зеркало из https://github.com/github/putty.git
2184 строки
59 KiB
C
2184 строки
59 KiB
C
/*
|
|
* Bignum routines for RSA and DH and stuff.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <ctype.h>
|
|
|
|
#include "misc.h"
|
|
|
|
#include "sshbn.h"
|
|
|
|
#define BIGNUM_INTERNAL
|
|
typedef BignumInt *Bignum;
|
|
|
|
#include "ssh.h"
|
|
|
|
BignumInt bnZero[1] = { 0 };
|
|
BignumInt bnOne[2] = { 1, 1 };
|
|
BignumInt bnTen[2] = { 1, 10 };
|
|
|
|
/*
|
|
* The Bignum format is an array of `BignumInt'. The first
|
|
* element of the array counts the remaining elements. The
|
|
* remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
|
|
* significant digit first. (So it's trivial to extract the bit
|
|
* with value 2^n for any n.)
|
|
*
|
|
* All Bignums in this module are positive. Negative numbers must
|
|
* be dealt with outside it.
|
|
*
|
|
* INVARIANT: the most significant word of any Bignum must be
|
|
* nonzero.
|
|
*/
|
|
|
|
Bignum Zero = bnZero, One = bnOne, Ten = bnTen;
|
|
|
|
static Bignum newbn(int length)
|
|
{
|
|
Bignum b;
|
|
|
|
assert(length >= 0 && length < INT_MAX / BIGNUM_INT_BITS);
|
|
|
|
b = snewn(length + 1, BignumInt);
|
|
memset(b, 0, (length + 1) * sizeof(*b));
|
|
b[0] = length;
|
|
return b;
|
|
}
|
|
|
|
void bn_restore_invariant(Bignum b)
|
|
{
|
|
while (b[0] > 1 && b[b[0]] == 0)
|
|
b[0]--;
|
|
}
|
|
|
|
Bignum copybn(Bignum orig)
|
|
{
|
|
Bignum b = snewn(orig[0] + 1, BignumInt);
|
|
if (!b)
|
|
abort(); /* FIXME */
|
|
memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
|
|
return b;
|
|
}
|
|
|
|
void freebn(Bignum b)
|
|
{
|
|
/*
|
|
* Burn the evidence, just in case.
|
|
*/
|
|
smemclr(b, sizeof(b[0]) * (b[0] + 1));
|
|
sfree(b);
|
|
}
|
|
|
|
Bignum bn_power_2(int n)
|
|
{
|
|
Bignum ret;
|
|
|
|
assert(n >= 0);
|
|
|
|
ret = newbn(n / BIGNUM_INT_BITS + 1);
|
|
bignum_set_bit(ret, n, 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
|
|
* big-endian arrays of 'len' BignumInts. Returns the carry off the
|
|
* top.
|
|
*/
|
|
static BignumCarry internal_add(const BignumInt *a, const BignumInt *b,
|
|
BignumInt *c, int len)
|
|
{
|
|
int i;
|
|
BignumCarry carry = 0;
|
|
|
|
for (i = len-1; i >= 0; i--)
|
|
BignumADC(c[i], carry, a[i], b[i], carry);
|
|
|
|
return (BignumInt)carry;
|
|
}
|
|
|
|
/*
|
|
* Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
|
|
* all big-endian arrays of 'len' BignumInts. Any borrow from the top
|
|
* is ignored.
|
|
*/
|
|
static void internal_sub(const BignumInt *a, const BignumInt *b,
|
|
BignumInt *c, int len)
|
|
{
|
|
int i;
|
|
BignumCarry carry = 1;
|
|
|
|
for (i = len-1; i >= 0; i--)
|
|
BignumADC(c[i], carry, a[i], ~b[i], carry);
|
|
}
|
|
|
|
/*
|
|
* Compute c = a * b.
|
|
* Input is in the first len words of a and b.
|
|
* Result is returned in the first 2*len words of c.
|
|
*
|
|
* 'scratch' must point to an array of BignumInt of size at least
|
|
* mul_compute_scratch(len). (This covers the needs of internal_mul
|
|
* and all its recursive calls to itself.)
|
|
*/
|
|
#define KARATSUBA_THRESHOLD 50
|
|
static int mul_compute_scratch(int len)
|
|
{
|
|
int ret = 0;
|
|
while (len > KARATSUBA_THRESHOLD) {
|
|
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
|
|
int midlen = botlen + 1;
|
|
ret += 4*midlen;
|
|
len = midlen;
|
|
}
|
|
return ret;
|
|
}
|
|
static void internal_mul(const BignumInt *a, const BignumInt *b,
|
|
BignumInt *c, int len, BignumInt *scratch)
|
|
{
|
|
if (len > KARATSUBA_THRESHOLD) {
|
|
int i;
|
|
|
|
/*
|
|
* Karatsuba divide-and-conquer algorithm. Cut each input in
|
|
* half, so that it's expressed as two big 'digits' in a giant
|
|
* base D:
|
|
*
|
|
* a = a_1 D + a_0
|
|
* b = b_1 D + b_0
|
|
*
|
|
* Then the product is of course
|
|
*
|
|
* ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
|
|
*
|
|
* and we compute the three coefficients by recursively
|
|
* calling ourself to do half-length multiplications.
|
|
*
|
|
* The clever bit that makes this worth doing is that we only
|
|
* need _one_ half-length multiplication for the central
|
|
* coefficient rather than the two that it obviouly looks
|
|
* like, because we can use a single multiplication to compute
|
|
*
|
|
* (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
|
|
*
|
|
* and then we subtract the other two coefficients (a_1 b_1
|
|
* and a_0 b_0) which we were computing anyway.
|
|
*
|
|
* Hence we get to multiply two numbers of length N in about
|
|
* three times as much work as it takes to multiply numbers of
|
|
* length N/2, which is obviously better than the four times
|
|
* as much work it would take if we just did a long
|
|
* conventional multiply.
|
|
*/
|
|
|
|
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
|
|
int midlen = botlen + 1;
|
|
BignumCarry carry;
|
|
#ifdef KARA_DEBUG
|
|
int i;
|
|
#endif
|
|
|
|
/*
|
|
* The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
|
|
* in the output array, so we can compute them immediately in
|
|
* place.
|
|
*/
|
|
|
|
#ifdef KARA_DEBUG
|
|
printf("a1,a0 = 0x");
|
|
for (i = 0; i < len; i++) {
|
|
if (i == toplen) printf(", 0x");
|
|
printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
|
|
}
|
|
printf("\n");
|
|
printf("b1,b0 = 0x");
|
|
for (i = 0; i < len; i++) {
|
|
if (i == toplen) printf(", 0x");
|
|
printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/* a_1 b_1 */
|
|
internal_mul(a, b, c, toplen, scratch);
|
|
#ifdef KARA_DEBUG
|
|
printf("a1b1 = 0x");
|
|
for (i = 0; i < 2*toplen; i++) {
|
|
printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/* a_0 b_0 */
|
|
internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
|
|
#ifdef KARA_DEBUG
|
|
printf("a0b0 = 0x");
|
|
for (i = 0; i < 2*botlen; i++) {
|
|
printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/* Zero padding. midlen exceeds toplen by at most 2, so just
|
|
* zero the first two words of each input and the rest will be
|
|
* copied over. */
|
|
scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
|
|
|
|
for (i = 0; i < toplen; i++) {
|
|
scratch[midlen - toplen + i] = a[i]; /* a_1 */
|
|
scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
|
|
}
|
|
|
|
/* compute a_1 + a_0 */
|
|
scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
|
|
#ifdef KARA_DEBUG
|
|
printf("a1plusa0 = 0x");
|
|
for (i = 0; i < midlen; i++) {
|
|
printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
/* compute b_1 + b_0 */
|
|
scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
|
|
scratch+midlen+1, botlen);
|
|
#ifdef KARA_DEBUG
|
|
printf("b1plusb0 = 0x");
|
|
for (i = 0; i < midlen; i++) {
|
|
printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* Now we can do the third multiplication.
|
|
*/
|
|
internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
|
|
scratch + 4*midlen);
|
|
#ifdef KARA_DEBUG
|
|
printf("a1plusa0timesb1plusb0 = 0x");
|
|
for (i = 0; i < 2*midlen; i++) {
|
|
printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* Now we can reuse the first half of 'scratch' to compute the
|
|
* sum of the outer two coefficients, to subtract from that
|
|
* product to obtain the middle one.
|
|
*/
|
|
scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
|
|
for (i = 0; i < 2*toplen; i++)
|
|
scratch[2*midlen - 2*toplen + i] = c[i];
|
|
scratch[1] = internal_add(scratch+2, c + 2*toplen,
|
|
scratch+2, 2*botlen);
|
|
#ifdef KARA_DEBUG
|
|
printf("a1b1plusa0b0 = 0x");
|
|
for (i = 0; i < 2*midlen; i++) {
|
|
printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
internal_sub(scratch + 2*midlen, scratch,
|
|
scratch + 2*midlen, 2*midlen);
|
|
#ifdef KARA_DEBUG
|
|
printf("a1b0plusa0b1 = 0x");
|
|
for (i = 0; i < 2*midlen; i++) {
|
|
printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* And now all we need to do is to add that middle coefficient
|
|
* back into the output. We may have to propagate a carry
|
|
* further up the output, but we can be sure it won't
|
|
* propagate right the way off the top.
