putty/testcrypt.c

1135 строки
33 KiB
C

/*
* testcrypt: a standalone test program that provides direct access to
* PuTTY's cryptography and mp_int code.
*/
/*
* This program speaks a line-oriented protocol on standard input and
* standard output. It's a half-duplex protocol: it expects to read
* one line of command, and then produce a fixed amount of output
* (namely a line containing a decimal integer, followed by that many
* lines each containing one return value).
*
* The protocol is human-readable enough to make it debuggable, but
* verbose enough that you probably wouldn't want to speak it by hand
* at any great length. The Python program test/testcrypt.py wraps it
* to give a more useful user-facing API, by invoking this binary as a
* subprocess.
*
* (I decided that was a better idea than making this program an
* actual Python module, partly because you can rewrap the same binary
* in another scripting language if you prefer, but mostly because
* it's easy to attach a debugger to testcrypt or to run it under
* sanitisers or valgrind or what have you.)
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "defs.h"
#include "ssh.h"
#include "misc.h"
#include "mpint.h"
#include "ecc.h"
static NORETURN void fatal_error(const char *p, ...)
{
va_list ap;
fprintf(stderr, "testcrypt: ");
va_start(ap, p);
vfprintf(stderr, p, ap);
va_end(ap);
fputc('\n', stderr);
exit(1);
}
void out_of_memory(void) { fatal_error("out of memory"); }
static bufchain random_data_queue;
void random_read(void *buf, size_t size)
{
if (!bufchain_try_fetch_consume(&random_data_queue, buf, size))
fatal_error("No random data in queue");
}
uint64_t prng_reseed_time_ms(void)
{
static uint64_t previous_time = 0;
return previous_time += 200;
}
#define VALUE_TYPES(X) \
X(string, strbuf *, strbuf_free(v)) \
X(mpint, mp_int *, mp_free(v)) \
X(modsqrt, ModsqrtContext *, modsqrt_free(v)) \
X(monty, MontyContext *, monty_free(v)) \
X(wcurve, WeierstrassCurve *, ecc_weierstrass_curve_free(v)) \
X(wpoint, WeierstrassPoint *, ecc_weierstrass_point_free(v)) \
X(mcurve, MontgomeryCurve *, ecc_montgomery_curve_free(v)) \
X(mpoint, MontgomeryPoint *, ecc_montgomery_point_free(v)) \
X(ecurve, EdwardsCurve *, ecc_edwards_curve_free(v)) \
X(epoint, EdwardsPoint *, ecc_edwards_point_free(v)) \
X(hash, ssh_hash *, ssh_hash_free(v)) \
X(key, ssh_key *, ssh_key_free(v)) \
X(cipher, ssh_cipher *, ssh_cipher_free(v)) \
X(mac, ssh2_mac *, ssh2_mac_free(v)) \
X(dh, dh_ctx *, dh_cleanup(v)) \
X(ecdh, ecdh_key *, ssh_ecdhkex_freekey(v)) \
X(rsakex, RSAKey *, ssh_rsakex_freekey(v)) \
X(rsa, RSAKey *, rsa_free(v)) \
X(prng, prng *, prng_free(v)) \
/* end of list */
typedef struct Value Value;
enum ValueType {
#define VALTYPE_ENUM(n,t,f) VT_##n,
VALUE_TYPES(VALTYPE_ENUM)
#undef VALTYPE_ENUM
};
typedef enum ValueType ValueType;
const char *const type_names[] = {
#define VALTYPE_NAME(n,t,f) #n,
VALUE_TYPES(VALTYPE_NAME)
#undef VALTYPE_NAME
};
struct Value {
/*
* Protocol identifier assigned to this value when it was created.
* Lives in the same malloced block as this Value object itself.
*/
ptrlen id;
/*
* Type of the value.
*/
ValueType type;
/*
* Union of all the things it could hold.
