зеркало из https://github.com/github/putty.git
1090 строки
28 KiB
C
1090 строки
28 KiB
C
/*
|
|
* Platform-independent routines shared between all PuTTY programs.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <limits.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
#include "putty.h"
|
|
#include "misc.h"
|
|
|
|
/*
|
|
* Parse a string block size specification. This is approximately a
|
|
* subset of the block size specs supported by GNU fileutils:
|
|
* "nk" = n kilobytes
|
|
* "nM" = n megabytes
|
|
* "nG" = n gigabytes
|
|
* All numbers are decimal, and suffixes refer to powers of two.
|
|
* Case-insensitive.
|
|
*/
|
|
unsigned long parse_blocksize(const char *bs)
|
|
{
|
|
char *suf;
|
|
unsigned long r = strtoul(bs, &suf, 10);
|
|
if (*suf != '\0') {
|
|
while (*suf && isspace((unsigned char)*suf)) suf++;
|
|
switch (*suf) {
|
|
case 'k': case 'K':
|
|
r *= 1024ul;
|
|
break;
|
|
case 'm': case 'M':
|
|
r *= 1024ul * 1024ul;
|
|
break;
|
|
case 'g': case 'G':
|
|
r *= 1024ul * 1024ul * 1024ul;
|
|
break;
|
|
case '\0':
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Parse a ^C style character specification.
|
|
* Returns NULL in `next' if we didn't recognise it as a control character,
|
|
* in which case `c' should be ignored.
|
|
* The precise current parsing is an oddity inherited from the terminal
|
|
* answerback-string parsing code. All sequences start with ^; all except
|
|
* ^<123> are two characters. The ones that are worth keeping are probably:
|
|
* ^? 127
|
|
* ^@A-Z[\]^_ 0-31
|
|
* a-z 1-26
|
|
* <num> specified by number (decimal, 0octal, 0xHEX)
|
|
* ~ ^ escape
|
|
*/
|
|
char ctrlparse(char *s, char **next)
|
|
{
|
|
char c = 0;
|
|
if (*s != '^') {
|
|
*next = NULL;
|
|
} else {
|
|
s++;
|
|
if (*s == '\0') {
|
|
*next = NULL;
|
|
} else if (*s == '<') {
|
|
s++;
|
|
c = (char)strtol(s, next, 0);
|
|
if ((*next == s) || (**next != '>')) {
|
|
c = 0;
|
|
*next = NULL;
|
|
} else
|
|
(*next)++;
|
|
} else if (*s >= 'a' && *s <= 'z') {
|
|
c = (*s - ('a' - 1));
|
|
*next = s+1;
|
|
} else if ((*s >= '@' && *s <= '_') || *s == '?' || (*s & 0x80)) {
|
|
c = ('@' ^ *s);
|
|
*next = s+1;
|
|
} else if (*s == '~') {
|
|
c = '^';
|
|
*next = s+1;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* Find a character in a string, unless it's a colon contained within
|
|
* square brackets. Used for untangling strings of the form
|
|
* 'host:port', where host can be an IPv6 literal.
|
|
*
|
|
* We provide several variants of this function, with semantics like
|
|
* various standard string.h functions.
|
|
*/
|
|
static const char *host_strchr_internal(const char *s, const char *set,
|
|
int first)
|
|
{
|
|
int brackets = 0;
|
|
const char *ret = NULL;
|
|
|
|
while (1) {
|
|
if (!*s)
|
|
return ret;
|
|
|
|
if (*s == '[')
|
|
brackets++;
|
|
else if (*s == ']' && brackets > 0)
|
|
brackets--;
|
|
else if (brackets && *s == ':')
|
|
/* never match */ ;
|
|
else if (strchr(set, *s)) {
|
|
ret = s;
|
|
if (first)
|
|
return ret;
|
|
}
|
|
|
|
s++;
|
|
}
|
|
}
|
|
size_t host_strcspn(const char *s, const char *set)
|
|
{
|
|
const char *answer = host_strchr_internal(s, set, TRUE);
|
|
if (answer)
|
|
return answer - s;
|
|
else
|
|
return strlen(s);
|
|
}
|
|
char *host_strchr(const char *s, int c)
|
|
{
|
|
char set[2];
|
|
set[0] = c;
|
|
set[1] = '\0';
|
|
return (char *) host_strchr_internal(s, set, TRUE);
|
|
}
|
|
char *host_strrchr(const char *s, int c)
|
|
{
|
|
char set[2];
|
|
set[0] = c;
|
|
set[1] = '\0';
|
|
return (char *) host_strchr_internal(s, set, FALSE);
|
|
}
|
|
|
|
#ifdef TEST_HOST_STRFOO
|
|
int main(void)
|
|
{
|
|
int passes = 0, fails = 0;
|
|
|
|
#define TEST1(func, string, arg2, suffix, result) do \
|
|
{ \
|
|
const char *str = string; \
|
|