|
|
*/
|
|
carry = internal_add(c + 2*len - botlen - 2*midlen,
|
|
scratch + 2*midlen,
|
|
c + 2*len - botlen - 2*midlen, 2*midlen);
|
|
i = 2*len - botlen - 2*midlen - 1;
|
|
while (carry) {
|
|
assert(i >= 0);
|
|
BignumADC(c[i], carry, c[i], 0, carry);
|
|
i--;
|
|
}
|
|
#ifdef KARA_DEBUG
|
|
printf("ab = 0x");
|
|
for (i = 0; i < 2*len; i++) {
|
|
printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
} else {
|
|
int i;
|
|
BignumInt carry;
|
|
const BignumInt *ap, *bp;
|
|
BignumInt *cp, *cps;
|
|
|
|
/*
|
|
* Multiply in the ordinary O(N^2) way.
|
|
*/
|
|
|
|
for (i = 0; i < 2 * len; i++)
|
|
c[i] = 0;
|
|
|
|
for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
|
|
carry = 0;
|
|
for (cp = cps, bp = b + len; cp--, bp-- > b ;)
|
|
BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);
|
|
*cp = carry;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Variant form of internal_mul used for the initial step of
|
|
* Montgomery reduction. Only bothers outputting 'len' words
|
|
* (everything above that is thrown away).
|
|
*/
|
|
static void internal_mul_low(const BignumInt *a, const BignumInt *b,
|
|
BignumInt *c, int len, BignumInt *scratch)
|
|
{
|
|
if (len > KARATSUBA_THRESHOLD) {
|
|
int i;
|
|
|
|
/*
|
|
* Karatsuba-aware version of internal_mul_low. As before, we
|
|
* express each input value as a shifted combination of two
|
|
* halves:
|
|
*
|
|
* a = a_1 D + a_0
|
|
* b = b_1 D + b_0
|
|
*
|
|
* Then the full product is, as before,
|
|
*
|
|
* ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
|
|
*
|
|
* Provided we choose D on the large side (so that a_0 and b_0
|
|
* are _at least_ as long as a_1 and b_1), we don't need the
|
|
* topmost term at all, and we only need half of the middle
|
|
* term. So there's no point in doing the proper Karatsuba
|
|
* optimisation which computes the middle term using the top
|
|
* one, because we'd take as long computing the top one as
|
|
* just computing the middle one directly.
|
|
*
|
|
* So instead, we do a much more obvious thing: we call the
|
|
* fully optimised internal_mul to compute a_0 b_0, and we
|
|
* recursively call ourself to compute the _bottom halves_ of
|
|
* a_1 b_0 and a_0 b_1, each of which we add into the result
|
|
* in the obvious way.
|
|
*
|
|
* In other words, there's no actual Karatsuba _optimisation_
|
|
* in this function; the only benefit in doing it this way is
|
|
* that we call internal_mul proper for a large part of the
|
|
* work, and _that_ can optimise its operation.
|
|
*/
|
|
|
|
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
|
|
|
|
/*
|
|
* Scratch space for the various bits and pieces we're going
|
|
* to be adding together: we need botlen*2 words for a_0 b_0
|
|
* (though we may end up throwing away its topmost word), and
|
|
* toplen words for each of a_1 b_0 and a_0 b_1. That adds up
|
|
* to exactly 2*len.
|
|
*/
|
|
|
|
/* a_0 b_0 */
|
|
internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
|
|
scratch + 2*len);
|
|
|
|
/* a_1 b_0 */
|
|
internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
|
|
scratch + 2*len);
|
|
|
|
/* a_0 b_1 */
|
|
internal_mul_low(a + len - toplen, b, scratch, toplen,
|
|
scratch + 2*len);
|
|
|
|
/* Copy the bottom half of the big coefficient into place */
|
|
for (i = 0; i < botlen; i++)
|
|
c[toplen + i] = scratch[2*toplen + botlen + i];
|
|
|
|
/* Add the two small coefficients, throwing away the returned carry */
|
|
internal_add(scratch, scratch + toplen, scratch, toplen);
|
|
|
|
/* And add that to the large coefficient, leaving the result in c. */
|
|
internal_add(scratch, scratch + 2*toplen + botlen - toplen,
|
|
c, toplen);
|
|
|
|
} else {
|
|
int i;
|
|
BignumInt carry;
|
|
const BignumInt *ap, *bp;
|
|
BignumInt *cp, *cps;
|
|
|
|
/*
|
|
* Multiply in the ordinary O(N^2) way.
|
|
*/
|
|
|
|
for (i = 0; i < len; i++)
|
|
c[i] = 0;
|
|
|
|
for (cps = c + len, ap = a + len; ap-- > a; cps--) {
|
|
carry = 0;
|
|
for (cp = cps, bp = b + len; bp--, cp-- > c ;)
|
|
BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Montgomery reduction. Expects x to be a big-endian array of 2*len
|
|
* BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
|
|
* BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
|
|
* a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
|
|
* x' < n.
|
|
*
|
|
* 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
|
|
* each, containing respectively n and the multiplicative inverse of
|
|
* -n mod r.
|
|
*
|
|
* 'tmp' is an array of BignumInt used as scratch space, of length at
|
|
* least 3*len + mul_compute_scratch(len).
|
|
*/
|
|
static void monty_reduce(BignumInt *x, const BignumInt *n,
|
|
const BignumInt *mninv, BignumInt *tmp, int len)
|
|
{
|
|
int i;
|
|
BignumInt carry;
|
|
|
|
/*
|
|
* Multiply x by (-n)^{-1} mod r. This gives us a value m such
|
|
* that mn is congruent to -x mod r. Hence, mn+x is an exact
|
|
* multiple of r, and is also (obviously) congruent to x mod n.
|
|
*/
|
|
internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
|
|
|
|
/*
|
|
* Compute t = (mn+x)/r in ordinary, non-modular, integer
|
|
* arithmetic. By construction this is exact, and is congruent mod
|
|
* n to x * r^{-1}, i.e. the answer we want.
|
|
*
|
|
* The following multiply leaves that answer in the _most_
|
|
* significant half of the 'x' array, so then we must shift it
|
|
* down.
|
|
*/
|
|
internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
|
|
carry = internal_add(x, tmp+len, x, 2*len);
|
|
for (i = 0; i < len; i++)
|
|
x[len + i] = x[i], x[i] = 0;
|
|
|
|
/*
|
|
* Reduce t mod n. This doesn't require a full-on division by n,
|
|
* but merely a test and single optional subtraction, since we can
|
|
* show that 0 <= t < 2n.
|
|
*
|
|
* Proof:
|
|
* + we computed m mod r, so 0 <= m < r.
|
|
* + so 0 <= mn < rn, obviously
|
|
* + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
|
|
* + yielding 0 <= (mn+x)/r < 2n as required.
|
|
*/
|
|
if (!carry) {
|
|
for (i = 0; i < len; i++)
|
|
if (x[len + i] != n[i])
|
|
break;
|
|
}
|
|
if (carry || i >= len || x[len + i] > n[i])
|
|
internal_sub(x+len, n, x+len, len);
|
|
}
|
|
|
|
static void internal_add_shifted(BignumInt *number,
|
|
BignumInt n, int shift)
|
|
{
|
|
int word = 1 + (shift / BIGNUM_INT_BITS);
|
|
int bshift = shift % BIGNUM_INT_BITS;
|
|
BignumInt addendh, addendl;
|
|
BignumCarry carry;
|
|
|
|
addendl = n << bshift;
|
|
addendh = (bshift == 0 ? 0 : n >> (BIGNUM_INT_BITS - bshift));
|
|
|
|
assert(word <= number[0]);
|
|
BignumADC(number[word], carry, number[word], addendl, 0);
|
|
word++;
|
|
if (!addendh && !carry)
|
|
return;
|
|
assert(word <= number[0]);
|
|
BignumADC(number[word], carry, number[word], addendh, carry);
|
|
word++;
|
|
while (carry) {
|
|
assert(word <= number[0]);
|
|
BignumADC(number[word], carry, number[word], 0, carry);
|
|
word++;
|
|
}
|
|
}
|
|
|
|
static int bn_clz(BignumInt x)
|
|
{
|
|
/*
|
|
* Count the leading zero bits in x. Equivalently, how far left
|
|
* would we need to shift x to make its top bit set?
|
|
*
|
|
* Precondition: x != 0.
|
|
*/
|
|
|
|
/* FIXME: would be nice to put in some compiler intrinsics under
|
|
* ifdef here */
|
|
int i, ret = 0;
|
|
for (i = BIGNUM_INT_BITS / 2; i != 0; i >>= 1) {
|
|
if ((x >> (BIGNUM_INT_BITS-i)) == 0) {
|
|
x <<= i;
|
|
ret += i;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static BignumInt reciprocal_word(BignumInt d)
|
|
{
|
|
BignumInt dshort, recip, prodh, prodl;
|
|
int corrections;
|
|
|
|
/*
|
|
* Input: a BignumInt value d, with its top bit set.
|
|
*/
|
|
assert(d >> (BIGNUM_INT_BITS-1) == 1);
|
|
|
|
/*
|
|
* Output: a value, shifted to fill a BignumInt, which is strictly
|
|
* less than 1/(d+1), i.e. is an *under*-estimate (but by as
|
|
* little as possible within the constraints) of the reciprocal of
|
|
* any number whose first BIGNUM_INT_BITS bits match d.
|
|
*
|
|
* Ideally we'd like to _totally_ fill BignumInt, i.e. always
|
|
* return a value with the top bit set. Unfortunately we can't
|
|
* quite guarantee that for all inputs and also return a fixed
|
|
* exponent. So instead we take our reciprocal to be
|
|
* 2^(BIGNUM_INT_BITS*2-1) / d, so that it has the top bit clear
|
|
* only in the exceptional case where d takes exactly the maximum
|
|
* value BIGNUM_INT_MASK; in that case, the top bit is clear and
|
|
* the next bit down is set.
