зеркало из https://github.com/github/putty.git
489 строки
13 KiB
C
489 строки
13 KiB
C
/*
|
|
* Digital Signature Standard implementation for PuTTY.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
#include "ssh.h"
|
|
#include "mpint.h"
|
|
#include "misc.h"
|
|
|
|
static void dss_freekey(ssh_key *key); /* forward reference */
|
|
|
|
static ssh_key *dss_new_pub(const ssh_keyalg *self, ptrlen data)
|
|
{
|
|
BinarySource src[1];
|
|
struct dss_key *dss;
|
|
|
|
BinarySource_BARE_INIT_PL(src, data);
|
|
if (!ptrlen_eq_string(get_string(src), "ssh-dss"))
|
|
return NULL;
|
|
|
|
dss = snew(struct dss_key);
|
|
dss->sshk.vt = &ssh_dss;
|
|
dss->p = get_mp_ssh2(src);
|
|
dss->q = get_mp_ssh2(src);
|
|
dss->g = get_mp_ssh2(src);
|
|
dss->y = get_mp_ssh2(src);
|
|
dss->x = NULL;
|
|
|
|
if (get_err(src) ||
|
|
mp_eq_integer(dss->p, 0) || mp_eq_integer(dss->q, 0)) {
|
|
/* Invalid key. */
|
|
dss_freekey(&dss->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &dss->sshk;
|
|
}
|
|
|
|
static void dss_freekey(ssh_key *key)
|
|
{
|
|
struct dss_key *dss = container_of(key, struct dss_key, sshk);
|
|
if (dss->p)
|
|
mp_free(dss->p);
|
|
if (dss->q)
|
|
mp_free(dss->q);
|
|
if (dss->g)
|
|
mp_free(dss->g);
|
|
if (dss->y)
|
|
mp_free(dss->y);
|
|
if (dss->x)
|
|
mp_free(dss->x);
|
|
sfree(dss);
|
|
}
|
|
|
|
static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
|
|
{
|
|
if (sb->len > 0)
|
|
put_byte(sb, ',');
|
|
put_data(sb, "0x", 2);
|
|
char *hex = mp_get_hex(x);
|
|
size_t hexlen = strlen(hex);
|
|
put_data(sb, hex, hexlen);
|
|
smemclr(hex, hexlen);
|
|
sfree(hex);
|
|
}
|
|
|
|
static char *dss_cache_str(ssh_key *key)
|
|
{
|
|
struct dss_key *dss = container_of(key, struct dss_key, sshk);
|
|
strbuf *sb = strbuf_new();
|
|
|
|
if (!dss->p)
|
|
return NULL;
|
|
|
|
append_hex_to_strbuf(sb, dss->p);
|
|
append_hex_to_strbuf(sb, dss->q);
|
|
append_hex_to_strbuf(sb, dss->g);
|
|
append_hex_to_strbuf(sb, dss->y);
|
|
|
|
return strbuf_to_str(sb);
|
|
}
|
|
|
|
static char *dss_invalid(ssh_key *key, unsigned flags)
|
|
{
|
|
/* No validity criterion will stop us from using a DSA key at all */
|
|
return NULL;
|
|
}
|
|
|
|
static bool dss_verify(ssh_key *key, ptrlen sig, ptrlen data)
|
|
{
|
|
struct dss_key *dss = container_of(key, struct dss_key, sshk);
|
|
BinarySource src[1];
|
|
unsigned char hash[20];
|
|
bool toret;
|
|
|
|
if (!dss->p)
|
|
return false;
|
|
|
|
BinarySource_BARE_INIT_PL(src, sig);
|
|
|
|
/*
|
|
* Commercial SSH (2.0.13) and OpenSSH disagree over the format
|
|
* of a DSA signature. OpenSSH is in line with RFC 4253:
|
|
* it uses a string "ssh-dss", followed by a 40-byte string
|
|
* containing two 160-bit integers end-to-end. Commercial SSH
|
|
* can't be bothered with the header bit, and considers a DSA
|
|
* signature blob to be _just_ the 40-byte string containing
|
|
* the two 160-bit integers. We tell them apart by measuring
|
|
* the length: length 40 means the commercial-SSH bug, anything
|
|
* else is assumed to be RFC-compliant.