unsigned ret = func(string, arg2) suffix; \
|
|
if (ret == result) { \
|
|
passes++; \
|
|
} else { \
|
|
printf("fail: %s(%s,%s)%s = %u, expected %u\n", \
|
|
#func, #string, #arg2, #suffix, ret, result); \
|
|
fails++; \
|
|
} \
|
|
} while (0)
|
|
|
|
TEST1(host_strchr, "[1:2:3]:4:5", ':', -str, 7);
|
|
TEST1(host_strrchr, "[1:2:3]:4:5", ':', -str, 9);
|
|
TEST1(host_strcspn, "[1:2:3]:4:5", "/:",, 7);
|
|
TEST1(host_strchr, "[1:2:3]", ':', == NULL, 1);
|
|
TEST1(host_strrchr, "[1:2:3]", ':', == NULL, 1);
|
|
TEST1(host_strcspn, "[1:2:3]", "/:",, 7);
|
|
TEST1(host_strcspn, "[1:2/3]", "/:",, 4);
|
|
TEST1(host_strcspn, "[1:2:3]/", "/:",, 7);
|
|
|
|
printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
|
|
return fails != 0 ? 1 : 0;
|
|
}
|
|
/* Stubs to stop the rest of this module causing compile failures. */
|
|
void modalfatalbox(const char *fmt, ...) {}
|
|
int conf_get_int(Conf *conf, int primary) { return 0; }
|
|
char *conf_get_str(Conf *conf, int primary) { return NULL; }
|
|
#endif /* TEST_HOST_STRFOO */
|
|
|
|
/*
|
|
* Trim square brackets off the outside of an IPv6 address literal.
|
|
* Leave all other strings unchanged. Returns a fresh dynamically
|
|
* allocated string.
|
|
*/
|
|
char *host_strduptrim(const char *s)
|
|
{
|
|
if (s[0] == '[') {
|
|
const char *p = s+1;
|
|
int colons = 0;
|
|
while (*p && *p != ']') {
|
|
if (isxdigit((unsigned char)*p))
|
|
/* OK */;
|
|
else if (*p == ':')
|
|
colons++;
|
|
else
|
|
break;
|
|
p++;
|
|
}
|
|
if (*p == ']' && !p[1] && colons > 1) {
|
|
/*
|
|
* This looks like an IPv6 address literal (hex digits and
|
|
* at least two colons, contained in square brackets).
|
|
* Trim off the brackets.
|
|
*/
|
|
return dupprintf("%.*s", (int)(p - (s+1)), s+1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Any other shape of string is simply duplicated.
|
|
*/
|
|
return dupstr(s);
|
|
}
|
|
|
|
prompts_t *new_prompts(void *frontend)
|
|
{
|
|
prompts_t *p = snew(prompts_t);
|
|
p->prompts = NULL;
|
|
p->n_prompts = 0;
|
|
p->frontend = frontend;
|
|
p->data = NULL;
|
|
p->to_server = TRUE; /* to be on the safe side */
|
|
p->name = p->instruction = NULL;
|
|
p->name_reqd = p->instr_reqd = FALSE;
|
|
return p;
|
|
}
|
|
void add_prompt(prompts_t *p, char *promptstr, int echo)
|
|
{
|
|
prompt_t *pr = snew(prompt_t);
|
|
pr->prompt = promptstr;
|
|
pr->echo = echo;
|
|
pr->result = NULL;
|
|
pr->resultsize = 0;
|
|
p->n_prompts++;
|
|
p->prompts = sresize(p->prompts, p->n_prompts, prompt_t *);
|
|
p->prompts[p->n_prompts-1] = pr;
|
|
}
|
|
void prompt_ensure_result_size(prompt_t *pr, int newlen)
|
|
{
|
|
if ((int)pr->resultsize < newlen) {
|
|
char *newbuf;
|
|
newlen = newlen * 5 / 4 + 512; /* avoid too many small allocs */
|
|
|
|
/*
|
|
* We don't use sresize / realloc here, because we will be
|
|
* storing sensitive stuff like passwords in here, and we want
|
|
* to make sure that the data doesn't get copied around in
|
|
* memory without the old copy being destroyed.
|
|
*/
|
|
newbuf = snewn(newlen, char);
|
|
memcpy(newbuf, pr->result, pr->resultsize);
|
|
smemclr(pr->result, pr->resultsize);
|
|
sfree(pr->result);
|
|
pr->result = newbuf;
|
|
pr->resultsize = newlen;
|
|
}
|
|
}
|
|
void prompt_set_result(prompt_t *pr, const char *newstr)
|
|
{
|
|
prompt_ensure_result_size(pr, strlen(newstr) + 1);
|
|
strcpy(pr->result, newstr);
|
|
}
|
|
void free_prompts(prompts_t *p)
|
|
{
|
|
size_t i;
|
|
for (i=0; i < p->n_prompts; i++) {
|
|
prompt_t *pr = p->prompts[i];
|
|
smemclr(pr->result, pr->resultsize); /* burn the evidence */
|
|
sfree(pr->result);
|
|
sfree(pr->prompt);
|
|
sfree(pr);
|
|
}
|
|
sfree(p->prompts);
|
|
sfree(p->name);
|
|
sfree(p->instruction);
|
|
sfree(p);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* String handling routines.
