зеркало из https://github.com/github/putty.git
672 строки
22 KiB
C
672 строки
22 KiB
C
/*
|
|
* SHA-256 algorithm as described at
|
|
*
|
|
* http://csrc.nist.gov/cryptval/shs.html
|
|
*/
|
|
|
|
#include "ssh.h"
|
|
#include <assert.h>
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Core SHA256 algorithm: processes 16-word blocks into a message digest.
|
|
*/
|
|
|
|
#define ror(x,y) ( ((x) << (32-y)) | (((uint32)(x)) >> (y)) )
|
|
#define shr(x,y) ( (((uint32)(x)) >> (y)) )
|
|
#define Ch(x,y,z) ( ((x) & (y)) ^ (~(x) & (z)) )
|
|
#define Maj(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) )
|
|
#define bigsigma0(x) ( ror((x),2) ^ ror((x),13) ^ ror((x),22) )
|
|
#define bigsigma1(x) ( ror((x),6) ^ ror((x),11) ^ ror((x),25) )
|
|
#define smallsigma0(x) ( ror((x),7) ^ ror((x),18) ^ shr((x),3) )
|
|
#define smallsigma1(x) ( ror((x),17) ^ ror((x),19) ^ shr((x),10) )
|
|
|
|
static void SHA256_sw(SHA256_State *s, const unsigned char *q, int len);
|
|
static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len);
|
|
|
|
void SHA256_Core_Init(SHA256_State *s) {
|
|
s->h[0] = 0x6a09e667;
|
|
s->h[1] = 0xbb67ae85;
|
|
s->h[2] = 0x3c6ef372;
|
|
s->h[3] = 0xa54ff53a;
|
|
s->h[4] = 0x510e527f;
|
|
s->h[5] = 0x9b05688c;
|
|
s->h[6] = 0x1f83d9ab;
|
|
s->h[7] = 0x5be0cd19;
|
|
}
|
|
|
|
void SHA256_Block(SHA256_State *s, uint32 *block) {
|
|
uint32 w[80];
|
|
uint32 a,b,c,d,e,f,g,h;
|
|
static const int k[] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
|
|
};
|
|
|
|
int t;
|
|
|
|
for (t = 0; t < 16; t++)
|
|
w[t] = block[t];
|
|
|
|
for (t = 16; t < 64; t++)
|
|
w[t] = smallsigma1(w[t-2]) + w[t-7] + smallsigma0(w[t-15]) + w[t-16];
|
|
|
|
a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3];
|
|
e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7];
|
|
|
|
for (t = 0; t < 64; t+=8) {
|
|
uint32 t1, t2;
|
|
|
|
#define ROUND(j,a,b,c,d,e,f,g,h) \
|
|
t1 = h + bigsigma1(e) + Ch(e,f,g) + k[j] + w[j]; \
|
|
t2 = bigsigma0(a) + Maj(a,b,c); \
|
|
d = d + t1; h = t1 + t2;
|
|
|
|
ROUND(t+0, a,b,c,d,e,f,g,h);
|
|
ROUND(t+1, h,a,b,c,d,e,f,g);
|
|
ROUND(t+2, g,h,a,b,c,d,e,f);
|
|
ROUND(t+3, f,g,h,a,b,c,d,e);
|
|
ROUND(t+4, e,f,g,h,a,b,c,d);
|
|
ROUND(t+5, d,e,f,g,h,a,b,c);
|
|
ROUND(t+6, c,d,e,f,g,h,a,b);
|
|
ROUND(t+7, b,c,d,e,f,g,h,a);
|
|
}
|
|
|
|
s->h[0] += a; s->h[1] += b; s->h[2] += c; s->h[3] += d;
|
|
s->h[4] += e; s->h[5] += f; s->h[6] += g; s->h[7] += h;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Outer SHA256 algorithm: take an arbitrary length byte string,
|
|
* convert it into 16-word blocks with the prescribed padding at
|
|
* the end, and pass those blocks to the core SHA256 algorithm.