*/
union {
#define VALTYPE_UNION(n,t,f) t vu_##n;
VALUE_TYPES(VALTYPE_UNION)
#undef VALTYPE_UNION
};
};
static int valuecmp(void *av, void *bv)
{
Value *a = (Value *)av, *b = (Value *)bv;
return ptrlen_strcmp(a->id, b->id);
}
static int valuefind(void *av, void *bv)
{
ptrlen *a = (ptrlen *)av;
Value *b = (Value *)bv;
return ptrlen_strcmp(*a, b->id);
}
static tree234 *values;
static Value *value_new(ValueType vt)
{
static uint64_t next_index = 0;
char *name = dupprintf("%s%"PRIu64, type_names[vt], next_index++);
size_t namelen = strlen(name);
Value *val = snew_plus(Value, namelen+1);
memcpy(snew_plus_get_aux(val), name, namelen+1);
val->id.ptr = snew_plus_get_aux(val);
val->id.len = namelen;
val->type = vt;
Value *added = add234(values, val);
assert(added == val);
sfree(name);
return val;
}
#define VALTYPE_RETURNFN(n,t,f) \
void return_val_##n(strbuf *out, t v) { \
Value *val = value_new(VT_##n); \
val->vu_##n = v; \
put_datapl(out, val->id); \
put_byte(out, '\n'); \
}
VALUE_TYPES(VALTYPE_RETURNFN)
#undef VALTYPE_RETURNFN
static ptrlen get_word(BinarySource *in)
{
ptrlen toret;
toret.ptr = get_ptr(in);
toret.len = 0;
while (get_avail(in) && get_byte(in) != ' ')
toret.len++;
return toret;
}
static const ssh_hashalg *get_hashalg(BinarySource *in)
{
static const struct {
const char *key;
const ssh_hashalg *value;
} algs[] = {
{"md5", &ssh_md5},
{"sha1", &ssh_sha1},
{"sha1_sw", &ssh_sha1_sw},
{"sha1_hw", &ssh_sha1_hw},
{"sha256", &ssh_sha256},
{"sha256_sw", &ssh_sha256_sw},
{"sha256_hw", &ssh_sha256_hw},
{"sha384", &ssh_sha384},
{"sha512", &ssh_sha512},
};
ptrlen name = get_word(in);
for (size_t i = 0; i < lenof(algs); i++)
if (ptrlen_eq_string(name, algs[i].key))
return algs[i].value;
fatal_error("hashalg '%.*s': not found", PTRLEN_PRINTF(name));
}
static const ssh2_macalg *get_macalg(BinarySource *in)
{
static const struct {
const char *key;
const ssh2_macalg *value;
} algs[] = {
{"hmac_md5", &ssh_hmac_md5},
{"hmac_sha1", &ssh_hmac_sha1},
{"hmac_sha1_buggy", &ssh_hmac_sha1_buggy},
{"hmac_sha1_96", &ssh_hmac_sha1_96},
{"hmac_sha1_96_buggy", &ssh_hmac_sha1_96_buggy},
{"hmac_sha256", &ssh_hmac_sha256},
{"poly1305", &ssh2_poly1305},
};
ptrlen name = get_word(in);
for (size_t i = 0; i < lenof(algs); i++)
if (ptrlen_eq_string(name, algs[i].key))
return algs[i].value;
fatal_error("macalg '%.*s': not found", PTRLEN_PRINTF(name));
}
static const ssh_keyalg *get_keyalg(BinarySource *in)
{
static const struct {
const char *key;
const ssh_keyalg *value;
} algs[] = {
{"dsa", &ssh_dss},
{"rsa", &ssh_rsa},
{"ed25519", &ssh_ecdsa_ed25519},
{"p256", &ssh_ecdsa_nistp256},
{"p384", &ssh_ecdsa_nistp384},
{"p521", &ssh_ecdsa_nistp521},
};
ptrlen name = get_word(in);
for (size_t i = 0; i < lenof(algs); i++)
if (ptrlen_eq_string(name, algs[i].key))
return algs[i].value;
fatal_error("keyalg '%.*s': not found", PTRLEN_PRINTF(name));
}
static const ssh_cipheralg *get_cipheralg(BinarySource *in)
{
static const struct {
const char *key;
const ssh_cipheralg *value;
} algs[] = {
{"3des_ctr", &ssh_3des_ssh2_ctr},
{"3des_ssh2", &ssh_3des_ssh2},
{"3des_ssh1", &ssh_3des_ssh1},
{"des_cbc", &ssh_des},
{"aes256_ctr", &ssh_aes256_sdctr},
{"aes256_ctr_hw", &ssh_aes256_sdctr_hw},
{"aes256_ctr_sw", &ssh_aes256_sdctr_sw},
{"aes256_cbc", &ssh_aes256_cbc},
{"aes256_cbc_hw", &ssh_aes256_cbc_hw},
{"aes256_cbc_sw", &ssh_aes256_cbc_sw},
{"aes192_ctr", &ssh_aes192_sdctr},
{"aes192_ctr_hw", &ssh_aes192_sdctr_hw},
{"aes192_ctr_sw", &ssh_aes192_sdctr_sw},
{"aes192_cbc", &ssh_aes192_cbc},