|
|
*/
|
|
|
|
/*
|
|
* Start by computing a half-length version of the answer, by
|
|
* straightforward division within a BignumInt.
|
|
*/
|
|
dshort = (d >> (BIGNUM_INT_BITS/2)) + 1;
|
|
recip = (BIGNUM_TOP_BIT + dshort - 1) / dshort;
|
|
recip <<= BIGNUM_INT_BITS - BIGNUM_INT_BITS/2;
|
|
|
|
/*
|
|
* Newton-Raphson iteration to improve that starting reciprocal
|
|
* estimate: take f(x) = d - 1/x, and then the N-R formula gives
|
|
* x_new = x - f(x)/f'(x) = x - (d-1/x)/(1/x^2) = x(2-d*x). Or,
|
|
* taking our fixed-point representation into account, take f(x)
|
|
* to be d - K/x (where K = 2^(BIGNUM_INT_BITS*2-1) as discussed
|
|
* above) and then we get (2K - d*x) * x/K.
|
|
*
|
|
* Newton-Raphson doubles the number of correct bits at every
|
|
* iteration, and the initial division above already gave us half
|
|
* the output word, so it's only worth doing one iteration.
|
|
*/
|
|
BignumMULADD(prodh, prodl, recip, d, recip);
|
|
prodl = ~prodl;
|
|
prodh = ~prodh;
|
|
{
|
|
BignumCarry c;
|
|
BignumADC(prodl, c, prodl, 1, 0);
|
|
prodh += c;
|
|
}
|
|
BignumMUL(prodh, prodl, prodh, recip);
|
|
recip = (prodh << 1) | (prodl >> (BIGNUM_INT_BITS-1));
|
|
|
|
/*
|
|
* Now make sure we have the best possible reciprocal estimate,
|
|
* before we return it. We might have been off by a handful either
|
|
* way - not enough to bother with any better-thought-out kind of
|
|
* correction loop.
|
|
*/
|
|
BignumMULADD(prodh, prodl, recip, d, recip);
|
|
corrections = 0;
|
|
if (prodh >= BIGNUM_TOP_BIT) {
|
|
do {
|
|
BignumCarry c = 1;
|
|
BignumADC(prodl, c, prodl, ~d, c); prodh += BIGNUM_INT_MASK + c;
|
|
recip--;
|
|
corrections++;
|
|
} while (prodh >= ((BignumInt)1 << (BIGNUM_INT_BITS-1)));
|
|
} else {
|
|
while (1) {
|
|
BignumInt newprodh, newprodl;
|
|
BignumCarry c = 0;
|
|
BignumADC(newprodl, c, prodl, d, c); newprodh = prodh + c;
|
|
if (newprodh >= BIGNUM_TOP_BIT)
|
|
break;
|
|
prodh = newprodh;
|
|
prodl = newprodl;
|
|
recip++;
|
|
corrections++;
|
|
}
|
|
}
|
|
|
|
return recip;
|
|
}
|
|
|
|
/*
|
|
* Compute a = a % m.
|
|
* Input in first alen words of a and first mlen words of m.
|
|
* Output in first alen words of a
|
|
* (of which first alen-mlen words will be zero).
|
|
* Quotient is accumulated in the `quotient' array, which is a Bignum
|
|
* rather than the internal bigendian format.
|
|
*
|
|
* 'recip' must be the result of calling reciprocal_word() on the top
|
|
* BIGNUM_INT_BITS of the modulus (denoted m0 in comments below), with
|
|
* the topmost set bit normalised to the MSB of the input to
|
|
* reciprocal_word. 'rshift' is how far left the top nonzero word of
|
|
* the modulus had to be shifted to set that top bit.
|
|
*/
|
|
static void internal_mod(BignumInt *a, int alen,
|
|
BignumInt *m, int mlen,
|
|
BignumInt *quot, BignumInt recip, int rshift)
|
|
{
|
|
int i, k;
|
|
|
|
#ifdef DIVISION_DEBUG
|
|
{
|
|
int d;
|
|
printf("start division, m=0x");
|
|
for (d = 0; d < mlen; d++)
|
|
printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)m[d]);
|
|
printf(", recip=%#0*llx, rshift=%d\n",
|
|
BIGNUM_INT_BITS/4, (unsigned long long)recip, rshift);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Repeatedly use that reciprocal estimate to get a decent number
|
|
* of quotient bits, and subtract off the resulting multiple of m.
|
|
*
|
|
* Normally we expect to terminate this loop by means of finding
|
|
* out q=0 part way through, but one way in which we might not get
|
|
* that far in the first place is if the input a is actually zero,
|
|
* in which case we'll discard zero words from the front of a
|
|
* until we reach the termination condition in the for statement
|
|
* here.
|
|
*/
|
|
for (i = 0; i <= alen - mlen ;) {
|
|
BignumInt product;
|
|
BignumInt aword, q;
|
|
int shift, full_bitoffset, bitoffset, wordoffset;
|
|
|
|
#ifdef DIVISION_DEBUG
|
|
{
|
|
int d;
|
|
printf("main loop, a=0x");
|
|
for (d = 0; d < alen; d++)
|
|
printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
if (a[i] == 0) {
|
|
#ifdef DIVISION_DEBUG
|
|
printf("zero word at i=%d\n", i);
|
|
#endif
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
aword = a[i];
|
|
shift = bn_clz(aword);
|
|
aword <<= shift;
|
|
if (shift > 0 && i+1 < alen)
|
|
aword |= a[i+1] >> (BIGNUM_INT_BITS - shift);
|
|
|
|
{
|
|
BignumInt unused;
|
|
BignumMUL(q, unused, recip, aword);
|
|
(void)unused;
|
|
}
|
|
|
|
#ifdef DIVISION_DEBUG
|
|
printf("i=%d, aword=%#0*llx, shift=%d, q=%#0*llx\n",
|
|
i, BIGNUM_INT_BITS/4, (unsigned long long)aword,
|
|
shift, BIGNUM_INT_BITS/4, (unsigned long long)q);
|
|
#endif
|
|
|
|
/*
|
|
* Work out the right bit and word offsets to use when
|
|
* subtracting q*m from a.
|
|
*
|
|
* aword was taken from a[i], which means its LSB was at bit
|
|
* position (alen-1-i) * BIGNUM_INT_BITS. But then we shifted
|
|
* it left by 'shift', so now the low bit of aword corresponds
|
|
* to bit position (alen-1-i) * BIGNUM_INT_BITS - shift, i.e.
|
|
* aword is approximately equal to a / 2^(that).
|
|
*
|
|
* m0 comes from the top word of mod, so its LSB is at bit
|
|
* position (mlen-1) * BIGNUM_INT_BITS - rshift, i.e. it can
|
|
* be considered to be m / 2^(that power). 'recip' is the
|
|
* reciprocal of m0, times 2^(BIGNUM_INT_BITS*2-1), i.e. it's
|
|
* about 2^((mlen+1) * BIGNUM_INT_BITS - rshift - 1) / m.
|
|
*
|
|
* Hence, recip * aword is approximately equal to the product
|
|
* of those, which simplifies to
|
|
*
|
|
* a/m * 2^((mlen+2+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)
|
|
*
|
|
* But we've also shifted recip*aword down by BIGNUM_INT_BITS
|
|
* to form q, so we have
|
|
*
|
|
* q ~= a/m * 2^((mlen+1+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)
|
|
*
|
|
* and hence, when we now compute q*m, it will be about
|
|
* a*2^(all that lot), i.e. the negation of that expression is
|
|
* how far left we have to shift the product q*m to make it
|
|
* approximately equal to a.
|
|
*/
|
|
full_bitoffset = -((mlen+1+i-alen)*BIGNUM_INT_BITS + shift-rshift-1);
|
|
#ifdef DIVISION_DEBUG
|
|
printf("full_bitoffset=%d\n", full_bitoffset);
|
|
#endif
|
|
|
|
if (full_bitoffset < 0) {
|
|
/*
|
|
* If we find ourselves needing to shift q*m _right_, that
|
|
* means we've reached the bottom of the quotient. Clip q
|
|
* so that its right shift becomes zero, and if that means
|
|
* q becomes _actually_ zero, this loop is done.