|
|
*/
|
|
|
|
#define BLKSIZE 64
|
|
|
|
static void SHA256_BinarySink_write(BinarySink *bs,
|
|
const void *p, size_t len);
|
|
|
|
void SHA256_Init(SHA256_State *s) {
|
|
SHA256_Core_Init(s);
|
|
s->blkused = 0;
|
|
s->lenhi = s->lenlo = 0;
|
|
if (supports_sha_ni())
|
|
s->sha256 = &SHA256_ni;
|
|
else
|
|
s->sha256 = &SHA256_sw;
|
|
BinarySink_INIT(s, SHA256_BinarySink_write);
|
|
}
|
|
|
|
static void SHA256_BinarySink_write(BinarySink *bs,
|
|
const void *p, size_t len)
|
|
{
|
|
struct SHA256_State *s = BinarySink_DOWNCAST(bs, struct SHA256_State);
|
|
unsigned char *q = (unsigned char *)p;
|
|
|
|
uint32 lenw = len;
|
|
assert(len == lenw);
|
|
|
|
/*
|
|
* Update the length field.
|
|
*/
|
|
s->lenlo += lenw;
|
|
s->lenhi += (s->lenlo < lenw);
|
|
(*(s->sha256))(s, q, len);
|
|
}
|
|
|
|
static void SHA256_sw(SHA256_State *s, const unsigned char *q, int len) {
|
|
uint32 wordblock[16];
|
|
int i;
|
|
|
|
if (s->blkused && s->blkused+len < BLKSIZE) {
|
|
/*
|
|
* Trivial case: just add to the block.
|
|
*/
|
|
memcpy(s->block + s->blkused, q, len);
|
|
s->blkused += len;
|
|
} else {
|
|
/*
|
|
* We must complete and process at least one block.
|
|
*/
|
|
while (s->blkused + len >= BLKSIZE) {
|
|
memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
|
|
q += BLKSIZE - s->blkused;
|
|
len -= BLKSIZE - s->blkused;
|
|
/* Now process the block. Gather bytes big-endian into words */
|
|
for (i = 0; i < 16; i++) {
|
|
wordblock[i] =
|
|
( ((uint32)s->block[i*4+0]) << 24 ) |
|
|
( ((uint32)s->block[i*4+1]) << 16 ) |
|
|
( ((uint32)s->block[i*4+2]) << 8 ) |
|
|
( ((uint32)s->block[i*4+3]) << 0 );
|
|
}
|
|
SHA256_Block(s, wordblock);
|
|
s->blkused = 0;
|
|
}
|
|
memcpy(s->block, q, len);
|
|
s->blkused = len;
|
|
}
|
|
}
|
|
|
|
void SHA256_Final(SHA256_State *s, unsigned char *digest) {
|
|
int i;
|
|
int pad;
|
|
unsigned char c[64];
|
|
uint32 lenhi, lenlo;
|
|
|
|
if (s->blkused >= 56)
|
|
pad = 56 + 64 - s->blkused;
|
|
else
|
|
pad = 56 - s->blkused;
|
|
|
|
lenhi = (s->lenhi << 3) | (s->lenlo >> (32-3));
|
|
lenlo = (s->lenlo << 3);
|
|
|
|
memset(c, 0, pad);
|
|
c[0] = 0x80;
|
|
put_data(s, &c, pad);
|
|
|
|
put_uint32(s, lenhi);
|
|
put_uint32(s, lenlo);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
digest[i*4+0] = (s->h[i] >> 24) & 0xFF;
|
|
digest[i*4+1] = (s->h[i] >> 16) & 0xFF;
|
|
digest[i*4+2] = (s->h[i] >> 8) & 0xFF;
|
|
digest[i*4+3] = (s->h[i] >> 0) & 0xFF;
|
|
}
|
|
}
|
|
|
|
void SHA256_Simple(const void *p, int len, unsigned char *output) {
|
|
SHA256_State s;
|
|
|
|
SHA256_Init(&s);
|
|
put_data(&s, p, len);
|
|
SHA256_Final(&s, output);
|
|
smemclr(&s, sizeof(s));
|
|
}
|
|
|
|
/*
|
|
* Thin abstraction for things where hashes are pluggable.