{"aes192_cbc_hw", &ssh_aes192_cbc_hw},
{"aes192_cbc_sw", &ssh_aes192_cbc_sw},
{"aes128_ctr", &ssh_aes128_sdctr},
{"aes128_ctr_hw", &ssh_aes128_sdctr_hw},
{"aes128_ctr_sw", &ssh_aes128_sdctr_sw},
{"aes128_cbc", &ssh_aes128_cbc},
{"aes128_cbc_hw", &ssh_aes128_cbc_hw},
{"aes128_cbc_sw", &ssh_aes128_cbc_sw},
{"blowfish_ctr", &ssh_blowfish_ssh2_ctr},
{"blowfish_ssh2", &ssh_blowfish_ssh2},
{"blowfish_ssh1", &ssh_blowfish_ssh1},
{"arcfour256", &ssh_arcfour256_ssh2},
{"arcfour128", &ssh_arcfour128_ssh2},
{"chacha20_poly1305", &ssh2_chacha20_poly1305},
};
ptrlen name = get_word(in);
for (size_t i = 0; i < lenof(algs); i++)
if (ptrlen_eq_string(name, algs[i].key))
return algs[i].value;
fatal_error("cipheralg '%.*s': not found", PTRLEN_PRINTF(name));
}
static const ssh_kex *get_dh_group(BinarySource *in)
{
static const struct {
const char *key;
const ssh_kexes *value;
} algs[] = {
{"group1", &ssh_diffiehellman_group1},
{"group14", &ssh_diffiehellman_group14},
};
ptrlen name = get_word(in);
for (size_t i = 0; i < lenof(algs); i++)
if (ptrlen_eq_string(name, algs[i].key))
return algs[i].value->list[0];
fatal_error("dh_group '%.*s': not found", PTRLEN_PRINTF(name));
}
static const ssh_kex *get_ecdh_alg(BinarySource *in)
{
static const struct {
const char *key;
const ssh_kex *value;
} algs[] = {
{"curve25519", &ssh_ec_kex_curve25519},
{"nistp256", &ssh_ec_kex_nistp256},
{"nistp384", &ssh_ec_kex_nistp384},
{"nistp521", &ssh_ec_kex_nistp521},
};
ptrlen name = get_word(in);
for (size_t i = 0; i < lenof(algs); i++)
if (ptrlen_eq_string(name, algs[i].key))
return algs[i].value;
fatal_error("ecdh_alg '%.*s': not found", PTRLEN_PRINTF(name));
}
static RsaSsh1Order get_rsaorder(BinarySource *in)
{
static const struct {
const char *key;
RsaSsh1Order value;
} orders[] = {
{"exponent_first", RSA_SSH1_EXPONENT_FIRST},
{"modulus_first", RSA_SSH1_MODULUS_FIRST},
};
ptrlen name = get_word(in);
for (size_t i = 0; i < lenof(orders); i++)
if (ptrlen_eq_string(name, orders[i].key))
return orders[i].value;
fatal_error("rsaorder '%.*s': not found", PTRLEN_PRINTF(name));
}
static uintmax_t get_uint(BinarySource *in)
{
ptrlen word = get_word(in);
char *string = mkstr(word);
uintmax_t toret = strtoumax(string, NULL, 0);
sfree(string);
return toret;
}
static Value *lookup_value(ptrlen word)
{
Value *val = find234(values, &word, valuefind);
if (!val)
fatal_error("id '%.*s': not found", PTRLEN_PRINTF(word));
return val;
}
static Value *get_value(BinarySource *in)
{
return lookup_value(get_word(in));
}
typedef void (*finaliser_fn_t)(strbuf *out, void *ctx);
struct finaliser {
finaliser_fn_t fn;
void *ctx;
};
static struct finaliser *finalisers;
size_t nfinalisers, finalisersize;
static void add_finaliser(finaliser_fn_t fn, void *ctx)
{
sgrowarray(finalisers, finalisersize, nfinalisers);
finalisers[nfinalisers].fn = fn;
finalisers[nfinalisers].ctx = ctx;
nfinalisers++;
}
static void run_finalisers(strbuf *out)
{
for (size_t i = 0; i < nfinalisers; i++)
finalisers[i].fn(out, finalisers[i].ctx);
nfinalisers = 0;
}
static void finaliser_return_value(strbuf *out, void *ctx)
{
Value *val = (Value *)ctx;
put_datapl(out, val->id);
put_byte(out, '\n');
}
#define VALTYPE_GETFN(n,t,f) \
static Value *unwrap_value_##n(Value *val) { \
ValueType expected = VT_##n; \
if (expected != val->type) \
fatal_error("id '%.*s': expected %s, got %s", \
PTRLEN_PRINTF(val->id), \
type_names[expected], type_names[val->type]); \
return val; \
} \
static Value *get_value_##n(BinarySource *in) { \
return unwrap_value_##n(get_value(in)); \