|
|
*/
|
|
if (full_bitoffset <= -BIGNUM_INT_BITS)
|
|
break;
|
|
q >>= -full_bitoffset;
|
|
full_bitoffset = 0;
|
|
if (!q)
|
|
break;
|
|
#ifdef DIVISION_DEBUG
|
|
printf("now full_bitoffset=%d, q=%#0*llx\n",
|
|
full_bitoffset, BIGNUM_INT_BITS/4, (unsigned long long)q);
|
|
#endif
|
|
}
|
|
|
|
wordoffset = full_bitoffset / BIGNUM_INT_BITS;
|
|
bitoffset = full_bitoffset % BIGNUM_INT_BITS;
|
|
#ifdef DIVISION_DEBUG
|
|
printf("wordoffset=%d, bitoffset=%d\n", wordoffset, bitoffset);
|
|
#endif
|
|
|
|
/* wordoffset as computed above is the offset between the LSWs
|
|
* of m and a. But in fact m and a are stored MSW-first, so we
|
|
* need to adjust it to be the offset between the actual array
|
|
* indices, and flip the sign too. */
|
|
wordoffset = alen - mlen - wordoffset;
|
|
|
|
if (bitoffset == 0) {
|
|
BignumCarry c = 1;
|
|
BignumInt prev_hi_word = 0;
|
|
for (k = mlen - 1; wordoffset+k >= i; k--) {
|
|
BignumInt mword = k<0 ? 0 : m[k];
|
|
BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);
|
|
#ifdef DIVISION_DEBUG
|
|
printf(" aligned sub: product word for m[%d] = %#0*llx\n",
|
|
k, BIGNUM_INT_BITS/4,
|
|
(unsigned long long)product);
|
|
#endif
|
|
#ifdef DIVISION_DEBUG
|
|
printf(" aligned sub: subtrahend for a[%d] = %#0*llx\n",
|
|
wordoffset+k, BIGNUM_INT_BITS/4,
|
|
(unsigned long long)product);
|
|
#endif
|
|
BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~product, c);
|
|
}
|
|
} else {
|
|
BignumInt add_word = 0;
|
|
BignumInt c = 1;
|
|
BignumInt prev_hi_word = 0;
|
|
for (k = mlen - 1; wordoffset+k >= i; k--) {
|
|
BignumInt mword = k<0 ? 0 : m[k];
|
|
BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);
|
|
#ifdef DIVISION_DEBUG
|
|
printf(" unaligned sub: product word for m[%d] = %#0*llx\n",
|
|
k, BIGNUM_INT_BITS/4,
|
|
(unsigned long long)product);
|
|
#endif
|
|
|
|
add_word |= product << bitoffset;
|
|
|
|
#ifdef DIVISION_DEBUG
|
|
printf(" unaligned sub: subtrahend for a[%d] = %#0*llx\n",
|
|
wordoffset+k,
|
|
BIGNUM_INT_BITS/4, (unsigned long long)add_word);
|
|
#endif
|
|
BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~add_word, c);
|
|
|
|
add_word = product >> (BIGNUM_INT_BITS - bitoffset);
|
|
}
|
|
}
|
|
|
|
if (quot) {
|
|
#ifdef DIVISION_DEBUG
|
|
printf("adding quotient word %#0*llx << %d\n",
|
|
BIGNUM_INT_BITS/4, (unsigned long long)q, full_bitoffset);
|
|
#endif
|
|
internal_add_shifted(quot, q, full_bitoffset);
|
|
#ifdef DIVISION_DEBUG
|
|
{
|
|
int d;
|
|
printf("now quot=0x");
|
|
for (d = quot[0]; d > 0; d--)
|
|
printf("%0*llx", BIGNUM_INT_BITS/4,
|
|
(unsigned long long)quot[d]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef DIVISION_DEBUG
|
|
{
|
|
int d;
|
|
printf("end main loop, a=0x");
|
|
for (d = 0; d < alen; d++)
|
|
printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
|
|
if (quot) {
|
|
printf(", quot=0x");
|
|
for (d = quot[0]; d > 0; d--)
|
|
printf("%0*llx", BIGNUM_INT_BITS/4,
|
|
(unsigned long long)quot[d]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The above loop should terminate with the remaining value in a
|
|
* being strictly less than 2*m (if a >= 2*m then we should always
|
|
* have managed to get a nonzero q word), but we can't guarantee
|
|
* that it will be strictly less than m: consider a case where the
|
|
* remainder is 1, and another where the remainder is m-1. By the
|
|
* time a contains a value that's _about m_, you clearly can't
|
|
* distinguish those cases by looking at only the top word of a -
|
|
* you have to go all the way down to the bottom before you find
|
|
* out whether it's just less or just more than m.
|
|
*
|
|
* Hence, we now do a final fixup in which we subtract one last
|
|
* copy of m, or don't, accordingly. We should never have to
|
|
* subtract more than one copy of m here.
|
|
*/
|
|
for (i = 0; i < alen; i++) {
|
|
/* Compare a with m, word by word, from the MSW down. As soon
|
|
* as we encounter a difference, we know whether we need the
|
|
* fixup. */
|
|
int mindex = mlen-alen+i;
|
|
BignumInt mword = mindex < 0 ? 0 : m[mindex];
|
|
if (a[i] < mword) {
|
|
#ifdef DIVISION_DEBUG
|
|
printf("final fixup not needed, a < m\n");
|
|
#endif
|
|
return;
|
|
} else if (a[i] > mword) {
|
|
#ifdef DIVISION_DEBUG
|
|
printf("final fixup is needed, a > m\n");
|
|
#endif
|
|
break;
|
|
}
|
|
/* If neither of those cases happened, the words are the same,
|
|
* so keep going and look at the next one. */
|
|
}
|
|
#ifdef DIVISION_DEBUG
|
|
if (i == mlen) /* if we printed neither of the above diagnostics */
|
|
printf("final fixup is needed, a == m\n");
|
|
#endif
|
|
|
|
/*
|
|
* If we got here without returning, then a >= m, so we must
|
|
* subtract m, and increment the quotient.
|
|
*/
|
|
{
|
|
BignumCarry c = 1;
|
|
for (i = alen - 1; i >= 0; i--) {
|
|
int mindex = mlen-alen+i;
|
|
BignumInt mword = mindex < 0 ? 0 : m[mindex];
|
|
BignumADC(a[i], c, a[i], ~mword, c);
|
|
}
|
|
}
|
|
if (quot)
|
|
internal_add_shifted(quot, 1, 0);
|
|
|
|
#ifdef DIVISION_DEBUG
|
|
{
|
|
int d;
|
|
printf("after final fixup, a=0x");
|
|
for (d = 0; d < alen; d++)
|
|
printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
|
|
if (quot) {
|
|
printf(", quot=0x");
|
|
for (d = quot[0]; d > 0; d--)
|
|
printf("%0*llx", BIGNUM_INT_BITS/4,
|
|
(unsigned long long)quot[d]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Compute (base ^ exp) % mod, the pedestrian way.
|
|
*/
|
|
Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
|
|
{
|
|
BignumInt *a, *b, *n, *m, *scratch;
|
|
BignumInt recip;
|
|
int rshift;
|
|
int mlen, scratchlen, i, j;
|
|
Bignum base, result;
|
|
|
|
/*
|
|
* The most significant word of mod needs to be non-zero. It
|
|
* should already be, but let's make sure.
|
|
*/
|
|
assert(mod[mod[0]] != 0);
|
|
|
|
/*
|
|
* Make sure the base is smaller than the modulus, by reducing
|
|
* it modulo the modulus if not.
|
|
*/
|
|
base = bigmod(base_in, mod);
|
|
|
|
/* Allocate m of size mlen, copy mod to m */
|
|
/* We use big endian internally */
|
|
mlen = mod[0];
|
|
m = snewn(mlen, BignumInt);
|
|
for (j = 0; j < mlen; j++)
|
|
m[j] = mod[mod[0] - j];
|
|
|
|
/* Allocate n of size mlen, copy base to n */
|
|
n = snewn(mlen, BignumInt);
|
|
i = mlen - base[0];
|
|
for (j = 0; j < i; j++)
|
|
n[j] = 0;
|
|
for (j = 0; j < (int)base[0]; j++)
|
|
n[i + j] = base[base[0] - j];
|
|
|
|
/* Allocate a and b of size 2*mlen. Set a = 1 */
|
|
a = snewn(2 * mlen, BignumInt);
|
|
b = snewn(2 * mlen, BignumInt);
|
|
for (i = 0; i < 2 * mlen; i++)
|
|
a[i] = 0;
|
|
a[2 * mlen - 1] = 1;
|
|
|
|
/* Scratch space for multiplies */
|
|
scratchlen = mul_compute_scratch(mlen);
|
|
scratch = snewn(scratchlen, BignumInt);
|
|
|
|
/* Skip leading zero bits of exp. */
|
|
i = 0;
|
|
j = BIGNUM_INT_BITS-1;
|
|
while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {
|
|
j--;
|
|
if (j < 0) {
|
|
i++;
|
|
j = BIGNUM_INT_BITS-1;
|
|
}
|
|
}
|
|
|
|
/* Compute reciprocal of the top full word of the modulus */
|
|
{
|
|
BignumInt m0 = m[0];
|
|
rshift = bn_clz(m0);
|
|
if (rshift) {
|
|
m0 <<= rshift;
|
|
if (mlen > 1)
|
|
m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
|
|
}
|
|
recip = reciprocal_word(m0);
|
|
}
|
|
|
|
/* Main computation */
|
|
while (i < (int)exp[0]) {
|
|
while (j >= 0) {
|
|
internal_mul(a + mlen, a + mlen, b, mlen, scratch);
|
|
internal_mod(b, mlen * 2, m, mlen, NULL, recip, rshift);
|
|
if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {
|
|
internal_mul(b + mlen, n, a, mlen, scratch);
|
|
internal_mod(a, mlen * 2, m, mlen, NULL, recip, rshift);
|
|
} else {
|
|
BignumInt *t;
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
j--;
|
|
}
|
|
i++;
|
|
j = BIGNUM_INT_BITS-1;
|
|
}
|
|
|
|
/* Copy result to buffer */
|
|
result = newbn(mod[0]);
|
|
for (i = 0; i < mlen; i++)
|
|
result[result[0] - i] = a[i + mlen];
|
|
while (result[0] > 1 && result[result[0]] == 0)
|
|
result[0]--;
|
|
|
|
/* Free temporary arrays */
|
|
smemclr(a, 2 * mlen * sizeof(*a));
|
|
sfree(a);
|
|
smemclr(scratch, scratchlen * sizeof(*scratch));
|
|
sfree(scratch);
|
|
smemclr(b, 2 * mlen * sizeof(*b));
|
|
sfree(b);
|
|
smemclr(m, mlen * sizeof(*m));
|
|
sfree(m);
|
|
smemclr(n, mlen * sizeof(*n));
|
|
sfree(n);
|
|
|
|
freebn(base);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Compute (base ^ exp) % mod. Uses the Montgomery multiplication
|
|
* technique where possible, falling back to modpow_simple otherwise.
