putty/sshsha.c

906 строки
27 KiB
C

/*
* SHA-1 algorithm as described at
*
* http://csrc.nist.gov/cryptval/shs.html
*/
#include "ssh.h"
#include <assert.h>
/*
* Start by deciding whether we can support hardware SHA at all.
*/
#define HW_SHA1_NONE 0
#define HW_SHA1_NI 1
#define HW_SHA1_NEON 2
#ifdef _FORCE_SHA_NI
# define HW_SHA1 HW_SHA1_NI
#elif defined(__clang__)
# if __has_attribute(target) && __has_include(<wmmintrin.h>) && \
(defined(__x86_64__) || defined(__i386))
# define HW_SHA1 HW_SHA1_NI
# endif
#elif defined(__GNUC__)
# if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 9)) && \
(defined(__x86_64__) || defined(__i386))
# define HW_SHA1 HW_SHA1_NI
# endif
#elif defined (_MSC_VER)
# if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729
# define HW_SHA1 HW_SHA1_NI
# endif
#endif
#ifdef _FORCE_SHA_NEON
# define HW_SHA1 HW_SHA1_NEON
#elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* Arm can potentially support both endiannesses, but this code
* hasn't been tested on anything but little. If anyone wants to
* run big-endian, they'll need to fix it first. */
#elif defined __ARM_FEATURE_CRYPTO
/* If the Arm crypto extension is available already, we can
* support NEON SHA without having to enable anything by hand */
# define HW_SHA1 HW_SHA1_NEON
#elif defined(__clang__)
# if __has_attribute(target) && __has_include(<arm_neon.h>) && \
(defined(__aarch64__))
/* clang can enable the crypto extension in AArch64 using
* __attribute__((target)) */
# define HW_SHA1 HW_SHA1_NEON
# define USE_CLANG_ATTR_TARGET_AARCH64
# endif
#elif defined _MSC_VER
/* Visual Studio supports the crypto extension when targeting
* AArch64, but as of VS2017, the AArch32 header doesn't quite
* manage it (declaring the shae/shad intrinsics without a round
* key operand). */
# if defined _M_ARM64
# define HW_SHA1 HW_SHA1_NEON
# if defined _M_ARM64
# define USE_ARM64_NEON_H /* unusual header name in this case */
# endif
# endif
#endif
#if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA1
# undef HW_SHA1
# define HW_SHA1 HW_SHA1_NONE
#endif
/*
* The actual query function that asks if hardware acceleration is
* available.
*/
static bool sha1_hw_available(void);
/*
* The top-level selection function, caching the results of
* sha1_hw_available() so it only has to run once.
*/
static bool sha1_hw_available_cached(void)
{
static bool initialised = false;
static bool hw_available;
if (!initialised) {
hw_available = sha1_hw_available();
initialised = true;
}
return hw_available;
}
static ssh_hash *sha1_select(const ssh_hashalg *alg)
{
const ssh_hashalg *real_alg =
sha1_hw_available_cached() ? &ssh_sha1_hw : &ssh_sha1_sw;
return ssh_hash_new(real_alg);
}
const ssh_hashalg ssh_sha1 = {
sha1_select, NULL, NULL, NULL,
20, 64, HASHALG_NAMES_ANNOTATED("SHA-1", "dummy selector vtable"),
};
/* ----------------------------------------------------------------------
* Definitions likely to be helpful to multiple implementations.