} \
static t get_val_##n(BinarySource *in) { \
return get_value_##n(in)->vu_##n; \
}
VALUE_TYPES(VALTYPE_GETFN)
#undef VALTYPE_GETFN
static ptrlen get_val_string_ptrlen(BinarySource *in)
{
return ptrlen_from_strbuf(get_val_string(in));
}
static char *get_val_string_asciz(BinarySource *in)
{
return get_val_string(in)->s;
}
static mp_int **get_out_val_mpint(BinarySource *in)
{
Value *val = value_new(VT_mpint);
add_finaliser(finaliser_return_value, val);
return &val->vu_mpint;
}
static void finaliser_return_uint(strbuf *out, void *ctx)
{
unsigned *uval = (unsigned *)ctx;
strbuf_catf(out, "%u\n", *uval);
sfree(uval);
}
static unsigned *get_out_uint(BinarySource *in)
{
unsigned *uval = snew(unsigned);
add_finaliser(finaliser_return_uint, uval);
return uval;
}
static BinarySink *get_out_val_string_binarysink(BinarySource *in)
{
Value *val = value_new(VT_string);
val->vu_string = strbuf_new();
add_finaliser(finaliser_return_value, val);
return BinarySink_UPCAST(val->vu_string);
}
static void finaliser_sfree(strbuf *out, void *ctx)
{
sfree(ctx);
}
static BinarySource *get_val_string_binarysource(BinarySource *in)
{
strbuf *sb = get_val_string(in);
BinarySource *src = snew(BinarySource);
BinarySource_BARE_INIT(src, sb->u, sb->len);
add_finaliser(finaliser_sfree, src);
return src;
}
static ssh_hash *get_consumed_val_hash(BinarySource *in)
{
Value *val = get_value_hash(in);
ssh_hash *toret = val->vu_hash;
del234(values, val);
sfree(val);
return toret;
}
static void return_int(strbuf *out, intmax_t u)
{
strbuf_catf(out, "%"PRIdMAX"\n", u);
}
static void return_uint(strbuf *out, uintmax_t u)
{
strbuf_catf(out, "0x%"PRIXMAX"\n", u);
}
static void return_boolean(strbuf *out, bool b)
{
strbuf_catf(out, "%s\n", b ? "true" : "false");
}
static void return_val_string_asciz(strbuf *out, char *s)
{
strbuf *sb = strbuf_new();
put_data(sb, s, strlen(s));
sfree(s);
return_val_string(out, sb);
}
static void return_opt_val_string_asciz(strbuf *out, char *s)
{
if (!s)
strbuf_catf(out, "NULL\n");
else
return_val_string_asciz(out, s);
}
static void return_opt_val_cipher(strbuf *out, ssh_cipher *c)
{
if (!c)
strbuf_catf(out, "NULL\n");
else
return_val_cipher(out, c);
}
static void return_opt_val_hash(strbuf *out, ssh_hash *h)
{
if (!h)
strbuf_catf(out, "NULL\n");
else
return_val_hash(out, h);
}
static void handle_hello(BinarySource *in, strbuf *out)
{
strbuf_catf(out, "hello, world\n");
}
static void rsa_free(RSAKey *rsa)
{
freersakey(rsa);
sfree(rsa);
}
static void free_value(Value *val)
{
switch (val->type) {
#define VALTYPE_FREE(n,t,f) case VT_##n: { t v = val->vu_##n; (f); break; }
VALUE_TYPES(VALTYPE_FREE)
#undef VALTYPE_FREE
}
sfree(val);
}
static void handle_free(BinarySource *in, strbuf *out)
{
Value *val = get_value(in);
del234(values, val);
free_value(val);
}
static void handle_newstring(BinarySource *in, strbuf *out)
{
strbuf *sb = strbuf_new();
while (get_avail(in)) {
char c = get_byte(in);
if (c == '%') {
char hex[3];
hex[0] = get_byte(in);
if (hex[0] != '%') {
hex[1] = get_byte(in);
hex[2] = '\0';
c = strtoul(hex, NULL, 16);
}
}
put_byte(sb, c);
}
return_val_string(out, sb);
}
static void handle_getstring(BinarySource *in, strbuf *out)
{
strbuf *sb = get_val_string(in);
for (size_t i = 0; i < sb->len; i++) {
char c = sb->s[i];
if (c > ' ' && c < 0x7F && c != '%') {
put_byte(out, c);
} else {
strbuf_catf(out, "%%%02X", 0xFFU & (unsigned)c);
}
}
put_byte(out, '\n');
}
static void handle_mp_literal(BinarySource *in, strbuf *out)
{
ptrlen pl = get_word(in);