|
|
*/
|
|
Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
|
|
{
|
|
BignumInt *a, *b, *x, *n, *mninv, *scratch;
|
|
int len, scratchlen, i, j;
|
|
Bignum base, base2, r, rn, inv, result;
|
|
|
|
/*
|
|
* The most significant word of mod needs to be non-zero. It
|
|
* should already be, but let's make sure.
|
|
*/
|
|
assert(mod[mod[0]] != 0);
|
|
|
|
/*
|
|
* mod had better be odd, or we can't do Montgomery multiplication
|
|
* using a power of two at all.
|
|
*/
|
|
if (!(mod[1] & 1))
|
|
return modpow_simple(base_in, exp, mod);
|
|
|
|
/*
|
|
* Make sure the base is smaller than the modulus, by reducing
|
|
* it modulo the modulus if not.
|
|
*/
|
|
base = bigmod(base_in, mod);
|
|
|
|
/*
|
|
* Compute the inverse of n mod r, for monty_reduce. (In fact we
|
|
* want the inverse of _minus_ n mod r, but we'll sort that out
|
|
* below.)
|
|
*/
|
|
len = mod[0];
|
|
r = bn_power_2(BIGNUM_INT_BITS * len);
|
|
inv = modinv(mod, r);
|
|
assert(inv); /* cannot fail, since mod is odd and r is a power of 2 */
|
|
|
|
/*
|
|
* Multiply the base by r mod n, to get it into Montgomery
|
|
* representation.
|
|
*/
|
|
base2 = modmul(base, r, mod);
|
|
freebn(base);
|
|
base = base2;
|
|
|
|
rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
|
|
|
|
freebn(r); /* won't need this any more */
|
|
|
|
/*
|
|
* Set up internal arrays of the right lengths, in big-endian
|
|
* format, containing the base, the modulus, and the modulus's
|
|
* inverse.
|
|
*/
|
|
n = snewn(len, BignumInt);
|
|
for (j = 0; j < len; j++)
|
|
n[len - 1 - j] = mod[j + 1];
|
|
|
|
mninv = snewn(len, BignumInt);
|
|
for (j = 0; j < len; j++)
|
|
mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
|
|
freebn(inv); /* we don't need this copy of it any more */
|
|
/* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
|
|
x = snewn(len, BignumInt);
|
|
for (j = 0; j < len; j++)
|
|
x[j] = 0;
|
|
internal_sub(x, mninv, mninv, len);
|
|
|
|
/* x = snewn(len, BignumInt); */ /* already done above */
|
|
for (j = 0; j < len; j++)
|
|
x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
|
|
freebn(base); /* we don't need this copy of it any more */
|
|
|
|
a = snewn(2*len, BignumInt);
|
|
b = snewn(2*len, BignumInt);
|
|
for (j = 0; j < len; j++)
|
|
a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
|
|
freebn(rn);
|
|
|
|
/* Scratch space for multiplies */
|
|
scratchlen = 3*len + mul_compute_scratch(len);
|
|
scratch = snewn(scratchlen, BignumInt);
|
|
|
|
/* Skip leading zero bits of exp. */
|
|
i = 0;
|
|
j = BIGNUM_INT_BITS-1;
|
|
while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {
|
|
j--;
|
|
if (j < 0) {
|
|
i++;
|
|
j = BIGNUM_INT_BITS-1;
|
|
}
|
|
}
|
|
|
|
/* Main computation */
|
|
while (i < (int)exp[0]) {
|
|
while (j >= 0) {
|
|
internal_mul(a + len, a + len, b, len, scratch);
|
|
monty_reduce(b, n, mninv, scratch, len);
|
|
if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {
|
|
internal_mul(b + len, x, a, len, scratch);
|
|
monty_reduce(a, n, mninv, scratch, len);
|
|
} else {
|
|
BignumInt *t;
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
j--;
|
|
}
|
|
i++;
|
|
j = BIGNUM_INT_BITS-1;
|
|
}
|
|
|
|
/*
|
|
* Final monty_reduce to get back from the adjusted Montgomery
|
|
* representation.
|
|
*/
|
|
monty_reduce(a, n, mninv, scratch, len);
|
|
|
|
/* Copy result to buffer */
|
|
result = newbn(mod[0]);
|
|
for (i = 0; i < len; i++)
|
|
result[result[0] - i] = a[i + len];
|
|
while (result[0] > 1 && result[result[0]] == 0)
|
|
result[0]--;
|
|
|
|
/* Free temporary arrays */
|
|
smemclr(scratch, scratchlen * sizeof(*scratch));
|
|
sfree(scratch);
|
|
smemclr(a, 2 * len * sizeof(*a));
|
|
sfree(a);
|
|
smemclr(b, 2 * len * sizeof(*b));
|
|
sfree(b);
|
|
smemclr(mninv, len * sizeof(*mninv));
|
|
sfree(mninv);
|
|
smemclr(n, len * sizeof(*n));
|
|
sfree(n);
|
|
smemclr(x, len * sizeof(*x));
|
|
sfree(x);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Compute (p * q) % mod.
|
|
* The most significant word of mod MUST be non-zero.
|
|
* We assume that the result array is the same size as the mod array.
|
|
*/
|
|
Bignum modmul(Bignum p, Bignum q, Bignum mod)
|
|
{
|
|
BignumInt *a, *n, *m, *o, *scratch;
|
|
BignumInt recip;
|
|
int rshift, scratchlen;
|
|
int pqlen, mlen, rlen, i, j;
|
|
Bignum result;
|
|
|
|
/*
|
|
* The most significant word of mod needs to be non-zero. It
|
|
* should already be, but let's make sure.
|
|
*/
|
|
assert(mod[mod[0]] != 0);
|
|
|
|
/* Allocate m of size mlen, copy mod to m */
|
|
/* We use big endian internally */
|
|
mlen = mod[0];
|
|
m = snewn(mlen, BignumInt);
|
|
for (j = 0; j < mlen; j++)
|
|
m[j] = mod[mod[0] - j];
|
|
|
|
pqlen = (p[0] > q[0] ? p[0] : q[0]);
|
|
|
|
/*
|
|
* Make sure that we're allowing enough space. The shifting below
|
|
* will underflow the vectors we allocate if pqlen is too small.
|
|
*/
|
|
if (2*pqlen <= mlen)
|
|
pqlen = mlen/2 + 1;
|
|
|
|
/* Allocate n of size pqlen, copy p to n */
|
|
n = snewn(pqlen, BignumInt);
|
|
i = pqlen - p[0];
|
|
for (j = 0; j < i; j++)
|
|
n[j] = 0;
|
|
for (j = 0; j < (int)p[0]; j++)
|
|
n[i + j] = p[p[0] - j];
|
|
|
|
/* Allocate o of size pqlen, copy q to o */
|
|
o = snewn(pqlen, BignumInt);
|
|
i = pqlen - q[0];
|
|
for (j = 0; j < i; j++)
|
|
o[j] = 0;
|
|
for (j = 0; j < (int)q[0]; j++)
|
|
o[i + j] = q[q[0] - j];
|
|
|
|
/* Allocate a of size 2*pqlen for result */
|
|
a = snewn(2 * pqlen, BignumInt);
|
|
|
|
/* Scratch space for multiplies */
|
|
scratchlen = mul_compute_scratch(pqlen);
|
|
scratch = snewn(scratchlen, BignumInt);
|
|
|
|
/* Compute reciprocal of the top full word of the modulus */
|
|
{
|
|
BignumInt m0 = m[0];
|
|
rshift = bn_clz(m0);
|
|
if (rshift) {
|
|
m0 <<= rshift;
|
|
if (mlen > 1)
|
|
m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
|
|
}
|
|
recip = reciprocal_word(m0);
|
|
}
|
|
|
|
/* Main computation */
|
|
internal_mul(n, o, a, pqlen, scratch);
|
|
internal_mod(a, pqlen * 2, m, mlen, NULL, recip, rshift);
|
|
|
|
/* Copy result to buffer */
|
|
rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
|
|
result = newbn(rlen);
|
|
for (i = 0; i < rlen; i++)
|
|
result[result[0] - i] = a[i + 2 * pqlen - rlen];
|
|
while (result[0] > 1 && result[result[0]] == 0)
|
|
result[0]--;
|
|
|
|
/* Free temporary arrays */
|
|
smemclr(scratch, scratchlen * sizeof(*scratch));
|
|
sfree(scratch);
|
|
smemclr(a, 2 * pqlen * sizeof(*a));
|
|
sfree(a);
|
|
smemclr(m, mlen * sizeof(*m));
|
|
sfree(m);
|
|
smemclr(n, pqlen * sizeof(*n));
|
|
sfree(n);
|
|
smemclr(o, pqlen * sizeof(*o));
|
|
sfree(o);
|
|
|
|
return result;
|
|
}
|
|
|
|
Bignum modsub(const Bignum a, const Bignum b, const Bignum n)
|
|
{
|
|
Bignum a1, b1, ret;
|
|
|
|
if (bignum_cmp(a, n) >= 0) a1 = bigmod(a, n);
|
|
else a1 = a;
|
|
if (bignum_cmp(b, n) >= 0) b1 = bigmod(b, n);
|
|
else b1 = b;
|
|
|
|
if (bignum_cmp(a1, b1) >= 0) /* a >= b */
|
|
{
|
|
ret = bigsub(a1, b1);
|
|
}
|
|
else
|
|
{
|
|
/* Handle going round the corner of the modulus without having
|
|
* negative support in Bignum */
|
|
Bignum tmp = bigsub(n, b1);
|
|
assert(tmp);
|
|
ret = bigadd(tmp, a1);
|
|
freebn(tmp);
|
|
}
|
|
|
|
if (a != a1) freebn(a1);
|
|
if (b != b1) freebn(b1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute p % mod.