*/
static const uint32_t sha1_initial_state[] = {
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0,
};
#define SHA1_ROUNDS_PER_STAGE 20
#define SHA1_STAGE0_CONSTANT 0x5a827999
#define SHA1_STAGE1_CONSTANT 0x6ed9eba1
#define SHA1_STAGE2_CONSTANT 0x8f1bbcdc
#define SHA1_STAGE3_CONSTANT 0xca62c1d6
#define SHA1_ROUNDS (4 * SHA1_ROUNDS_PER_STAGE)
typedef struct sha1_block sha1_block;
struct sha1_block {
uint8_t block[64];
size_t used;
uint64_t len;
};
static inline void sha1_block_setup(sha1_block *blk)
{
blk->used = 0;
blk->len = 0;
}
static inline bool sha1_block_write(
sha1_block *blk, const void **vdata, size_t *len)
{
size_t blkleft = sizeof(blk->block) - blk->used;
size_t chunk = *len < blkleft ? *len : blkleft;
const uint8_t *p = *vdata;
memcpy(blk->block + blk->used, p, chunk);
*vdata = p + chunk;
*len -= chunk;
blk->used += chunk;
blk->len += chunk;
if (blk->used == sizeof(blk->block)) {
blk->used = 0;
return true;
}
return false;
}
static inline void sha1_block_pad(sha1_block *blk, BinarySink *bs)
{
uint64_t final_len = blk->len << 3;
size_t pad = 1 + (63 & (55 - blk->used));
put_byte(bs, 0x80);
for (size_t i = 1; i < pad; i++)
put_byte(bs, 0);
put_uint64(bs, final_len);
assert(blk->used == 0 && "Should have exactly hit a block boundary");
}
/* ----------------------------------------------------------------------
* Software implementation of SHA-1.
*/
static inline uint32_t rol(uint32_t x, unsigned y)
{
return (x << (31 & y)) | (x >> (31 & -y));
}
static inline uint32_t Ch(uint32_t ctrl, uint32_t if1, uint32_t if0)
{
return if0 ^ (ctrl & (if1 ^ if0));
}
static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) | (z & (x | y));
}
static inline uint32_t Par(uint32_t x, uint32_t y, uint32_t z)
{
return (x ^ y ^ z);
}
static inline void sha1_sw_round(
unsigned round_index, const uint32_t *schedule,
uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e,
uint32_t f, uint32_t constant)
{
*e = rol(*a, 5) + f + *e + schedule[round_index] + constant;
*b = rol(*b, 30);
}
static void sha1_sw_block(uint32_t *core, const uint8_t *block)
{
uint32_t w[SHA1_ROUNDS];
uint32_t a,b,c,d,e;
for (size_t t = 0; t < 16; t++)
w[t] = GET_32BIT_MSB_FIRST(block + 4*t);
for (size_t t = 16; t < SHA1_ROUNDS; t++)
w[t] = rol(w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16], 1);
a = core[0]; b = core[1]; c = core[2]; d = core[3];
e = core[4];
size_t t = 0;
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Ch(b,c,d), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Ch(a,b,c), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Ch(e,a,b), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Ch(d,e,a), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Ch(c,d,e), SHA1_STAGE0_CONSTANT);
}
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE1_CONSTANT);
}
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Maj(b,c,d), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Maj(a,b,c), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Maj(e,a,b), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Maj(d,e,a), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Maj(c,d,e), SHA1_STAGE2_CONSTANT);
}
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE3_CONSTANT);
}
core[0] += a; core[1] += b; core[2] += c; core[3] += d; core[4] += e;
smemclr(w, sizeof(w));
}
typedef struct sha1_sw {
uint32_t core[5];
sha1_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha1_sw;
static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha1_sw_new(const ssh_hashalg *alg)
{
sha1_sw *s = snew(sha1_sw);
memcpy(s->core, sha1_initial_state, sizeof(s->core));
sha1_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha1_sw_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static ssh_hash *sha1_sw_copy(ssh_hash *hash)
{
sha1_sw *s = container_of(hash, sha1_sw, hash);
sha1_sw *copy = snew(sha1_sw);
memcpy(copy, s, sizeof(*copy));
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha1_sw_free(ssh_hash *hash)
{
sha1_sw *s = container_of(hash, sha1_sw, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len)
{
sha1_sw *s = BinarySink_DOWNCAST(bs, sha1_sw);
while (len > 0)
if (sha1_block_write(&s->blk, &vp, &len))
sha1_sw_block(s->core, s->blk.block);
}
static void sha1_sw_final(ssh_hash *hash, uint8_t *digest)
{
sha1_sw *s = container_of(hash, sha1_sw, hash);
sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
for (size_t i = 0; i < 5; i++)
PUT_32BIT_MSB_FIRST(digest + 4*i, s->core[i]);
sha1_sw_free(hash);
}
const ssh_hashalg ssh_sha1_sw = {
sha1_sw_new, sha1_sw_copy, sha1_sw_final, sha1_sw_free,
20, 64, HASHALG_NAMES_ANNOTATED("SHA-1", "unaccelerated"),
};
/* ----------------------------------------------------------------------
* Hardware-accelerated implementation of SHA-1 using x86 SHA-NI.