char *str = mkstr(pl);
mp_int *mp = mp__from_string_literal(str);
sfree(str);
return_val_mpint(out, mp);
}
static void handle_mp_dump(BinarySource *in, strbuf *out)
{
mp_int *mp = get_val_mpint(in);
for (size_t i = mp_max_bytes(mp); i-- > 0 ;)
strbuf_catf(out, "%02X", mp_get_byte(mp, i));
put_byte(out, '\n');
}
static void random_queue(ptrlen pl)
{
bufchain_add(&random_data_queue, pl.ptr, pl.len);
}
static size_t random_queue_len(void)
{
return bufchain_size(&random_data_queue);
}
static void random_clear(void)
{
bufchain_clear(&random_data_queue);
}
mp_int *monty_identity_wrapper(MontyContext *mc)
{
return mp_copy(monty_identity(mc));
}
#define monty_identity monty_identity_wrapper
mp_int *monty_modulus_wrapper(MontyContext *mc)
{
return mp_copy(monty_modulus(mc));
}
#define monty_modulus monty_modulus_wrapper
strbuf *ssh_hash_final_wrapper(ssh_hash *h)
{
strbuf *sb = strbuf_new();
void *p = strbuf_append(sb, ssh_hash_alg(h)->hlen);
ssh_hash_final(h, p);
return sb;
}
#undef ssh_hash_final
#define ssh_hash_final ssh_hash_final_wrapper
void ssh_cipher_setiv_wrapper(ssh_cipher *c, ptrlen key)
{
if (key.len != ssh_cipher_alg(c)->blksize)
fatal_error("ssh_cipher_setiv: needs exactly %d bytes",
ssh_cipher_alg(c)->blksize);
ssh_cipher_setiv(c, key.ptr);
}
#undef ssh_cipher_setiv
#define ssh_cipher_setiv ssh_cipher_setiv_wrapper
void ssh_cipher_setkey_wrapper(ssh_cipher *c, ptrlen key)
{
if (key.len != ssh_cipher_alg(c)->padded_keybytes)
fatal_error("ssh_cipher_setkey: needs exactly %d bytes",
ssh_cipher_alg(c)->padded_keybytes);
ssh_cipher_setkey(c, key.ptr);
}
#undef ssh_cipher_setkey
#define ssh_cipher_setkey ssh_cipher_setkey_wrapper
strbuf *ssh_cipher_encrypt_wrapper(ssh_cipher *c, ptrlen input)
{
if (input.len % ssh_cipher_alg(c)->blksize)
fatal_error("ssh_cipher_encrypt: needs a multiple of %d bytes",
ssh_cipher_alg(c)->blksize);
strbuf *sb = strbuf_new();
put_datapl(sb, input);
ssh_cipher_encrypt(c, sb->u, sb->len);
return sb;
}
#undef ssh_cipher_encrypt
#define ssh_cipher_encrypt ssh_cipher_encrypt_wrapper
strbuf *ssh_cipher_decrypt_wrapper(ssh_cipher *c, ptrlen input)
{
if (input.len % ssh_cipher_alg(c)->blksize)
fatal_error("ssh_cipher_decrypt: needs a multiple of %d bytes",
ssh_cipher_alg(c)->blksize);
strbuf *sb = strbuf_new();
put_datapl(sb, input);
ssh_cipher_decrypt(c, sb->u, sb->len);
return sb;
}
#undef ssh_cipher_decrypt
#define ssh_cipher_decrypt ssh_cipher_decrypt_wrapper
strbuf *ssh_cipher_encrypt_length_wrapper(ssh_cipher *c, ptrlen input,
unsigned long seq)
{
if (input.len != 4)
fatal_error("ssh_cipher_encrypt_length: needs exactly 4 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, input);
ssh_cipher_encrypt_length(c, sb->u, sb->len, seq);
return sb;
}
#undef ssh_cipher_encrypt_length
#define ssh_cipher_encrypt_length ssh_cipher_encrypt_length_wrapper
strbuf *ssh_cipher_decrypt_length_wrapper(ssh_cipher *c, ptrlen input,
unsigned long seq)
{
if (input.len % ssh_cipher_alg(c)->blksize)
fatal_error("ssh_cipher_decrypt_length: needs exactly 4 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, input);
ssh_cipher_decrypt_length(c, sb->u, sb->len, seq);
return sb;
}
#undef ssh_cipher_decrypt_length
#define ssh_cipher_decrypt_length ssh_cipher_decrypt_length_wrapper
strbuf *ssh2_mac_genresult_wrapper(ssh2_mac *m)
{
strbuf *sb = strbuf_new();
void *u = strbuf_append(sb, ssh2_mac_alg(m)->len);
ssh2_mac_genresult(m, u);
return sb;
}
#undef ssh2_mac_genresult
#define ssh2_mac_genresult ssh2_mac_genresult_wrapper