|
|
*/
|
|
|
|
static void *sha256_init(void)
|
|
{
|
|
SHA256_State *s;
|
|
|
|
s = snew(SHA256_State);
|
|
SHA256_Init(s);
|
|
return s;
|
|
}
|
|
|
|
static void *sha256_copy(const void *vold)
|
|
{
|
|
const SHA256_State *old = (const SHA256_State *)vold;
|
|
SHA256_State *s;
|
|
|
|
s = snew(SHA256_State);
|
|
*s = *old;
|
|
BinarySink_COPIED(s);
|
|
return s;
|
|
}
|
|
|
|
static void sha256_free(void *handle)
|
|
{
|
|
SHA256_State *s = handle;
|
|
|
|
smemclr(s, sizeof(*s));
|
|
sfree(s);
|
|
}
|
|
|
|
static BinarySink *sha256_sink(void *handle)
|
|
{
|
|
SHA256_State *s = handle;
|
|
return BinarySink_UPCAST(s);
|
|
}
|
|
|
|
static void sha256_final(void *handle, unsigned char *output)
|
|
{
|
|
SHA256_State *s = handle;
|
|
|
|
SHA256_Final(s, output);
|
|
sha256_free(s);
|
|
}
|
|
|
|
const struct ssh_hash ssh_sha256 = {
|
|
sha256_init, sha256_copy, sha256_sink, sha256_final, sha256_free,
|
|
32, "SHA-256"
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* The above is the SHA-256 algorithm itself. Now we implement the
|
|
* HMAC wrapper on it.
|
|
*/
|
|
|
|
static void *sha256_make_context(void *cipher_ctx)
|
|
{
|
|
return snewn(3, SHA256_State);
|
|
}
|
|
|
|
static void sha256_free_context(void *handle)
|
|
{
|
|
smemclr(handle, 3 * sizeof(SHA256_State));
|
|
sfree(handle);
|
|
}
|
|
|
|
static void sha256_key_internal(void *handle, unsigned char *key, int len)
|
|
{
|
|
SHA256_State *keys = (SHA256_State *)handle;
|
|
unsigned char foo[64];
|
|
int i;
|
|
|
|
memset(foo, 0x36, 64);
|
|
for (i = 0; i < len && i < 64; i++)
|
|
foo[i] ^= key[i];
|
|
SHA256_Init(&keys[0]);
|
|
put_data(&keys[0], foo, 64);
|
|
|
|
memset(foo, 0x5C, 64);
|
|
for (i = 0; i < len && i < 64; i++)
|
|
foo[i] ^= key[i];
|
|
SHA256_Init(&keys[1]);
|
|
put_data(&keys[1], foo, 64);
|
|
|
|
smemclr(foo, 64); /* burn the evidence */
|
|
}
|
|
|
|
static void sha256_key(void *handle, unsigned char *key)
|
|
{
|
|
sha256_key_internal(handle, key, 32);
|
|
}
|
|
|
|
static void hmacsha256_start(void *handle)
|
|
{
|
|
SHA256_State *keys = (SHA256_State *)handle;
|
|
|
|
keys[2] = keys[0]; /* structure copy */
|
|
BinarySink_COPIED(&keys[2]);
|
|
}
|
|
|
|
static BinarySink *hmacsha256_sink(void *handle)
|
|
{
|
|
SHA256_State *keys = (SHA256_State *)handle;
|
|
return BinarySink_UPCAST(&keys[2]);
|
|
}
|
|
|
|
static void hmacsha256_genresult(void *handle, unsigned char *hmac)
|
|
{
|
|
SHA256_State *keys = (SHA256_State *)handle;
|
|
SHA256_State s;
|
|
unsigned char intermediate[32];
|
|
|
|
s = keys[2]; /* structure copy */
|
|
BinarySink_COPIED(&s);
|
|
SHA256_Final(&s, intermediate);
|
|
s = keys[1]; /* structure copy */
|
|
BinarySink_COPIED(&s);
|
|
put_data(&s, intermediate, 32);
|
|
SHA256_Final(&s, hmac);
|
|
}
|
|
|
|
static void sha256_do_hmac(void *handle, unsigned char *blk, int len,
|
|
unsigned long seq, unsigned char *hmac)
|
|
{
|
|
BinarySink *bs = hmacsha256_sink(handle);
|
|
hmacsha256_start(handle);
|
|
put_uint32(bs, seq);
|
|
put_data(bs, blk, len);
|
|
hmacsha256_genresult(handle, hmac);
|
|
}
|
|
|
|
static void sha256_generate(void *handle, unsigned char *blk, int len,
|
|
unsigned long seq)
|
|
{
|
|
sha256_do_hmac(handle, blk, len, seq, blk + len);
|
|
}
|
|
|
|
static int hmacsha256_verresult(void *handle, unsigned char const *hmac)
|
|
{
|
|
unsigned char correct[32];
|
|
hmacsha256_genresult(handle, correct);
|
|
return smemeq(correct, hmac, 32);
|
|
}
|
|
|
|
static int sha256_verify(void *handle, unsigned char *blk, int len,
|
|
unsigned long seq)
|
|
{
|
|