|
|
*/
|
|
|
|
char *dupstr(const char *s)
|
|
{
|
|
char *p = NULL;
|
|
if (s) {
|
|
int len = strlen(s);
|
|
p = snewn(len + 1, char);
|
|
strcpy(p, s);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* Allocate the concatenation of N strings. Terminate arg list with NULL. */
|
|
char *dupcat(const char *s1, ...)
|
|
{
|
|
int len;
|
|
char *p, *q, *sn;
|
|
va_list ap;
|
|
|
|
len = strlen(s1);
|
|
va_start(ap, s1);
|
|
while (1) {
|
|
sn = va_arg(ap, char *);
|
|
if (!sn)
|
|
break;
|
|
len += strlen(sn);
|
|
}
|
|
va_end(ap);
|
|
|
|
p = snewn(len + 1, char);
|
|
strcpy(p, s1);
|
|
q = p + strlen(p);
|
|
|
|
va_start(ap, s1);
|
|
while (1) {
|
|
sn = va_arg(ap, char *);
|
|
if (!sn)
|
|
break;
|
|
strcpy(q, sn);
|
|
q += strlen(q);
|
|
}
|
|
va_end(ap);
|
|
|
|
return p;
|
|
}
|
|
|
|
void burnstr(char *string) /* sfree(str), only clear it first */
|
|
{
|
|
if (string) {
|
|
smemclr(string, strlen(string));
|
|
sfree(string);
|
|
}
|
|
}
|
|
|
|
int toint(unsigned u)
|
|
{
|
|
/*
|
|
* Convert an unsigned to an int, without running into the
|
|
* undefined behaviour which happens by the strict C standard if
|
|
* the value overflows. You'd hope that sensible compilers would
|
|
* do the sensible thing in response to a cast, but actually I
|
|
* don't trust modern compilers not to do silly things like
|
|
* assuming that _obviously_ you wouldn't have caused an overflow
|
|
* and so they can elide an 'if (i < 0)' test immediately after
|
|
* the cast.
|
|
*
|
|
* Sensible compilers ought of course to optimise this entire
|
|
* function into 'just return the input value'!
|
|
*/
|
|
if (u <= (unsigned)INT_MAX)
|
|
return (int)u;
|
|
else if (u >= (unsigned)INT_MIN) /* wrap in cast _to_ unsigned is OK */
|
|
return INT_MIN + (int)(u - (unsigned)INT_MIN);
|
|
else
|
|
return INT_MIN; /* fallback; should never occur on binary machines */
|
|
}
|
|
|
|
/*
|
|
* Do an sprintf(), but into a custom-allocated buffer.
|
|
*
|
|
* Currently I'm doing this via vsnprintf. This has worked so far,
|
|
* but it's not good, because vsnprintf is not available on all
|
|
* platforms. There's an ifdef to use `_vsnprintf', which seems
|
|
* to be the local name for it on Windows. Other platforms may
|
|
* lack it completely, in which case it'll be time to rewrite
|
|
* this function in a totally different way.
|
|
*
|
|
* The only `properly' portable solution I can think of is to
|
|
* implement my own format string scanner, which figures out an
|
|
* upper bound for the length of each formatting directive,
|
|
* allocates the buffer as it goes along, and calls sprintf() to
|
|
* actually process each directive. If I ever need to actually do
|
|
* this, some caveats:
|
|
*
|
|
* - It's very hard to find a reliable upper bound for
|
|
* floating-point values. %f, in particular, when supplied with
|
|
* a number near to the upper or lower limit of representable
|
|
* numbers, could easily take several hundred characters. It's
|
|
* probably feasible to predict this statically using the
|
|
* constants in <float.h>, or even to predict it dynamically by
|
|
* looking at the exponent of the specific float provided, but
|
|
* it won't be fun.
|
|
*
|
|
* - Don't forget to _check_, after calling sprintf, that it's
|
|
* used at most the amount of space we had available.
|
|
*
|
|
* - Fault any formatting directive we don't fully understand. The
|
|
* aim here is to _guarantee_ that we never overflow the buffer,
|
|
* because this is a security-critical function. If we see a
|
|
* directive we don't know about, we should panic and die rather
|
|
* than run any risk.
|
|
*/
|
|
char *dupprintf(const char *fmt, ...)