bool dh_validate_f_wrapper(dh_ctx *dh, mp_int *f)
{
return dh_validate_f(dh, f) == NULL;
}
#define dh_validate_f dh_validate_f_wrapper
void ssh_hash_update(ssh_hash *h, ptrlen pl)
{
put_datapl(h, pl);
}
void ssh2_mac_update(ssh2_mac *m, ptrlen pl)
{
put_datapl(m, pl);
}
static RSAKey *rsa_new(void)
{
RSAKey *rsa = snew(RSAKey);
memset(rsa, 0, sizeof(RSAKey));
return rsa;
}
strbuf *rsa_ssh1_encrypt_wrapper(ptrlen input, RSAKey *key)
{
/* Fold the boolean return value in C into the string return value
* for this purpose, by returning the empty string on failure */
strbuf *sb = strbuf_new();
put_datapl(sb, input);
if (!rsa_ssh1_encrypt(sb->u, sb->len, key))
sb->len = 0;
return sb;
}
#define rsa_ssh1_encrypt rsa_ssh1_encrypt_wrapper
strbuf *rsa_ssh1_decrypt_pkcs1_wrapper(mp_int *input, RSAKey *key)
{
/* Again, return "" on failure */
strbuf *sb = strbuf_new();
if (!rsa_ssh1_decrypt_pkcs1(input, key, sb))
sb->len = 0;
return sb;
}
#define rsa_ssh1_decrypt_pkcs1 rsa_ssh1_decrypt_pkcs1_wrapper
strbuf *des_encrypt_xdmauth_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 7)
fatal_error("des_encrypt_xdmauth: key must be 7 bytes long");
if (data.len % 8 != 0)
fatal_error("des_encrypt_xdmauth: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, data);
des_encrypt_xdmauth(key.ptr, sb->u, sb->len);
return sb;
}
#define des_encrypt_xdmauth des_encrypt_xdmauth_wrapper
strbuf *des_decrypt_xdmauth_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 7)
fatal_error("des_decrypt_xdmauth: key must be 7 bytes long");
if (data.len % 8 != 0)
fatal_error("des_decrypt_xdmauth: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, data);
des_decrypt_xdmauth(key.ptr, sb->u, sb->len);
return sb;
}
#define des_decrypt_xdmauth des_decrypt_xdmauth_wrapper
strbuf *des3_encrypt_pubkey_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 16)
fatal_error("des3_encrypt_pubkey: key must be 16 bytes long");
if (data.len % 8 != 0)
fatal_error("des3_encrypt_pubkey: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, data);
des3_encrypt_pubkey(key.ptr, sb->u, sb->len);
return sb;
}
#define des3_encrypt_pubkey des3_encrypt_pubkey_wrapper
strbuf *des3_decrypt_pubkey_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 16)
fatal_error("des3_decrypt_pubkey: key must be 16 bytes long");
if (data.len % 8 != 0)
fatal_error("des3_decrypt_pubkey: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, data);
des3_decrypt_pubkey(key.ptr, sb->u, sb->len);
return sb;
}
#define des3_decrypt_pubkey des3_decrypt_pubkey_wrapper
strbuf *des3_encrypt_pubkey_ossh_wrapper(ptrlen key, ptrlen iv, ptrlen data)
{
if (key.len != 24)
fatal_error("des3_encrypt_pubkey_ossh: key must be 24 bytes long");
if (iv.len != 8)
fatal_error("des3_encrypt_pubkey_ossh: iv must be 8 bytes long");
if (data.len % 8 != 0)
fatal_error("des3_encrypt_pubkey_ossh: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, data);
des3_encrypt_pubkey_ossh(key.ptr, iv.ptr, sb->u, sb->len);
return sb;
}
#define des3_encrypt_pubkey_ossh des3_encrypt_pubkey_ossh_wrapper
strbuf *des3_decrypt_pubkey_ossh_wrapper(ptrlen key, ptrlen iv, ptrlen data)
{
if (key.len != 24)
fatal_error("des3_decrypt_pubkey_ossh: key must be 24 bytes long");
if (iv.len != 8)
fatal_error("des3_encrypt_pubkey_ossh: iv must be 8 bytes long");
if (data.len % 8 != 0)
fatal_error("des3_decrypt_pubkey_ossh: data must be a multiple of 8 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, data);
des3_decrypt_pubkey_ossh(key.ptr, iv.ptr, sb->u, sb->len);
return sb;
}