*/
#if HW_SHA1 == HW_SHA1_NI
/*
* Set target architecture for Clang and GCC
*/
#if defined(__clang__) || defined(__GNUC__)
# define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
#if !defined(__clang__)
# pragma GCC target("sha")
# pragma GCC target("sse4.1")
#endif
#else
# define FUNC_ISA
#endif
#include <wmmintrin.h>
#include <smmintrin.h>
#include <immintrin.h>
#if defined(__clang__) || defined(__GNUC__)
#include <shaintrin.h>
#endif
#if defined(__clang__) || defined(__GNUC__)
#include <cpuid.h>
#define GET_CPU_ID_0(out) \
__cpuid(0, (out)[0], (out)[1], (out)[2], (out)[3])
#define GET_CPU_ID_7(out) \
__cpuid_count(7, 0, (out)[0], (out)[1], (out)[2], (out)[3])
#else
#define GET_CPU_ID_0(out) __cpuid(out, 0)
#define GET_CPU_ID_7(out) __cpuidex(out, 7, 0)
#endif
static bool sha1_hw_available(void)
{
unsigned int CPUInfo[4];
GET_CPU_ID_0(CPUInfo);
if (CPUInfo[0] < 7)
return false;
GET_CPU_ID_7(CPUInfo);
return CPUInfo[1] & (1 << 29); /* Check SHA */
}
/* SHA1 implementation using new instructions
The code is based on Jeffrey Walton's SHA1 implementation:
https://github.com/noloader/SHA-Intrinsics
*/
FUNC_ISA
static inline void sha1_ni_block(__m128i *core, const uint8_t *p)
{
__m128i ABCD, E0, E1, MSG0, MSG1, MSG2, MSG3;
const __m128i MASK = _mm_set_epi64x(
0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
const __m128i *block = (const __m128i *)p;
/* Load initial values */
ABCD = core[0];
E0 = core[1];
/* Rounds 0-3 */
MSG0 = _mm_loadu_si128(block);
MSG0 = _mm_shuffle_epi8(MSG0, MASK);
E0 = _mm_add_epi32(E0, MSG0);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
/* Rounds 4-7 */
MSG1 = _mm_loadu_si128(block + 1);
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
/* Rounds 8-11 */
MSG2 = _mm_loadu_si128(block + 2);
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 12-15 */
MSG3 = _mm_loadu_si128(block + 3);
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 16-19 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 20-23 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 24-27 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 28-31 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 32-35 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 36-39 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 40-43 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 44-47 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 48-51 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 52-55 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 56-59 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 60-63 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 64-67 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 68-71 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 72-75 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
/* Rounds 76-79 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
/* Combine state */
core[0] = _mm_add_epi32(ABCD, core[0]);
core[1] = _mm_sha1nexte_epu32(E0, core[1]);
}
typedef struct sha1_ni {
/*
* core[0] stores the first four words of the SHA-1 state. core[1]
* stores just the fifth word, in the vector lane at the highest
* address.
*/
__m128i core[2];
sha1_block blk;
void *pointer_to_free;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha1_ni;
static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len);
static sha1_ni *sha1_ni_alloc(void)
{
/*
* The __m128i variables in the context structure need to be
* 16-byte aligned, but not all malloc implementations that this
* code has to work with will guarantee to return a 16-byte
* aligned pointer. So we over-allocate, manually realign the
* pointer ourselves, and store the original one inside the
* context so we know how to free it later.
