits & 3;
EATBITS(2);
if (blktype == 0) {
int to_eat = dctx.nbits & 7;
dctx.state = UNCOMP_LEN;
EATBITS(to_eat); /* align to byte boundary */
} else if (blktype == 1) {
dctx.currlentable = dctx.staticlentable;
dctx.currdisttable = dctx.staticdisttable;
dctx.state = INBLK;
} else if (blktype == 2) {
dctx.state = TREES_HDR;
}
break;
case TREES_HDR:
/*
* Dynamic block header. Five bits of HLIT, five of
* HDIST, four of HCLEN.
*/
if (dctx.nbits < 5+5+4)
goto finished; /* done all we can */
dctx.hlit = 257 + (dctx.bits & 31); EATBITS(5);
dctx.hdist = 1 + (dctx.bits & 31); EATBITS(5);
dctx.hclen = 4 + (dctx.bits & 15); EATBITS(4);
dctx.lenptr = 0;
dctx.state = TREES_LENLEN;
memset(dctx.lenlen, 0, sizeof(dctx.lenlen));
break;
case TREES_LENLEN:
if (dctx.nbits < 3)
goto finished;
while (dctx.lenptr < dctx.hclen && dctx.nbits >= 3) {
dctx.lenlen[lenlenmap[dctx.lenptr++]] =
(unsigned char)(dctx.bits & 7);
EATBITS(3);
}
if (dctx.lenptr == dctx.hclen) {
dctx.lenlentable = zlib_mktable(dctx.lenlen, 19);
dctx.state = TREES_LEN;
dctx.lenptr = 0;
}
break;
case TREES_LEN:
if (dctx.lenptr >= dctx.hlit+dctx.hdist) {
dctx.currlentable = zlib_mktable(dctx.lengths, dctx.hlit);
dctx.currdisttable = zlib_mktable(dctx.lengths + dctx.hlit,
dctx.hdist);
/* FIXME: zlib_freetable(dctx.lenlentable); */
dctx.state = INBLK;
break;
}
code = zlib_huflookup(&dctx.bits, &dctx.nbits, dctx.lenlentable);
if (code == -1)
goto finished;
if (code < 16)
dctx.lengths[dctx.lenptr++] = code;
else {
dctx.lenextrabits = (code == 16 ? 2 : code == 17 ? 3 : 7);
dctx.lenaddon = (code == 18 ? 11 : 3);
dctx.lenrep = (code == 16 && dctx.lenptr > 0 ?
dctx.lengths[dctx.lenptr-1] : 0);
dctx.state = TREES_LENREP;
}
break;
case TREES_LENREP:
if (dctx.nbits < dctx.lenextrabits)
goto finished;
rep = dctx.lenaddon + (dctx.bits & ((1<<dctx.lenextrabits)-1));
EATBITS(dctx.lenextrabits);
while (rep > 0 && dctx.lenptr < dctx.hlit+dctx.hdist) {
dctx.lengths[dctx.lenptr] = dctx.lenrep;
dctx.lenptr++;
rep--;
}
dctx.state = TREES_LEN;
break;
case INBLK:
code = zlib_huflookup(&dctx.bits, &dctx.nbits, dctx.currlentable);
if (code == -1)
goto finished;
if (code < 256)
zlib_emit_char(code);
else if (code == 256) {
dctx.state = OUTSIDEBLK;
/* FIXME: zlib_freetable(both) if not static */
} else if (code < 286) { /* static tree can give >285; ignore */
dctx.state = GOTLENSYM;
dctx.sym = code;
}
break;
case GOTLENSYM:
rec = &lencodes[dctx.sym - 257];
if (dctx.nbits < rec->extrabits)
goto finished;
dctx.len = rec->min + (dctx.bits & ((1<<rec->extrabits)-1));
EATBITS(rec->extrabits);
dctx.state = GOTLEN;
break;
case GOTLEN:
code = zlib_huflookup(&dctx.bits, &dctx.nbits, dctx.currdisttable);
if (code == -1)
goto finished;
dctx.state = GOTDISTSYM;
dctx.sym = code;
break;
case GOTDISTSYM:
rec = &distcodes[dctx.sym];
if (dctx.nbits < rec->extrabits)
goto finished;
dist = rec->min + (dctx.bits & ((1<<rec->extrabits)-1));
EATBITS(rec->extrabits);
dctx.state = INBLK;
while (dctx.len--)
zlib_emit_char(dctx.window[(dctx.winpos-dist) & (WINSIZE-1)]);
break;
case UNCOMP_LEN:
/*
* Uncompressed block. We expect to see a 16-bit LEN.
*/
if (dctx.nbits < 16)
goto finished;
dctx.uncomplen = dctx.bits & 0xFFFF;
EATBITS(16);
dctx.state = UNCOMP_NLEN;
break;
case UNCOMP_NLEN:
/*
* Uncompressed block. We expect to see a 16-bit NLEN,
* which should be the one's complement of the previous
* LEN.
*/
if (dctx.nbits < 16)
goto finished;
nlen = dctx.bits & 0xFFFF;
EATBITS(16);
dctx.state = UNCOMP_DATA;
break;
case UNCOMP_DATA:
if (dctx.nbits < 8)
goto finished;
zlib_emit_char(dctx.bits & 0xFF);
EATBITS(8);
if (--dctx.uncomplen == 0)
dctx.state = OUTSIDEBLK; /* end of uncompressed block */
break;
}
}
finished:
*outblock = dctx.outblk;
*outlen = dctx.outlen;
return 1;
}
const struct ssh_compress ssh_zlib = {
"zlib",
zlib_compress_init,
zlib_compress_block,
zlib_decompress_init,
zlib_decompress_block
};