#define des3_decrypt_pubkey_ossh des3_decrypt_pubkey_ossh_wrapper
strbuf *aes256_encrypt_pubkey_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 32)
fatal_error("aes256_encrypt_pubkey: key must be 32 bytes long");
if (data.len % 16 != 0)
fatal_error("aes256_encrypt_pubkey: data must be a multiple of 16 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, data);
aes256_encrypt_pubkey(key.ptr, sb->u, sb->len);
return sb;
}
#define aes256_encrypt_pubkey aes256_encrypt_pubkey_wrapper
strbuf *aes256_decrypt_pubkey_wrapper(ptrlen key, ptrlen data)
{
if (key.len != 32)
fatal_error("aes256_decrypt_pubkey: key must be 32 bytes long");
if (data.len % 16 != 0)
fatal_error("aes256_decrypt_pubkey: data must be a multiple of 16 bytes");
strbuf *sb = strbuf_new();
put_datapl(sb, data);
aes256_decrypt_pubkey(key.ptr, sb->u, sb->len);
return sb;
}
#define aes256_decrypt_pubkey aes256_decrypt_pubkey_wrapper
strbuf *prng_read_wrapper(prng *pr, size_t size)
{
strbuf *sb = strbuf_new();
prng_read(pr, strbuf_append(sb, size), size);
return sb;
}
#define prng_read prng_read_wrapper
void prng_seed_update(prng *pr, ptrlen data)
{
put_datapl(pr, data);
}
bool crcda_detect(ptrlen packet, ptrlen iv)
{
if (iv.len != 0 && iv.len != 8)
fatal_error("crcda_detect: iv must be empty or 8 bytes long");
if (packet.len % 8 != 0)
fatal_error("crcda_detect: packet must be a multiple of 8 bytes");
struct crcda_ctx *ctx = crcda_make_context();
bool toret = detect_attack(ctx, packet.ptr, packet.len,
iv.len ? iv.ptr : NULL);
crcda_free_context(ctx);
return toret;
}
#define return_void(out, expression) (expression)
static void no_progress(void *param, int action, int phase, int iprogress) {}
mp_int *primegen_wrapper(
int bits, int modulus, int residue, mp_int *factor, unsigned firstbits)
{
return primegen(bits, modulus, residue, factor,
0, no_progress, NULL, firstbits);
}
#define primegen primegen_wrapper
#define VALTYPE_TYPEDEF(n,t,f) \
typedef t TD_val_##n; \
typedef t *TD_out_val_##n;
VALUE_TYPES(VALTYPE_TYPEDEF)
#undef VALTYPE_TYPEDEF
#define OPTIONAL_PTR_FUNC(type) \
typedef TD_val_##type TD_opt_val_##type; \
static TD_opt_val_##type get_opt_val_##type(BinarySource *in) { \
ptrlen word = get_word(in); \
if (ptrlen_eq_string(word, "NULL")) \
return NULL; \
return unwrap_value_##type(lookup_value(word))->vu_##type; \
}
OPTIONAL_PTR_FUNC(cipher)
OPTIONAL_PTR_FUNC(mpint)
typedef uintmax_t TD_uint;
typedef ptrlen TD_val_string_ptrlen;
typedef char *TD_val_string_asciz;
typedef BinarySource *TD_val_string_binarysource;
typedef unsigned *TD_out_uint;
typedef BinarySink *TD_out_val_string_binarysink;
typedef ssh_hash *TD_consumed_val_hash;
typedef const ssh_hashalg *TD_hashalg;
typedef const ssh2_macalg *TD_macalg;
typedef const ssh_keyalg *TD_keyalg;
typedef const ssh_cipheralg *TD_cipheralg;
typedef const ssh_kex *TD_dh_group;
typedef const ssh_kex *TD_ecdh_alg;
typedef RsaSsh1Order TD_rsaorder;
#define FUNC0(rettype, function) \
static void handle_##function(BinarySource *in, strbuf *out) { \
return_##rettype(out, function()); \
}
#define FUNC1(rettype, function, type1) \
static void handle_##function(BinarySource *in, strbuf *out) { \
TD_##type1 arg1 = get_##type1(in); \
return_##rettype(out, function(arg1)); \
}
#define FUNC2(rettype, function, type1, type2) \
static void handle_##function(BinarySource *in, strbuf *out) { \
TD_##type1 arg1 = get_##type1(in); \
TD_##type2 arg2 = get_##type2(in); \
return_##rettype(out, function(arg1, arg2)); \
}
#define FUNC3(rettype, function, type1, type2, type3) \