unsigned char correct[32];
|
|
sha256_do_hmac(handle, blk, len, seq, correct);
|
|
return smemeq(correct, blk + len, 32);
|
|
}
|
|
|
|
const struct ssh_mac ssh_hmac_sha256 = {
|
|
sha256_make_context, sha256_free_context, sha256_key,
|
|
sha256_generate, sha256_verify,
|
|
hmacsha256_start, hmacsha256_sink,
|
|
hmacsha256_genresult, hmacsha256_verresult,
|
|
"hmac-sha2-256", "hmac-sha2-256-etm@openssh.com",
|
|
32, 32,
|
|
"HMAC-SHA-256"
|
|
};
|
|
|
|
#ifdef TEST
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
int main(void) {
|
|
unsigned char digest[32];
|
|
int i, j, errors;
|
|
|
|
struct {
|
|
const char *teststring;
|
|
unsigned char digest[32];
|
|
} tests[] = {
|
|
{ "abc", {
|
|
0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
|
|
0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
|
|
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
|
|
0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad,
|
|
} },
|
|
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", {
|
|
0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
|
|
0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
|
|
0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
|
|
0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1,
|
|
} },
|
|
};
|
|
|
|
errors = 0;
|
|
|
|
for (i = 0; i < sizeof(tests) / sizeof(*tests); i++) {
|
|
SHA256_Simple(tests[i].teststring,
|
|
strlen(tests[i].teststring), digest);
|
|
for (j = 0; j < 32; j++) {
|
|
if (digest[j] != tests[i].digest[j]) {
|
|
fprintf(stderr,
|
|
"\"%s\" digest byte %d should be 0x%02x, is 0x%02x\n",
|
|
tests[i].teststring, j, tests[i].digest[j], digest[j]);
|
|
errors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
printf("%d errors\n", errors);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef COMPILER_SUPPORTS_SHA_NI
|
|
|
|
#if defined _MSC_VER && defined _M_AMD64
|
|
# include <intrin.h>
|
|
#endif
|
|
|
|
/*
|
|
* Set target architecture for Clang and GCC
|
|
*/
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
# pragma GCC target("sha")
|
|
# pragma GCC target("sse4.1")
|
|
#endif
|
|
|
|
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5))
|
|
# define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
|
|
#else
|
|
# define FUNC_ISA
|
|
#endif
|
|
|
|
#include <wmmintrin.h>
|
|
#include <smmintrin.h>
|
|
#include <immintrin.h>
|
|
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
#include <shaintrin.h>
|
|
#endif
|
|
|
|
/* SHA256 implementation using new instructions
|
|
The code is based on Jeffrey Walton's SHA256 implementation:
|
|
https://github.com/noloader/SHA-Intrinsics
|
|
*/
|
|
FUNC_ISA
|
|
static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
|
|
if (s->blkused && s->blkused+len < BLKSIZE) {
|
|
/*
|
|
* Trivial case: just add to the block.
|
|
*/
|
|
memcpy(s->block + s->blkused, q, len);
|
|
s->blkused += len;
|
|
} else {
|
|
__m128i STATE0, STATE1;
|
|
__m128i MSG, TMP;
|
|
__m128i MSG0, MSG1, MSG2, MSG3;
|
|
__m128i ABEF_SAVE, CDGH_SAVE;
|
|
const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
|
|
|
|
/* Load initial values */
|
|
TMP = _mm_loadu_si128((const __m128i*) &s->h[0]);
|
|
STATE1 = _mm_loadu_si128((const __m128i*) &s->h[4]);
|
|
|
|
TMP = _mm_shuffle_epi32(TMP, 0xB1); /* CDAB */
|
|
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); /* EFGH */
|
|
STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); /* ABEF */
|
|
STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); /* CDGH */
|
|
/*
|
|
* We must complete and process at least one block.