*/
void *allocation = smalloc(sizeof(sha1_ni) + 15);
uintptr_t alloc_address = (uintptr_t)allocation;
uintptr_t aligned_address = (alloc_address + 15) & ~15;
sha1_ni *s = (sha1_ni *)aligned_address;
s->pointer_to_free = allocation;
return s;
}
FUNC_ISA static ssh_hash *sha1_ni_new(const ssh_hashalg *alg)
{
if (!sha1_hw_available_cached())
return NULL;
sha1_ni *s = sha1_ni_alloc();
/* Initialise the core vectors in their storage order */
s->core[0] = _mm_set_epi64x(
0x67452301efcdab89ULL, 0x98badcfe10325476ULL);
s->core[1] = _mm_set_epi32(0xc3d2e1f0, 0, 0, 0);
sha1_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha1_ni_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static ssh_hash *sha1_ni_copy(ssh_hash *hash)
{
sha1_ni *s = container_of(hash, sha1_ni, hash);
sha1_ni *copy = sha1_ni_alloc();
void *ptf_save = copy->pointer_to_free;
*copy = *s; /* structure copy */
copy->pointer_to_free = ptf_save;
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha1_ni_free(ssh_hash *hash)
{
sha1_ni *s = container_of(hash, sha1_ni, hash);
void *ptf = s->pointer_to_free;
smemclr(s, sizeof(*s));
sfree(ptf);
}
static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len)
{
sha1_ni *s = BinarySink_DOWNCAST(bs, sha1_ni);
while (len > 0)
if (sha1_block_write(&s->blk, &vp, &len))
sha1_ni_block(s->core, s->blk.block);
}
FUNC_ISA static void sha1_ni_final(ssh_hash *hash, uint8_t *digest)
{
sha1_ni *s = container_of(hash, sha1_ni, hash);
sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
/* Rearrange the first vector into its output order */
__m128i abcd = _mm_shuffle_epi32(s->core[0], 0x1B);
/* Byte-swap it into the output endianness */
const __m128i mask = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12);
abcd = _mm_shuffle_epi8(abcd, mask);
/* And store it */
_mm_storeu_si128((__m128i *)digest, abcd);
/* Finally, store the leftover word */
uint32_t e = _mm_extract_epi32(s->core[1], 3);
PUT_32BIT_MSB_FIRST(digest + 16, e);
sha1_ni_free(hash);
}
const ssh_hashalg ssh_sha1_hw = {
sha1_ni_new, sha1_ni_copy, sha1_ni_final, sha1_ni_free,
20, 64, HASHALG_NAMES_ANNOTATED("SHA-1", "SHA-NI accelerated"),
};
/* ----------------------------------------------------------------------
* Hardware-accelerated implementation of SHA-1 using Arm NEON.
*/
#elif HW_SHA1 == HW_SHA1_NEON
/*
* Manually set the target architecture, if we decided above that we
* need to.
*/
#ifdef USE_CLANG_ATTR_TARGET_AARCH64
/*
* A spot of cheating: redefine some ACLE feature macros before
* including arm_neon.h. Otherwise we won't get the SHA intrinsics
* defined by that header, because it will be looking at the settings
* for the whole translation unit rather than the ones we're going to
* put on some particular functions using __attribute__((target)).
*/
#define __ARM_NEON 1
#define __ARM_FEATURE_CRYPTO 1
#define FUNC_ISA __attribute__ ((target("neon,crypto")))
#endif /* USE_CLANG_ATTR_TARGET_AARCH64 */
#ifndef FUNC_ISA
#define FUNC_ISA
#endif
#ifdef USE_ARM64_NEON_H
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
static bool sha1_hw_available(void)
{
/*
* For Arm, we delegate to a per-platform detection function (see
* explanation in sshaes.c).