static void handle_##function(BinarySource *in, strbuf *out) { \
TD_##type1 arg1 = get_##type1(in); \
TD_##type2 arg2 = get_##type2(in); \
TD_##type3 arg3 = get_##type3(in); \
return_##rettype(out, function(arg1, arg2, arg3)); \
}
#define FUNC4(rettype, function, type1, type2, type3, type4) \
static void handle_##function(BinarySource *in, strbuf *out) { \
TD_##type1 arg1 = get_##type1(in); \
TD_##type2 arg2 = get_##type2(in); \
TD_##type3 arg3 = get_##type3(in); \
TD_##type4 arg4 = get_##type4(in); \
return_##rettype(out, function(arg1, arg2, arg3, arg4)); \
}
#define FUNC5(rettype, function, type1, type2, type3, type4, type5) \
static void handle_##function(BinarySource *in, strbuf *out) { \
TD_##type1 arg1 = get_##type1(in); \
TD_##type2 arg2 = get_##type2(in); \
TD_##type3 arg3 = get_##type3(in); \
TD_##type4 arg4 = get_##type4(in); \
TD_##type5 arg5 = get_##type5(in); \
return_##rettype(out, function(arg1, arg2, arg3, arg4, arg5)); \
}
#include "testcrypt.h"
#undef FUNC5
#undef FUNC4
#undef FUNC3
#undef FUNC2
#undef FUNC1
#undef FUNC0
static void process_line(BinarySource *in, strbuf *out)
{
ptrlen id = get_word(in);
#define DISPATCH_COMMAND(cmd) \
if (ptrlen_eq_string(id, #cmd)) { \
handle_##cmd(in, out); \
return; \
}
DISPATCH_COMMAND(hello);
DISPATCH_COMMAND(free);
DISPATCH_COMMAND(newstring);
DISPATCH_COMMAND(getstring);
DISPATCH_COMMAND(mp_literal);
DISPATCH_COMMAND(mp_dump);
#define FUNC(rettype, function, ...) \
if (ptrlen_eq_string(id, #function)) { \
handle_##function(in, out); \
return; \
}
#define FUNC0 FUNC
#define FUNC1 FUNC
#define FUNC2 FUNC
#define FUNC3 FUNC
#define FUNC4 FUNC
#define FUNC5 FUNC
#include "testcrypt.h"
#undef FUNC5
#undef FUNC4
#undef FUNC3
#undef FUNC2
#undef FUNC1
#undef FUNC0
fatal_error("command '%.*s': unrecognised", PTRLEN_PRINTF(id));
}
static void free_all_values(void)
{
for (Value *val; (val = delpos234(values, 0)) != NULL ;)
free_value(val);
freetree234(values);
}
void dputs(const char *buf)
{
fputs(buf, stderr);
}
int main(int argc, char **argv)
{
const char *infile = NULL, *outfile = NULL;
bool doing_opts = true;
while (--argc > 0) {
char *p = *++argv;
if (p[0] == '-' && doing_opts) {
if (!strcmp(p, "-o")) {
if (--argc <= 0) {
fprintf(stderr, "'-o' expects a filename\n");
return 1;
}
outfile = *++argv;
} else if (!strcmp(p, "--")) {
doing_opts = false;
} else if (!strcmp(p, "--help")) {
printf("usage: testcrypt [INFILE] [-o OUTFILE]\n");
printf(" also: testcrypt --help display this text\n");
return 0;
} else {
fprintf(stderr, "unknown command line option '%s'\n", p);
return 1;
}
} else if (!infile) {
infile = p;
} else {
fprintf(stderr, "can only handle one input file name\n");
return 1;
}
}
FILE *infp = stdin;
if (infile) {
infp = fopen(infile, "r");
if (!infp) {
fprintf(stderr, "%s: open: %s\n", infile, strerror(errno));
return 1;
}
}
FILE *outfp = stdout;
if (outfile) {
outfp = fopen(outfile, "w");
if (!outfp) {
fprintf(stderr, "%s: open: %s\n", outfile, strerror(errno));
return 1;
}
}
values = newtree234(valuecmp);
atexit(free_all_values);
for (char *line; (line = chomp(fgetline(infp))) != NULL ;) {
BinarySource src[1];
BinarySource_BARE_INIT(src, line, strlen(line));
strbuf *sb = strbuf_new();
process_line(src, sb);
run_finalisers(sb);
size_t lines = 0;
for (size_t i = 0; i < sb->len; i++)
if (sb->s[i] == '\n')
lines++;
fprintf(outfp, "%zu\n%s", lines, sb->s);
fflush(outfp);
strbuf_free(sb);
sfree(line);
}
if (infp != stdin)
fclose(infp);
if (outfp != stdin)
fclose(outfp);
return 0;
}