|
|
{
|
|
char *ret;
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
ret = dupvprintf(fmt, ap);
|
|
va_end(ap);
|
|
return ret;
|
|
}
|
|
char *dupvprintf(const char *fmt, va_list ap)
|
|
{
|
|
char *buf;
|
|
int len, size;
|
|
|
|
buf = snewn(512, char);
|
|
size = 512;
|
|
|
|
while (1) {
|
|
#ifdef _WINDOWS
|
|
#define vsnprintf _vsnprintf
|
|
#endif
|
|
#ifdef va_copy
|
|
/* Use the `va_copy' macro mandated by C99, if present.
|
|
* XXX some environments may have this as __va_copy() */
|
|
va_list aq;
|
|
va_copy(aq, ap);
|
|
len = vsnprintf(buf, size, fmt, aq);
|
|
va_end(aq);
|
|
#else
|
|
/* Ugh. No va_copy macro, so do something nasty.
|
|
* Technically, you can't reuse a va_list like this: it is left
|
|
* unspecified whether advancing a va_list pointer modifies its
|
|
* value or something it points to, so on some platforms calling
|
|
* vsnprintf twice on the same va_list might fail hideously
|
|
* (indeed, it has been observed to).
|
|
* XXX the autoconf manual suggests that using memcpy() will give
|
|
* "maximum portability". */
|
|
len = vsnprintf(buf, size, fmt, ap);
|
|
#endif
|
|
if (len >= 0 && len < size) {
|
|
/* This is the C99-specified criterion for snprintf to have
|
|
* been completely successful. */
|
|
return buf;
|
|
} else if (len > 0) {
|
|
/* This is the C99 error condition: the returned length is
|
|
* the required buffer size not counting the NUL. */
|
|
size = len + 1;
|
|
} else {
|
|
/* This is the pre-C99 glibc error condition: <0 means the
|
|
* buffer wasn't big enough, so we enlarge it a bit and hope. */
|
|
size += 512;
|
|
}
|
|
buf = sresize(buf, size, char);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read an entire line of text from a file. Return a buffer
|
|
* malloced to be as big as necessary (caller must free).
|
|
*/
|
|
char *fgetline(FILE *fp)
|
|
{
|
|
char *ret = snewn(512, char);
|
|
int size = 512, len = 0;
|
|
while (fgets(ret + len, size - len, fp)) {
|
|
len += strlen(ret + len);
|
|
if (ret[len-1] == '\n')
|
|
break; /* got a newline, we're done */
|
|
size = len + 512;
|
|
ret = sresize(ret, size, char);
|
|
}
|
|
if (len == 0) { /* first fgets returned NULL */
|
|
sfree(ret);
|
|
return NULL;
|
|
}
|
|
ret[len] = '\0';
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Perl-style 'chomp', for a line we just read with fgetline. Unlike
|
|
* Perl chomp, however, we're deliberately forgiving of strange
|
|
* line-ending conventions. Also we forgive NULL on input, so you can
|
|
* just write 'line = chomp(fgetline(fp));' and not bother checking
|
|
* for NULL until afterwards.
|
|
*/
|
|
char *chomp(char *str)
|
|
{
|
|
if (str) {
|
|
int len = strlen(str);
|
|
while (len > 0 && (str[len-1] == '\r' || str[len-1] == '\n'))
|
|
len--;
|
|
str[len] = '\0';
|
|
}
|
|
return str;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Core base64 encoding and decoding routines.
|
|
*/
|
|
|
|
void base64_encode_atom(const unsigned char *data, int n, char *out)
|
|
{
|
|
static const char base64_chars[] =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
|
|
unsigned word;
|
|
|
|
word = data[0] << 16;
|
|
if (n > 1)
|
|
word |= data[1] << 8;
|
|
if (n > 2)
|
|
word |= data[2];
|
|
out[0] = base64_chars[(word >> 18) & 0x3F];
|
|
out[1] = base64_chars[(word >> 12) & 0x3F];
|
|
if (n > 1)
|
|
out[2] = base64_chars[(word >> 6) & 0x3F];
|
|
else
|
|
out[2] = '=';
|
|
if (n > 2)
|
|
out[3] = base64_chars[word & 0x3F];
|
|
else
|
|
out[3] = '=';
|
|
}
|
|
|
|
int base64_decode_atom(const char *atom, unsigned char *out)
|
|
{
|
|
int vals[4];
|
|
int i, v, len;
|
|
unsigned word;
|
|
char c;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
c = atom[i];
|
|
if (c >= 'A' && c <= 'Z')
|
|
v = c - 'A';
|
|
else if (c >= 'a' && c <= 'z')
|
|
v = c - 'a' + 26;
|
|
else if (c >= '0' && c <= '9')
|
|
v = c - '0' + 52;
|
|
else if (c == '+')
|
|
v = 62;
|
|
else if (c == '/')
|
|
v = 63;
|
|
else if (c == '=')
|
|
v = -1;
|
|
else
|
|
return 0; /* invalid atom */
|
|
vals[i] = v;
|
|
}
|
|
|
|
if (vals[0] == -1 || vals[1] == -1)