|
|
* The most significant word of mod MUST be non-zero.
|
|
* We assume that the result array is the same size as the mod array.
|
|
* We optionally write out a quotient if `quotient' is non-NULL.
|
|
* We can avoid writing out the result if `result' is NULL.
|
|
*/
|
|
static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
|
|
{
|
|
BignumInt *n, *m;
|
|
BignumInt recip;
|
|
int rshift;
|
|
int plen, mlen, i, j;
|
|
|
|
/*
|
|
* The most significant word of mod needs to be non-zero. It
|
|
* should already be, but let's make sure.
|
|
*/
|
|
assert(mod[mod[0]] != 0);
|
|
|
|
/* Allocate m of size mlen, copy mod to m */
|
|
/* We use big endian internally */
|
|
mlen = mod[0];
|
|
m = snewn(mlen, BignumInt);
|
|
for (j = 0; j < mlen; j++)
|
|
m[j] = mod[mod[0] - j];
|
|
|
|
plen = p[0];
|
|
/* Ensure plen > mlen */
|
|
if (plen <= mlen)
|
|
plen = mlen + 1;
|
|
|
|
/* Allocate n of size plen, copy p to n */
|
|
n = snewn(plen, BignumInt);
|
|
for (j = 0; j < plen; j++)
|
|
n[j] = 0;
|
|
for (j = 1; j <= (int)p[0]; j++)
|
|
n[plen - j] = p[j];
|
|
|
|
/* Compute reciprocal of the top full word of the modulus */
|
|
{
|
|
BignumInt m0 = m[0];
|
|
rshift = bn_clz(m0);
|
|
if (rshift) {
|
|
m0 <<= rshift;
|
|
if (mlen > 1)
|
|
m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
|
|
}
|
|
recip = reciprocal_word(m0);
|
|
}
|
|
|
|
/* Main computation */
|
|
internal_mod(n, plen, m, mlen, quotient, recip, rshift);
|
|
|
|
/* Copy result to buffer */
|
|
if (result) {
|
|
for (i = 1; i <= (int)result[0]; i++) {
|
|
int j = plen - i;
|
|
result[i] = j >= 0 ? n[j] : 0;
|
|
}
|
|
}
|
|
|
|
/* Free temporary arrays */
|
|
smemclr(m, mlen * sizeof(*m));
|
|
sfree(m);
|
|
smemclr(n, plen * sizeof(*n));
|
|
sfree(n);
|
|
}
|
|
|
|
/*
|
|
* Decrement a number.
|
|
*/
|
|
void decbn(Bignum bn)
|
|
{
|
|
int i = 1;
|
|
while (i < (int)bn[0] && bn[i] == 0)
|
|
bn[i++] = BIGNUM_INT_MASK;
|
|
bn[i]--;
|
|
}
|
|
|
|
Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
|
|
{
|
|
Bignum result;
|
|
int w, i;
|
|
|
|
assert(nbytes >= 0 && nbytes < INT_MAX/8);
|
|
|
|
w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
|
|
|
|
result = newbn(w);
|
|
for (i = 1; i <= w; i++)
|
|
result[i] = 0;
|
|
for (i = nbytes; i--;) {
|
|
unsigned char byte = *data++;
|
|
result[1 + i / BIGNUM_INT_BYTES] |=
|
|
(BignumInt)byte << (8*i % BIGNUM_INT_BITS);
|
|
}
|
|
|
|
bn_restore_invariant(result);
|
|
return result;
|
|
}
|
|
|
|
Bignum bignum_from_bytes_le(const unsigned char *data, int nbytes)
|
|
{
|
|
Bignum result;
|
|
int w, i;
|
|
|
|
assert(nbytes >= 0 && nbytes < INT_MAX/8);
|
|
|
|
w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
|
|
|
|
result = newbn(w);
|
|
for (i = 1; i <= w; i++)
|
|
result[i] = 0;
|
|
for (i = 0; i < nbytes; ++i) {
|
|
unsigned char byte = *data++;
|
|
result[1 + i / BIGNUM_INT_BYTES] |=
|
|
(BignumInt)byte << (8*i % BIGNUM_INT_BITS);
|
|
}
|
|
|
|
bn_restore_invariant(result);
|
|
return result;
|
|
}
|
|
|
|
Bignum bignum_from_decimal(const char *decimal)
|
|
{
|
|
Bignum result = copybn(Zero);
|
|
|
|
while (*decimal) {
|
|
Bignum tmp, tmp2;
|
|
|
|
if (!isdigit((unsigned char)*decimal)) {
|
|
freebn(result);
|
|
return 0;
|
|
}
|
|
|
|
tmp = bigmul(result, Ten);
|
|
tmp2 = bignum_from_long(*decimal - '0');
|
|
freebn(result);
|
|
result = bigadd(tmp, tmp2);
|
|
freebn(tmp);
|
|
freebn(tmp2);
|
|
|
|
decimal++;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Bignum bignum_random_in_range(const Bignum lower, const Bignum upper)
|
|
{
|
|
Bignum ret = NULL;
|
|
unsigned char *bytes;
|
|
int upper_len = bignum_bitcount(upper);
|
|
int upper_bytes = upper_len / 8;
|
|
int upper_bits = upper_len % 8;
|
|
if (upper_bits) ++upper_bytes;
|
|
|
|
bytes = snewn(upper_bytes, unsigned char);
|
|
do {
|
|
int i;
|
|
|
|
if (ret) freebn(ret);
|
|
|
|
for (i = 0; i < upper_bytes; ++i)
|
|
{
|
|
bytes[i] = (unsigned char)random_byte();
|
|
}
|
|
/* Mask the top to reduce failure rate to 50/50 */
|
|
if (upper_bits)
|
|
{
|
|
bytes[i - 1] &= 0xFF >> (8 - upper_bits);
|
|
}
|
|
|
|
ret = bignum_from_bytes(bytes, upper_bytes);
|
|
} while (bignum_cmp(ret, lower) < 0 || bignum_cmp(ret, upper) > 0);
|
|
smemclr(bytes, upper_bytes);
|
|
sfree(bytes);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Read an SSH-1-format bignum from a data buffer. Return the number
|
|
* of bytes consumed, or -1 if there wasn't enough data.
|
|
*/
|
|
int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
|
|
{
|
|
const unsigned char *p = data;
|
|
int i;
|
|
int w, b;
|
|
|
|
if (len < 2)
|
|
return -1;
|
|
|
|
w = 0;
|
|
for (i = 0; i < 2; i++)
|
|
w = (w << 8) + *p++;
|
|
b = (w + 7) / 8; /* bits -> bytes */
|
|
|
|
if (len < b+2)
|
|
return -1;
|
|
|
|
if (!result) /* just return length */
|
|
return b + 2;
|
|
|
|
*result = bignum_from_bytes(p, b);
|
|
|
|
return p + b - data;
|
|
}
|
|
|
|
/*
|
|
* Return the bit count of a bignum, for SSH-1 encoding.
|
|
*/
|
|
int bignum_bitcount(Bignum bn)
|
|
{
|
|
int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
|
|
while (bitcount >= 0
|
|
&& (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
|
|
return bitcount + 1;
|
|
}
|
|
|
|
/*
|
|
* Return the byte length of a bignum when SSH-1 encoded.
|
|
*/
|
|
int ssh1_bignum_length(Bignum bn)
|
|
{
|
|
return 2 + (bignum_bitcount(bn) + 7) / 8;
|
|
}
|
|
|
|
/*
|
|
* Return the byte length of a bignum when SSH-2 encoded.
|
|
*/
|
|
int ssh2_bignum_length(Bignum bn)
|
|
{
|
|
return 4 + (bignum_bitcount(bn) + 8) / 8;
|
|
}
|
|
|
|
/*
|
|
* Return a byte from a bignum; 0 is least significant, etc.
|
|
*/
|
|
int bignum_byte(Bignum bn, int i)
|
|
{
|
|
if (i < 0 || i >= (int)(BIGNUM_INT_BYTES * bn[0]))
|
|
return 0; /* beyond the end */
|
|
else
|
|
return (bn[i / BIGNUM_INT_BYTES + 1] >>
|
|
((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
|
|
}
|
|
|
|
/*
|
|
* Return a bit from a bignum; 0 is least significant, etc.
|
|
*/
|
|
int bignum_bit(Bignum bn, int i)
|
|
{
|
|
if (i < 0 || i >= (int)(BIGNUM_INT_BITS * bn[0]))
|
|
return 0; /* beyond the end */
|
|
else
|
|
return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
|
|
}
|
|
|
|
/*
|
|
* Set a bit in a bignum; 0 is least significant, etc.