|
|
*/
|
|
while (s->blkused + len >= BLKSIZE) {
|
|
memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
|
|
q += BLKSIZE - s->blkused;
|
|
len -= BLKSIZE - s->blkused;
|
|
|
|
/* Save current state */
|
|
ABEF_SAVE = STATE0;
|
|
CDGH_SAVE = STATE1;
|
|
|
|
/* Rounds 0-3 */
|
|
MSG = _mm_loadu_si128((const __m128i*) (s->block + 0));
|
|
MSG0 = _mm_shuffle_epi8(MSG, MASK);
|
|
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
|
|
/* Rounds 4-7 */
|
|
MSG1 = _mm_loadu_si128((const __m128i*) (s->block + 16));
|
|
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
|
|
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
|
|
|
|
/* Rounds 8-11 */
|
|
MSG2 = _mm_loadu_si128((const __m128i*) (s->block + 32));
|
|
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
|
|
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
|
|
|
|
/* Rounds 12-15 */
|
|
MSG3 = _mm_loadu_si128((const __m128i*) (s->block + 48));
|
|
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
|
|
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
|
|
MSG0 = _mm_add_epi32(MSG0, TMP);
|
|
MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
|
|
|
|
/* Rounds 16-19 */
|
|
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
|
|
MSG1 = _mm_add_epi32(MSG1, TMP);
|
|
MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
|
|
|
|
/* Rounds 20-23 */
|
|
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
|
|
MSG2 = _mm_add_epi32(MSG2, TMP);
|
|
MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
|
|
|
|
/* Rounds 24-27 */
|
|
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
|
|
MSG3 = _mm_add_epi32(MSG3, TMP);
|
|
MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
|
|
|
|
/* Rounds 28-31 */
|
|
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
|
|
MSG0 = _mm_add_epi32(MSG0, TMP);
|
|
MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
|
|
|
|
/* Rounds 32-35 */
|
|
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
|
|
MSG1 = _mm_add_epi32(MSG1, TMP);
|
|
MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
|
|
|
|
/* Rounds 36-39 */
|
|
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
|
|
MSG2 = _mm_add_epi32(MSG2, TMP);
|
|
MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
|
|
|
|
/* Rounds 40-43 */
|
|
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
|
|
MSG3 = _mm_add_epi32(MSG3, TMP);
|
|
MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
|
|
|
|
/* Rounds 44-47 */
|
|
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
|
|
MSG0 = _mm_add_epi32(MSG0, TMP);
|
|
MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
|
|
|
|
/* Rounds 48-51 */
|
|
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
|
|
MSG1 = _mm_add_epi32(MSG1, TMP);
|
|
MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
|
|
|
|
/* Rounds 52-55 */
|
|
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
|
|
MSG2 = _mm_add_epi32(MSG2, TMP);
|
|
MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
|
|
/* Rounds 56-59 */
|
|
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
|
|
MSG3 = _mm_add_epi32(MSG3, TMP);
|
|
MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
|
|
/* Rounds 60-63 */
|
|
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
MSG = _mm_shuffle_epi32(MSG, 0x0E);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
|
|
|
|
/* Combine state */
|
|
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
|
|
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
|
|
|
|
s->blkused = 0;
|
|
}
|
|
|
|
TMP = _mm_shuffle_epi32(STATE0, 0x1B); /* FEBA */
|
|
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); /* DCHG */
|
|
STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); /* DCBA */
|
|
STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); /* ABEF */
|
|
|
|
/* Save state */
|
|
_mm_storeu_si128((__m128i*) &s->h[0], STATE0);
|
|
_mm_storeu_si128((__m128i*) &s->h[4], STATE1);
|
|
|
|
memcpy(s->block, q, len);
|
|
s->blkused = len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980
|
|
*/
|
|
static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len)
|
|
{
|
|
SHA256_ni_(s, q, len);
|
|
}
|
|
|
|
#else /* COMPILER_SUPPORTS_AES_NI */
|
|
|
|
static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
#endif /* COMPILER_SUPPORTS_AES_NI */
|