|
|
return 0;
|
|
if (vals[2] == -1 && vals[3] != -1)
|
|
return 0;
|
|
|
|
if (vals[3] != -1)
|
|
len = 3;
|
|
else if (vals[2] != -1)
|
|
len = 2;
|
|
else
|
|
len = 1;
|
|
|
|
word = ((vals[0] << 18) |
|
|
(vals[1] << 12) | ((vals[2] & 0x3F) << 6) | (vals[3] & 0x3F));
|
|
out[0] = (word >> 16) & 0xFF;
|
|
if (len > 1)
|
|
out[1] = (word >> 8) & 0xFF;
|
|
if (len > 2)
|
|
out[2] = word & 0xFF;
|
|
return len;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Generic routines to deal with send buffers: a linked list of
|
|
* smallish blocks, with the operations
|
|
*
|
|
* - add an arbitrary amount of data to the end of the list
|
|
* - remove the first N bytes from the list
|
|
* - return a (pointer,length) pair giving some initial data in
|
|
* the list, suitable for passing to a send or write system
|
|
* call
|
|
* - retrieve a larger amount of initial data from the list
|
|
* - return the current size of the buffer chain in bytes
|
|
*/
|
|
|
|
#define BUFFER_MIN_GRANULE 512
|
|
|
|
struct bufchain_granule {
|
|
struct bufchain_granule *next;
|
|
char *bufpos, *bufend, *bufmax;
|
|
};
|
|
|
|
void bufchain_init(bufchain *ch)
|
|
{
|
|
ch->head = ch->tail = NULL;
|
|
ch->buffersize = 0;
|
|
}
|
|
|
|
void bufchain_clear(bufchain *ch)
|
|
{
|
|
struct bufchain_granule *b;
|
|
while (ch->head) {
|
|
b = ch->head;
|
|
ch->head = ch->head->next;
|
|
sfree(b);
|
|
}
|
|
ch->tail = NULL;
|
|
ch->buffersize = 0;
|
|
}
|
|
|
|
int bufchain_size(bufchain *ch)
|
|
{
|
|
return ch->buffersize;
|
|
}
|
|
|
|
void bufchain_add(bufchain *ch, const void *data, int len)
|
|
{
|
|
const char *buf = (const char *)data;
|
|
|
|
if (len == 0) return;
|
|
|
|
ch->buffersize += len;
|
|
|
|
while (len > 0) {
|
|
if (ch->tail && ch->tail->bufend < ch->tail->bufmax) {
|
|
int copylen = min(len, ch->tail->bufmax - ch->tail->bufend);
|
|
memcpy(ch->tail->bufend, buf, copylen);
|
|
buf += copylen;
|
|
len -= copylen;
|
|
ch->tail->bufend += copylen;
|
|
}
|
|
if (len > 0) {
|
|
int grainlen =
|
|
max(sizeof(struct bufchain_granule) + len, BUFFER_MIN_GRANULE);
|
|
struct bufchain_granule *newbuf;
|
|
newbuf = smalloc(grainlen);
|
|
newbuf->bufpos = newbuf->bufend =
|
|
(char *)newbuf + sizeof(struct bufchain_granule);
|
|
newbuf->bufmax = (char *)newbuf + grainlen;
|
|
newbuf->next = NULL;
|
|
if (ch->tail)
|
|
ch->tail->next = newbuf;
|
|
else
|
|
ch->head = newbuf;
|
|
ch->tail = newbuf;
|
|
}
|
|
}
|
|
}
|
|
|
|
void bufchain_consume(bufchain *ch, int len)
|
|
{
|
|
struct bufchain_granule *tmp;
|
|
|
|
assert(ch->buffersize >= len);
|
|
while (len > 0) {
|
|
int remlen = len;
|
|
assert(ch->head != NULL);
|
|
if (remlen >= ch->head->bufend - ch->head->bufpos) {
|
|
remlen = ch->head->bufend - ch->head->bufpos;
|
|
tmp = ch->head;
|
|
ch->head = tmp->next;
|
|
if (!ch->head)
|
|
ch->tail = NULL;
|
|
sfree(tmp);
|
|
} else
|
|
ch->head->bufpos += remlen;
|
|
ch->buffersize -= remlen;
|
|
len -= remlen;
|
|
}
|
|
}
|
|
|
|
void bufchain_prefix(bufchain *ch, void **data, int *len)
|
|
{
|
|
*len = ch->head->bufend - ch->head->bufpos;
|
|
*data = ch->head->bufpos;
|
|
}
|
|
|
|
void bufchain_fetch(bufchain *ch, void *data, int len)
|
|
{
|
|
struct bufchain_granule *tmp;
|
|
char *data_c = (char *)data;
|
|
|
|
tmp = ch->head;
|
|
|
|
assert(ch->buffersize >= len);
|
|
while (len > 0) {
|
|
int remlen = len;
|
|
|
|
assert(tmp != NULL);
|
|
if (remlen >= tmp->bufend - tmp->bufpos)
|
|
remlen = tmp->bufend - tmp->bufpos;
|
|
memcpy(data_c, tmp->bufpos, remlen);
|
|
|
|
tmp = tmp->next;
|
|
len -= remlen;
|
|
data_c += remlen;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* My own versions of malloc, realloc and free. Because I want
|
|
* malloc and realloc to bomb out and exit the program if they run
|
|
* out of memory, realloc to reliably call malloc if passed a NULL
|
|
* pointer, and free to reliably do nothing if passed a NULL
|
|
* pointer. We can also put trace printouts in, if we need to; and
|
|
* we can also replace the allocator with an ElectricFence-like
|
|
* one.