|
|
*/
|
|
void bignum_set_bit(Bignum bn, int bitnum, int value)
|
|
{
|
|
if (bitnum < 0 || bitnum >= (int)(BIGNUM_INT_BITS * bn[0])) {
|
|
if (value) abort(); /* beyond the end */
|
|
} else {
|
|
int v = bitnum / BIGNUM_INT_BITS + 1;
|
|
BignumInt mask = (BignumInt)1 << (bitnum % BIGNUM_INT_BITS);
|
|
if (value)
|
|
bn[v] |= mask;
|
|
else
|
|
bn[v] &= ~mask;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write a SSH-1-format bignum into a buffer. It is assumed the
|
|
* buffer is big enough. Returns the number of bytes used.
|
|
*/
|
|
int ssh1_write_bignum(void *data, Bignum bn)
|
|
{
|
|
unsigned char *p = data;
|
|
int len = ssh1_bignum_length(bn);
|
|
int i;
|
|
int bitc = bignum_bitcount(bn);
|
|
|
|
*p++ = (bitc >> 8) & 0xFF;
|
|
*p++ = (bitc) & 0xFF;
|
|
for (i = len - 2; i--;)
|
|
*p++ = bignum_byte(bn, i);
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Compare two bignums. Returns like strcmp.
|
|
*/
|
|
int bignum_cmp(Bignum a, Bignum b)
|
|
{
|
|
int amax = a[0], bmax = b[0];
|
|
int i;
|
|
|
|
/* Annoyingly we have two representations of zero */
|
|
if (amax == 1 && a[amax] == 0)
|
|
amax = 0;
|
|
if (bmax == 1 && b[bmax] == 0)
|
|
bmax = 0;
|
|
|
|
assert(amax == 0 || a[amax] != 0);
|
|
assert(bmax == 0 || b[bmax] != 0);
|
|
|
|
i = (amax > bmax ? amax : bmax);
|
|
while (i) {
|
|
BignumInt aval = (i > amax ? 0 : a[i]);
|
|
BignumInt bval = (i > bmax ? 0 : b[i]);
|
|
if (aval < bval)
|
|
return -1;
|
|
if (aval > bval)
|
|
return +1;
|
|
i--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Right-shift one bignum to form another.
|
|
*/
|
|
Bignum bignum_rshift(Bignum a, int shift)
|
|
{
|
|
Bignum ret;
|
|
int i, shiftw, shiftb, shiftbb, bits;
|
|
BignumInt ai, ai1;
|
|
|
|
assert(shift >= 0);
|
|
|
|
bits = bignum_bitcount(a) - shift;
|
|
ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
|
|
|
|
if (ret) {
|
|
shiftw = shift / BIGNUM_INT_BITS;
|
|
shiftb = shift % BIGNUM_INT_BITS;
|
|
shiftbb = BIGNUM_INT_BITS - shiftb;
|
|
|
|
ai1 = a[shiftw + 1];
|
|
for (i = 1; i <= (int)ret[0]; i++) {
|
|
ai = ai1;
|
|
ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
|
|
ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Left-shift one bignum to form another.
|
|
*/
|
|
Bignum bignum_lshift(Bignum a, int shift)
|
|
{
|
|
Bignum ret;
|
|
int bits, shiftWords, shiftBits;
|
|
|
|
assert(shift >= 0);
|
|
|
|
bits = bignum_bitcount(a) + shift;
|
|
ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
|
|
|
|
shiftWords = shift / BIGNUM_INT_BITS;
|
|
shiftBits = shift % BIGNUM_INT_BITS;
|
|
|
|
if (shiftBits == 0)
|
|
{
|
|
memcpy(&ret[1 + shiftWords], &a[1], sizeof(BignumInt) * a[0]);
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
BignumInt carry = 0;
|
|
|
|
/* Remember that Bignum[0] is length, so add 1 */
|
|
for (i = shiftWords + 1; i < ((int)a[0]) + shiftWords + 1; ++i)
|
|
{
|
|
BignumInt from = a[i - shiftWords];
|
|
ret[i] = (from << shiftBits) | carry;
|
|
carry = from >> (BIGNUM_INT_BITS - shiftBits);
|
|
}
|
|
if (carry) ret[i] = carry;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Non-modular multiplication and addition.
|
|
*/
|
|
Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
|
|
{
|
|
int alen = a[0], blen = b[0];
|
|
int mlen = (alen > blen ? alen : blen);
|
|
int rlen, i, maxspot;
|
|
int wslen;
|
|
BignumInt *workspace;
|
|
Bignum ret;
|
|
|
|
/* mlen space for a, mlen space for b, 2*mlen for result,
|
|
* plus scratch space for multiplication */
|
|
wslen = mlen * 4 + mul_compute_scratch(mlen);
|
|
workspace = snewn(wslen, BignumInt);
|
|
for (i = 0; i < mlen; i++) {
|
|
workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
|
|
workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
|
|
}
|
|
|
|
internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
|
|
workspace + 2 * mlen, mlen, workspace + 4 * mlen);
|
|
|
|
/* now just copy the result back */
|
|
rlen = alen + blen + 1;
|
|
if (addend && rlen <= (int)addend[0])
|
|
rlen = addend[0] + 1;
|
|
ret = newbn(rlen);
|
|
maxspot = 0;
|
|
for (i = 1; i <= (int)ret[0]; i++) {
|
|
ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
|
|
if (ret[i] != 0)
|
|
maxspot = i;
|
|
}
|
|
ret[0] = maxspot;
|
|
|
|
/* now add in the addend, if any */
|
|
if (addend) {
|
|
BignumCarry carry = 0;
|
|
for (i = 1; i <= rlen; i++) {
|
|
BignumInt retword = (i <= (int)ret[0] ? ret[i] : 0);
|
|
BignumInt addword = (i <= (int)addend[0] ? addend[i] : 0);
|
|
BignumADC(ret[i], carry, retword, addword, carry);
|
|
if (ret[i] != 0 && i > maxspot)
|
|
maxspot = i;
|
|
}
|
|
}
|
|
ret[0] = maxspot;
|
|
|
|
smemclr(workspace, wslen * sizeof(*workspace));
|
|
sfree(workspace);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Non-modular multiplication.
|
|
*/
|
|
Bignum bigmul(Bignum a, Bignum b)
|
|
{
|
|
return bigmuladd(a, b, NULL);
|
|
}
|
|
|
|
/*
|
|
* Simple addition.
|
|
*/
|
|
Bignum bigadd(Bignum a, Bignum b)
|
|
{
|
|
int alen = a[0], blen = b[0];
|
|
int rlen = (alen > blen ? alen : blen) + 1;
|
|
int i, maxspot;
|
|
Bignum ret;
|
|
BignumCarry carry;
|
|
|
|
ret = newbn(rlen);
|
|
|
|
carry = 0;
|
|
maxspot = 0;
|
|
for (i = 1; i <= rlen; i++) {
|
|
BignumInt aword = (i <= (int)a[0] ? a[i] : 0);
|
|
BignumInt bword = (i <= (int)b[0] ? b[i] : 0);
|
|
BignumADC(ret[i], carry, aword, bword, carry);
|
|
if (ret[i] != 0 && i > maxspot)
|
|
maxspot = i;
|
|
}
|
|
ret[0] = maxspot;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Subtraction. Returns a-b, or NULL if the result would come out
|
|
* negative (recall that this entire bignum module only handles
|
|
* positive numbers).
|
|
*/
|
|
Bignum bigsub(Bignum a, Bignum b)
|
|
{
|
|
int alen = a[0], blen = b[0];
|
|
int rlen = (alen > blen ? alen : blen);
|
|
int i, maxspot;
|
|
Bignum ret;
|
|
BignumCarry carry;
|
|
|
|
ret = newbn(rlen);
|
|
|
|
carry = 1;
|
|
maxspot = 0;
|
|
for (i = 1; i <= rlen; i++) {
|
|
BignumInt aword = (i <= (int)a[0] ? a[i] : 0);
|
|
BignumInt bword = (i <= (int)b[0] ? b[i] : 0);
|
|
BignumADC(ret[i], carry, aword, ~bword, carry);
|
|
if (ret[i] != 0 && i > maxspot)
|
|
maxspot = i;
|
|
}
|
|
ret[0] = maxspot;
|
|
|
|
if (!carry) {
|
|
freebn(ret);
|
|
return NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Create a bignum which is the bitmask covering another one. That
|
|
* is, the smallest integer which is >= N and is also one less than
|
|
* a power of two.
|
|
*/
|
|
Bignum bignum_bitmask(Bignum n)
|
|
{
|
|
Bignum ret = copybn(n);
|
|
int i;
|
|
BignumInt j;
|
|
|
|
i = ret[0];
|
|
while (n[i] == 0 && i > 0)
|
|
i--;
|
|
if (i <= 0)
|
|
return ret; /* input was zero */
|
|
j = 1;
|
|
while (j < n[i])
|
|
j = 2 * j + 1;
|
|
ret[i] = j;
|
|
while (--i > 0)
|
|
ret[i] = BIGNUM_INT_MASK;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Convert an unsigned long into a bignum.
|
|
*/
|
|
Bignum bignum_from_long(unsigned long n)
|
|
{
|
|
const int maxwords =
|
|
(sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);
|
|
Bignum ret;
|
|
int i;
|
|
|
|
ret = newbn(maxwords);
|
|
ret[0] = 0;
|
|
for (i = 0; i < maxwords; i++) {
|
|
ret[i+1] = n >> (i * BIGNUM_INT_BITS);
|
|
if (ret[i+1] != 0)
|
|
ret[0] = i+1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Add a long to a bignum.