*/
return platform_sha1_hw_available();
}
typedef struct sha1_neon_core sha1_neon_core;
struct sha1_neon_core {
uint32x4_t abcd;
uint32_t e;
};
/* ------------- got up to here ----------------------------------------- */
FUNC_ISA
static inline uint32x4_t sha1_neon_load_input(const uint8_t *p)
{
return vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(p)));
}
FUNC_ISA
static inline uint32x4_t sha1_neon_schedule_update(
uint32x4_t m4, uint32x4_t m3, uint32x4_t m2, uint32x4_t m1)
{
return vsha1su1q_u32(vsha1su0q_u32(m4, m3, m2), m1);
}
/*
* SHA-1 has three different kinds of round, differing in whether they
* use the Ch, Maj or Par functions defined above. Each one uses a
* separate NEON instruction, so we define three inline functions for
* the different round types using this macro.
*
* The two batches of Par-type rounds also use a different constant,
* but that's passed in as an operand, so we don't need a fourth
* inline function just for that.
*/
#define SHA1_NEON_ROUND_FN(type) \
FUNC_ISA static inline sha1_neon_core sha1_neon_round4_##type( \
sha1_neon_core old, uint32x4_t sched, uint32x4_t constant) \
{ \
sha1_neon_core new; \
uint32x4_t round_input = vaddq_u32(sched, constant); \
new.abcd = vsha1##type##q_u32(old.abcd, old.e, round_input); \
new.e = vsha1h_u32(vget_lane_u32(vget_low_u32(old.abcd), 0)); \
return new; \
}
SHA1_NEON_ROUND_FN(c)
SHA1_NEON_ROUND_FN(p)
SHA1_NEON_ROUND_FN(m)
FUNC_ISA
static inline void sha1_neon_block(sha1_neon_core *core, const uint8_t *p)
{
uint32x4_t constant, s0, s1, s2, s3;
sha1_neon_core cr = *core;
constant = vdupq_n_u32(SHA1_STAGE0_CONSTANT);
s0 = sha1_neon_load_input(p);
cr = sha1_neon_round4_c(cr, s0, constant);
s1 = sha1_neon_load_input(p + 16);
cr = sha1_neon_round4_c(cr, s1, constant);
s2 = sha1_neon_load_input(p + 32);
cr = sha1_neon_round4_c(cr, s2, constant);
s3 = sha1_neon_load_input(p + 48);
cr = sha1_neon_round4_c(cr, s3, constant);
s0 = sha1_neon_schedule_update(s0, s1, s2, s3);
cr = sha1_neon_round4_c(cr, s0, constant);
constant = vdupq_n_u32(SHA1_STAGE1_CONSTANT);
s1 = sha1_neon_schedule_update(s1, s2, s3, s0);
cr = sha1_neon_round4_p(cr, s1, constant);
s2 = sha1_neon_schedule_update(s2, s3, s0, s1);
cr = sha1_neon_round4_p(cr, s2, constant);
s3 = sha1_neon_schedule_update(s3, s0, s1, s2);
cr = sha1_neon_round4_p(cr, s3, constant);
s0 = sha1_neon_schedule_update(s0, s1, s2, s3);
cr = sha1_neon_round4_p(cr, s0, constant);
s1 = sha1_neon_schedule_update(s1, s2, s3, s0);
cr = sha1_neon_round4_p(cr, s1, constant);
constant = vdupq_n_u32(SHA1_STAGE2_CONSTANT);
s2 = sha1_neon_schedule_update(s2, s3, s0, s1);
cr = sha1_neon_round4_m(cr, s2, constant);
s3 = sha1_neon_schedule_update(s3, s0, s1, s2);
cr = sha1_neon_round4_m(cr, s3, constant);
s0 = sha1_neon_schedule_update(s0, s1, s2, s3);
cr = sha1_neon_round4_m(cr, s0, constant);
s1 = sha1_neon_schedule_update(s1, s2, s3, s0);
cr = sha1_neon_round4_m(cr, s1, constant);
s2 = sha1_neon_schedule_update(s2, s3, s0, s1);
cr = sha1_neon_round4_m(cr, s2, constant);
constant = vdupq_n_u32(SHA1_STAGE3_CONSTANT);