|
|
*/
|
|
|
|
#ifdef MINEFIELD
|
|
void *minefield_c_malloc(size_t size);
|
|
void minefield_c_free(void *p);
|
|
void *minefield_c_realloc(void *p, size_t size);
|
|
#endif
|
|
|
|
#ifdef MALLOC_LOG
|
|
static FILE *fp = NULL;
|
|
|
|
static char *mlog_file = NULL;
|
|
static int mlog_line = 0;
|
|
|
|
void mlog(char *file, int line)
|
|
{
|
|
mlog_file = file;
|
|
mlog_line = line;
|
|
if (!fp) {
|
|
fp = fopen("putty_mem.log", "w");
|
|
setvbuf(fp, NULL, _IONBF, BUFSIZ);
|
|
}
|
|
if (fp)
|
|
fprintf(fp, "%s:%d: ", file, line);
|
|
}
|
|
#endif
|
|
|
|
void *safemalloc(size_t n, size_t size)
|
|
{
|
|
void *p;
|
|
|
|
if (n > INT_MAX / size) {
|
|
p = NULL;
|
|
} else {
|
|
size *= n;
|
|
if (size == 0) size = 1;
|
|
#ifdef MINEFIELD
|
|
p = minefield_c_malloc(size);
|
|
#else
|
|
p = malloc(size);
|
|
#endif
|
|
}
|
|
|
|
if (!p) {
|
|
char str[200];
|
|
#ifdef MALLOC_LOG
|
|
sprintf(str, "Out of memory! (%s:%d, size=%d)",
|
|
mlog_file, mlog_line, size);
|
|
fprintf(fp, "*** %s\n", str);
|
|
fclose(fp);
|
|
#else
|
|
strcpy(str, "Out of memory!");
|
|
#endif
|
|
modalfatalbox("%s", str);
|
|
}
|
|
#ifdef MALLOC_LOG
|
|
if (fp)
|
|
fprintf(fp, "malloc(%d) returns %p\n", size, p);
|
|
#endif
|
|
return p;
|
|
}
|
|
|
|
void *saferealloc(void *ptr, size_t n, size_t size)
|
|
{
|
|
void *p;
|
|
|
|
if (n > INT_MAX / size) {
|
|
p = NULL;
|
|
} else {
|
|
size *= n;
|
|
if (!ptr) {
|
|
#ifdef MINEFIELD
|
|
p = minefield_c_malloc(size);
|
|
#else
|
|
p = malloc(size);
|
|
#endif
|
|
} else {
|
|
#ifdef MINEFIELD
|
|
p = minefield_c_realloc(ptr, size);
|
|
#else
|
|
p = realloc(ptr, size);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (!p) {
|
|
char str[200];
|
|
#ifdef MALLOC_LOG
|
|
sprintf(str, "Out of memory! (%s:%d, size=%d)",
|
|
mlog_file, mlog_line, size);
|
|
fprintf(fp, "*** %s\n", str);
|
|
fclose(fp);
|
|
#else
|
|
strcpy(str, "Out of memory!");
|
|
#endif
|
|
modalfatalbox("%s", str);
|
|
}
|
|
#ifdef MALLOC_LOG
|
|
if (fp)
|
|
fprintf(fp, "realloc(%p,%d) returns %p\n", ptr, size, p);
|
|
#endif
|
|
return p;
|
|
}
|
|
|
|
void safefree(void *ptr)
|
|
{
|
|
if (ptr) {
|
|
#ifdef MALLOC_LOG
|
|
if (fp)
|
|
fprintf(fp, "free(%p)\n", ptr);
|
|
#endif
|
|
#ifdef MINEFIELD
|
|
minefield_c_free(ptr);
|
|
#else
|
|
free(ptr);
|
|
#endif
|
|
}
|
|
#ifdef MALLOC_LOG
|
|
else if (fp)
|
|
fprintf(fp, "freeing null pointer - no action taken\n");
|
|
#endif
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Debugging routines.