|
|
*/
|
|
Bignum bignum_add_long(Bignum number, unsigned long n)
|
|
{
|
|
const int maxwords =
|
|
(sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);
|
|
Bignum ret;
|
|
int words, i;
|
|
BignumCarry carry;
|
|
|
|
words = number[0];
|
|
if (words < maxwords)
|
|
words = maxwords;
|
|
words++;
|
|
ret = newbn(words);
|
|
|
|
carry = 0;
|
|
ret[0] = 0;
|
|
for (i = 0; i < words; i++) {
|
|
BignumInt nword = (i < maxwords ? n >> (i * BIGNUM_INT_BITS) : 0);
|
|
BignumInt numword = (i < number[0] ? number[i+1] : 0);
|
|
BignumADC(ret[i+1], carry, numword, nword, carry);
|
|
if (ret[i+1] != 0)
|
|
ret[0] = i+1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute the residue of a bignum, modulo a (max 16-bit) short.
|
|
*/
|
|
unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
|
|
{
|
|
unsigned long mod = modulus, r = 0;
|
|
/* Precompute (BIGNUM_INT_MASK+1) % mod */
|
|
unsigned long base_r = (BIGNUM_INT_MASK - modulus + 1) % mod;
|
|
int i;
|
|
|
|
for (i = number[0]; i > 0; i--) {
|
|
/*
|
|
* Conceptually, ((r << BIGNUM_INT_BITS) + number[i]) % mod
|
|
*/
|
|
r = ((r * base_r) + (number[i] % mod)) % mod;
|
|
}
|
|
return (unsigned short) r;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void diagbn(char *prefix, Bignum md)
|
|
{
|
|
int i, nibbles, morenibbles;
|
|
static const char hex[] = "0123456789ABCDEF";
|
|
|
|
debug(("%s0x", prefix ? prefix : ""));
|
|
|
|
nibbles = (3 + bignum_bitcount(md)) / 4;
|
|
if (nibbles < 1)
|
|
nibbles = 1;
|
|
morenibbles = 4 * md[0] - nibbles;
|
|
for (i = 0; i < morenibbles; i++)
|
|
debug(("-"));
|
|
for (i = nibbles; i--;)
|
|
debug(("%c",
|
|
hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
|
|
|
|
if (prefix)
|
|
debug(("\n"));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Simple division.
|
|
*/
|
|
Bignum bigdiv(Bignum a, Bignum b)
|
|
{
|
|
Bignum q = newbn(a[0]);
|
|
bigdivmod(a, b, NULL, q);
|
|
while (q[0] > 1 && q[q[0]] == 0)
|
|
q[0]--;
|
|
return q;
|
|
}
|
|
|
|
/*
|
|
* Simple remainder.
|
|
*/
|
|
Bignum bigmod(Bignum a, Bignum b)
|
|
{
|
|
Bignum r = newbn(b[0]);
|
|
bigdivmod(a, b, r, NULL);
|
|
while (r[0] > 1 && r[r[0]] == 0)
|
|
r[0]--;
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Greatest common divisor.
|
|
*/
|
|
Bignum biggcd(Bignum av, Bignum bv)
|
|
{
|
|
Bignum a = copybn(av);
|
|
Bignum b = copybn(bv);
|
|
|
|
while (bignum_cmp(b, Zero) != 0) {
|
|
Bignum t = newbn(b[0]);
|
|
bigdivmod(a, b, t, NULL);
|
|
while (t[0] > 1 && t[t[0]] == 0)
|
|
t[0]--;
|
|
freebn(a);
|
|
a = b;
|
|
b = t;
|
|
}
|
|
|
|
freebn(b);
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Modular inverse, using Euclid's extended algorithm.
|
|
*/
|
|
Bignum modinv(Bignum number, Bignum modulus)
|
|
{
|
|
Bignum a = copybn(modulus);
|
|
Bignum b = copybn(number);
|
|
Bignum xp = copybn(Zero);
|
|
Bignum x = copybn(One);
|
|
int sign = +1;
|
|
|
|
assert(number[number[0]] != 0);
|
|
assert(modulus[modulus[0]] != 0);
|
|
|
|
while (bignum_cmp(b, One) != 0) {
|
|
Bignum t, q;
|
|
|
|
if (bignum_cmp(b, Zero) == 0) {
|
|
/*
|
|
* Found a common factor between the inputs, so we cannot
|
|
* return a modular inverse at all.
|
|
*/
|
|
freebn(b);
|
|
freebn(a);
|
|
freebn(xp);
|
|
freebn(x);
|
|
return NULL;
|
|
}
|
|
|
|
t = newbn(b[0]);
|
|
q = newbn(a[0]);
|
|
bigdivmod(a, b, t, q);
|
|
while (t[0] > 1 && t[t[0]] == 0)
|
|
t[0]--;
|
|
while (q[0] > 1 && q[q[0]] == 0)
|
|
q[0]--;
|
|
freebn(a);
|
|
a = b;
|
|
b = t;
|
|
t = xp;
|
|
xp = x;
|
|
x = bigmuladd(q, xp, t);
|
|
sign = -sign;
|
|
freebn(t);
|
|
freebn(q);
|
|
}
|
|
|
|
freebn(b);
|
|
freebn(a);
|
|
freebn(xp);
|
|
|
|
/* now we know that sign * x == 1, and that x < modulus */
|
|
if (sign < 0) {
|
|
/* set a new x to be modulus - x */
|
|
Bignum newx = newbn(modulus[0]);
|
|
BignumInt carry = 0;
|
|
int maxspot = 1;
|
|
int i;
|
|
|
|
for (i = 1; i <= (int)newx[0]; i++) {
|
|
BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
|
|
BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
|
|
newx[i] = aword - bword - carry;
|
|
bword = ~bword;
|
|
carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
|
|
if (newx[i] != 0)
|
|
maxspot = i;
|
|
}
|
|
newx[0] = maxspot;
|
|
freebn(x);
|
|
x = newx;
|
|
}
|
|
|
|
/* and return. */
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* Render a bignum into decimal. Return a malloced string holding
|
|
* the decimal representation.
|
|
*/
|
|
char *bignum_decimal(Bignum x)
|
|
{
|
|
int ndigits, ndigit;
|
|
int i, iszero;
|
|
BignumInt carry;
|
|
char *ret;
|
|
BignumInt *workspace;
|
|
|
|
/*
|
|
* First, estimate the number of digits. Since log(10)/log(2)
|
|
* is just greater than 93/28 (the joys of continued fraction
|
|
* approximations...) we know that for every 93 bits, we need
|
|
* at most 28 digits. This will tell us how much to malloc.
|
|
*
|
|
* Formally: if x has i bits, that means x is strictly less
|
|
* than 2^i. Since 2 is less than 10^(28/93), this is less than
|
|
* 10^(28i/93). We need an integer power of ten, so we must
|
|
* round up (rounding down might make it less than x again).
|
|
* Therefore if we multiply the bit count by 28/93, rounding
|
|
* up, we will have enough digits.
|
|
*
|
|
* i=0 (i.e., x=0) is an irritating special case.
|
|
*/
|
|
i = bignum_bitcount(x);
|
|
if (!i)
|
|
ndigits = 1; /* x = 0 */
|
|
else
|
|
ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
|
|
ndigits++; /* allow for trailing \0 */
|
|
ret = snewn(ndigits, char);
|
|
|
|
/*
|
|
* Now allocate some workspace to hold the binary form as we
|
|
* repeatedly divide it by ten. Initialise this to the
|
|
* big-endian form of the number.
|
|
*/
|
|
workspace = snewn(x[0], BignumInt);
|
|
for (i = 0; i < (int)x[0]; i++)
|
|
workspace[i] = x[x[0] - i];
|
|
|
|
/*
|
|
* Next, write the decimal number starting with the last digit.
|
|
* We use ordinary short division, dividing 10 into the
|
|
* workspace.
|
|
*/
|
|
ndigit = ndigits - 1;
|
|
ret[ndigit] = '\0';
|
|
do {
|
|
iszero = 1;
|
|
carry = 0;
|
|
for (i = 0; i < (int)x[0]; i++) {
|
|
/*
|
|
* Conceptually, we want to compute
|
|
*
|
|
* (carry << BIGNUM_INT_BITS) + workspace[i]
|
|
* -----------------------------------------
|
|
* 10
|
|
*
|
|
* but we don't have an integer type longer than BignumInt
|
|
* to work with. So we have to do it in pieces.
|
|
*/
|
|
|
|
BignumInt q, r;
|
|
q = workspace[i] / 10;
|
|
r = workspace[i] % 10;
|
|
|
|
/* I want (BIGNUM_INT_MASK+1)/10 but can't say so directly! */
|
|
q += carry * ((BIGNUM_INT_MASK-9) / 10 + 1);
|
|
r += carry * ((BIGNUM_INT_MASK-9) % 10);
|
|
|
|
q += r / 10;
|
|
r %= 10;
|
|
|
|
workspace[i] = q;
|
|
carry = r;
|
|
|
|
if (workspace[i])
|
|
iszero = 0;
|
|
}
|
|
ret[--ndigit] = (char) (carry + '0');
|
|
} while (!iszero);
|
|
|
|
/*
|
|
* There's a chance we've fallen short of the start of the
|
|
* string. Correct if so.
|
|
*/
|
|
if (ndigit > 0)
|
|
memmove(ret, ret + ndigit, ndigits - ndigit);
|
|
|
|
/*
|
|
* Done.
|
|
*/
|
|
smemclr(workspace, x[0] * sizeof(*workspace));
|
|
sfree(workspace);
|
|
return ret;
|
|
}
|