s3 = sha1_neon_schedule_update(s3, s0, s1, s2);
cr = sha1_neon_round4_p(cr, s3, constant);
s0 = sha1_neon_schedule_update(s0, s1, s2, s3);
cr = sha1_neon_round4_p(cr, s0, constant);
s1 = sha1_neon_schedule_update(s1, s2, s3, s0);
cr = sha1_neon_round4_p(cr, s1, constant);
s2 = sha1_neon_schedule_update(s2, s3, s0, s1);
cr = sha1_neon_round4_p(cr, s2, constant);
s3 = sha1_neon_schedule_update(s3, s0, s1, s2);
cr = sha1_neon_round4_p(cr, s3, constant);
core->abcd = vaddq_u32(core->abcd, cr.abcd);
core->e += cr.e;
}
typedef struct sha1_neon {
sha1_neon_core core;
sha1_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha1_neon;
static void sha1_neon_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha1_neon_new(const ssh_hashalg *alg)
{
if (!sha1_hw_available_cached())
return NULL;
sha1_neon *s = snew(sha1_neon);
s->core.abcd = vld1q_u32(sha1_initial_state);
s->core.e = sha1_initial_state[4];
sha1_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha1_neon_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static ssh_hash *sha1_neon_copy(ssh_hash *hash)
{
sha1_neon *s = container_of(hash, sha1_neon, hash);
sha1_neon *copy = snew(sha1_neon);
*copy = *s; /* structure copy */
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha1_neon_free(ssh_hash *hash)
{
sha1_neon *s = container_of(hash, sha1_neon, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha1_neon_write(BinarySink *bs, const void *vp, size_t len)
{
sha1_neon *s = BinarySink_DOWNCAST(bs, sha1_neon);
while (len > 0)
if (sha1_block_write(&s->blk, &vp, &len))
sha1_neon_block(&s->core, s->blk.block);
}
static void sha1_neon_final(ssh_hash *hash, uint8_t *digest)
{
sha1_neon *s = container_of(hash, sha1_neon, hash);
sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
vst1q_u8(digest, vrev32q_u8(vreinterpretq_u8_u32(s->core.abcd)));
PUT_32BIT_MSB_FIRST(digest + 16, s->core.e);
sha1_neon_free(hash);
}
const ssh_hashalg ssh_sha1_hw = {
sha1_neon_new, sha1_neon_copy, sha1_neon_final, sha1_neon_free,
20, 64, HASHALG_NAMES_ANNOTATED("SHA-1", "NEON accelerated"),
};
/* ----------------------------------------------------------------------
* Stub functions if we have no hardware-accelerated SHA-1. In this
* case, sha1_hw_new returns NULL (though it should also never be
* selected by sha1_select, so the only thing that should even be
* _able_ to call it is testcrypt). As a result, the remaining vtable
* functions should never be called at all.
*/
#elif HW_SHA1 == HW_SHA1_NONE
static bool sha1_hw_available(void)
{
return false;
}
static ssh_hash *sha1_stub_new(const ssh_hashalg *alg)
{
return NULL;
}
#define STUB_BODY { unreachable("Should never be called"); }
static ssh_hash *sha1_stub_copy(ssh_hash *hash) STUB_BODY
static void sha1_stub_free(ssh_hash *hash) STUB_BODY
static void sha1_stub_final(ssh_hash *hash, uint8_t *digest) STUB_BODY
const ssh_hashalg ssh_sha1_hw = {
sha1_stub_new, sha1_stub_copy, sha1_stub_final, sha1_stub_free,
20, 64, HASHALG_NAMES_ANNOTATED(
"SHA-1", "!NONEXISTENT ACCELERATED VERSION!"),
};
#endif /* HW_SHA1 */