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
extern void dputs(const char *); /* defined in per-platform *misc.c */
|
|
|
|
void debug_printf(const char *fmt, ...)
|
|
{
|
|
char *buf;
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
buf = dupvprintf(fmt, ap);
|
|
dputs(buf);
|
|
sfree(buf);
|
|
va_end(ap);
|
|
}
|
|
|
|
|
|
void debug_memdump(const void *buf, int len, int L)
|
|
{
|
|
int i;
|
|
const unsigned char *p = buf;
|
|
char foo[17];
|
|
if (L) {
|
|
int delta;
|
|
debug_printf("\t%d (0x%x) bytes:\n", len, len);
|
|
delta = 15 & (uintptr_t)p;
|
|
p -= delta;
|
|
len += delta;
|
|
}
|
|
for (; 0 < len; p += 16, len -= 16) {
|
|
dputs(" ");
|
|
if (L)
|
|
debug_printf("%p: ", p);
|
|
strcpy(foo, "................"); /* sixteen dots */
|
|
for (i = 0; i < 16 && i < len; ++i) {
|
|
if (&p[i] < (unsigned char *) buf) {
|
|
dputs(" "); /* 3 spaces */
|
|
foo[i] = ' ';
|
|
} else {
|
|
debug_printf("%c%02.2x",
|
|
&p[i] != (unsigned char *) buf
|
|
&& i % 4 ? '.' : ' ', p[i]
|
|
);
|
|
if (p[i] >= ' ' && p[i] <= '~')
|
|
foo[i] = (char) p[i];
|
|
}
|
|
}
|
|
foo[i] = '\0';
|
|
debug_printf("%*s%s\n", (16 - i) * 3 + 2, "", foo);
|
|
}
|
|
}
|
|
|
|
#endif /* def DEBUG */
|
|
|
|
/*
|
|
* Determine whether or not a Conf represents a session which can
|
|
* sensibly be launched right now.
|
|
*/
|
|
int conf_launchable(Conf *conf)
|
|
{
|
|
if (conf_get_int(conf, CONF_protocol) == PROT_SERIAL)
|
|
return conf_get_str(conf, CONF_serline)[0] != 0;
|
|
else
|
|
return conf_get_str(conf, CONF_host)[0] != 0;
|
|
}
|
|
|
|
char const *conf_dest(Conf *conf)
|
|
{
|
|
if (conf_get_int(conf, CONF_protocol) == PROT_SERIAL)
|
|
return conf_get_str(conf, CONF_serline);
|
|
else
|
|
return conf_get_str(conf, CONF_host);
|
|
}
|
|
|
|
#ifndef PLATFORM_HAS_SMEMCLR
|
|
/*
|
|
* Securely wipe memory.
|
|
*
|
|
* The actual wiping is no different from what memset would do: the
|
|
* point of 'securely' is to try to be sure over-clever compilers
|
|
* won't optimise away memsets on variables that are about to be freed
|
|
* or go out of scope. See
|
|
* https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/771-BSI.html
|
|
*
|
|
* Some platforms (e.g. Windows) may provide their own version of this
|
|
* function.
|
|
*/
|
|
void smemclr(void *b, size_t n) {
|
|
volatile char *vp;
|
|
|
|
if (b && n > 0) {
|
|
/*
|
|
* Zero out the memory.
|
|
*/
|
|
memset(b, 0, n);
|
|
|
|
/*
|
|
* Perform a volatile access to the object, forcing the
|
|
* compiler to admit that the previous memset was important.
|
|
*
|
|
* This while loop should in practice run for zero iterations
|
|
* (since we know we just zeroed the object out), but in
|
|
* theory (as far as the compiler knows) it might range over
|
|
* the whole object. (If we had just written, say, '*vp =
|
|
* *vp;', a compiler could in principle have 'helpfully'
|
|
* optimised the memset into only zeroing out the first byte.
|
|
* This should be robust.)
|
|
*/
|
|
vp = b;
|
|
while (*vp) vp++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Validate a manual host key specification (either entered in the
|
|
* GUI, or via -hostkey). If valid, we return TRUE, and update 'key'
|
|
* to contain a canonicalised version of the key string in 'key'
|
|
* (which is guaranteed to take up at most as much space as the
|
|
* original version), suitable for putting into the Conf. If not
|
|
* valid, we return FALSE.
|
|
*/
|
|
int validate_manual_hostkey(char *key)
|
|
{
|
|
char *p, *q, *r, *s;
|
|
|
|
/*
|
|
* Step through the string word by word, looking for a word that's
|
|
* in one of the formats we like.
|
|
*/
|
|
p = key;
|
|
while ((p += strspn(p, " \t"))[0]) {
|
|
q = p;
|
|
p += strcspn(p, " \t");
|
|
if (*p) *p++ = '\0';
|
|
|
|
/*
|
|
* Now q is our word.
|
|
*/
|
|
|
|
if (strlen(q) == 16*3 - 1 &&
|
|
q[strspn(q, "0123456789abcdefABCDEF:")] == 0) {
|
|
/*
|
|
* Might be a key fingerprint. Check the colons are in the
|
|
* right places, and if so, return the same fingerprint
|
|
* canonicalised into lowercase.
|
|
*/
|
|
int i;
|
|
for (i = 0; i < 16; i++)
|
|
if (q[3*i] == ':' || q[3*i+1] == ':')
|
|
goto not_fingerprint; /* sorry */
|
|
for (i = 0; i < 15; i++)
|
|
if (q[3*i+2] != ':')
|
|
goto not_fingerprint; /* sorry */
|
|
for (i = 0; i < 16*3 - 1; i++)
|
|
key[i] = tolower(q[i]);
|
|
key[16*3 - 1] = '\0';
|
|
return TRUE;
|
|
}
|
|
not_fingerprint:;
|
|
|
|
/*
|
|
* Before we check for a public-key blob, trim newlines out of
|
|
* the middle of the word, in case someone's managed to paste
|
|
* in a public-key blob _with_ them.
|
|
*/
|
|
for (r = s = q; *r; r++)
|
|
if (*r != '\n' && *r != '\r')
|
|
*s++ = *r;
|
|
*s = '\0';
|
|
|
|
if (strlen(q) % 4 == 0 && strlen(q) > 2*4 &&
|
|
q[strspn(q, "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"abcdefghijklmnopqrstuvwxyz+/=")] == 0) {
|
|
/*
|
|
* Might be a base64-encoded SSH-2 public key blob. Check
|
|
* that it starts with a sensible algorithm string. No
|
|
* canonicalisation is necessary for this string type.
|
|
*
|
|
* The algorithm string must be at most 64 characters long
|
|
* (RFC 4251 section 6).
|
|
*/
|
|
unsigned char decoded[6];
|
|
unsigned alglen;
|
|
int minlen;
|
|
int len = 0;
|
|
|
|
len += base64_decode_atom(q, decoded+len);
|
|
if (len < 3)
|
|
goto not_ssh2_blob; /* sorry */
|
|
len += base64_decode_atom(q+4, decoded+len);
|
|
if (len < 4)
|
|
goto not_ssh2_blob; /* sorry */
|
|
|
|
alglen = GET_32BIT_MSB_FIRST(decoded);
|
|
if (alglen > 64)
|
|
goto not_ssh2_blob; /* sorry */
|
|
|
|
minlen = ((alglen + 4) + 2) / 3;
|
|
if (strlen(q) < minlen)
|
|
goto not_ssh2_blob; /* sorry */
|
|
|
|
strcpy(key, q);
|
|
return TRUE;
|
|
}
|
|
not_ssh2_blob:;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
int smemeq(const void *av, const void *bv, size_t len)
|
|
{
|
|
const unsigned char *a = (const unsigned char *)av;
|
|
const unsigned char *b = (const unsigned char *)bv;
|
|
unsigned val = 0;
|
|
|
|
while (len-- > 0) {
|
|
val |= *a++ ^ *b++;
|
|
}
|
|
/* Now val is 0 iff we want to return 1, and in the range
|
|
* 0x01..0xFF iff we want to return 0. So subtracting from 0x100
|
|
* will clear bit 8 iff we want to return 0, and leave it set iff
|
|
* we want to return 1, so then we can just shift down. */
|
|
return (0x100 - val) >> 8;
|
|
}
|
|
|
|
int match_ssh_id(int stringlen, const void *string, const char *id)
|
|
{
|
|
int idlen = strlen(id);
|
|
return (idlen == stringlen && !memcmp(string, id, idlen));
|
|
}
|
|
|
|
void *get_ssh_string(int *datalen, const void **data, int *stringlen)
|
|
{
|
|
void *ret;
|
|
int len;
|
|
|
|
if (*datalen < 4)
|
|
return NULL;
|
|
len = GET_32BIT_MSB_FIRST((const unsigned char *)*data);
|
|
if (*datalen < len+4)
|
|
return NULL;
|
|
ret = (void *)((const char *)*data + 4);
|
|
*datalen -= len + 4;
|
|
*data = (const char *)*data + len + 4;
|
|
*stringlen = len;
|
|
return ret;
|
|
}
|
|
|
|
int get_ssh_uint32(int *datalen, const void **data, unsigned *ret)
|
|
{
|
|
if (*datalen < 4)
|
|
return FALSE;
|
|
*ret = GET_32BIT_MSB_FIRST((const unsigned char *)*data);
|
|
*datalen -= 4;
|
|
*data = (const char *)*data + 4;
|
|
return TRUE;
|
|
}
|