|
|
*/
|
|
if (sig.len != 40) { /* bug not present; read admin fields */
|
|
ptrlen type = get_string(src);
|
|
sig = get_string(src);
|
|
|
|
if (get_err(src) || !ptrlen_eq_string(type, "ssh-dss") ||
|
|
sig.len != 40)
|
|
return false;
|
|
}
|
|
|
|
/* Now we're sitting on a 40-byte string for sure. */
|
|
mp_int *r = mp_from_bytes_be(make_ptrlen(sig.ptr, 20));
|
|
mp_int *s = mp_from_bytes_be(make_ptrlen((const char *)sig.ptr + 20, 20));
|
|
if (!r || !s) {
|
|
if (r)
|
|
mp_free(r);
|
|
if (s)
|
|
mp_free(s);
|
|
return false;
|
|
}
|
|
|
|
/* Basic sanity checks: 0 < r,s < q */
|
|
unsigned invalid = 0;
|
|
invalid |= mp_eq_integer(r, 0);
|
|
invalid |= mp_eq_integer(s, 0);
|
|
invalid |= mp_cmp_hs(r, dss->q);
|
|
invalid |= mp_cmp_hs(s, dss->q);
|
|
if (invalid) {
|
|
mp_free(r);
|
|
mp_free(s);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Step 1. w <- s^-1 mod q.
|
|
*/
|
|
mp_int *w = mp_invert(s, dss->q);
|
|
if (!w) {
|
|
mp_free(r);
|
|
mp_free(s);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Step 2. u1 <- SHA(message) * w mod q.
|
|
*/
|
|
hash_simple(&ssh_sha1, data, hash);
|
|
mp_int *sha = mp_from_bytes_be(make_ptrlen(hash, 20));
|
|
mp_int *u1 = mp_modmul(sha, w, dss->q);
|
|
|
|
/*
|
|
* Step 3. u2 <- r * w mod q.
|
|
*/
|
|
mp_int *u2 = mp_modmul(r, w, dss->q);
|
|
|
|
/*
|
|
* Step 4. v <- (g^u1 * y^u2 mod p) mod q.
|
|
*/
|
|
mp_int *gu1p = mp_modpow(dss->g, u1, dss->p);
|
|
mp_int *yu2p = mp_modpow(dss->y, u2, dss->p);
|
|
mp_int *gu1yu2p = mp_modmul(gu1p, yu2p, dss->p);
|
|
mp_int *v = mp_mod(gu1yu2p, dss->q);
|
|
|
|
/*
|
|
* Step 5. v should now be equal to r.
|
|
*/
|
|
|
|
toret = mp_cmp_eq(v, r);
|
|
|
|
mp_free(w);
|
|
mp_free(sha);
|
|
mp_free(u1);
|
|
mp_free(u2);
|
|
mp_free(gu1p);
|
|
mp_free(yu2p);
|
|
mp_free(gu1yu2p);
|
|
mp_free(v);
|
|
mp_free(r);
|
|
mp_free(s);
|
|
|
|
return toret;
|
|
}
|
|
|
|
static void dss_public_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct dss_key *dss = container_of(key, struct dss_key, sshk);
|
|
|
|
put_stringz(bs, "ssh-dss");
|
|
put_mp_ssh2(bs, dss->p);
|
|
put_mp_ssh2(bs, dss->q);
|
|
put_mp_ssh2(bs, dss->g);
|
|
put_mp_ssh2(bs, dss->y);
|
|
}
|
|
|
|
static void dss_private_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct dss_key *dss = container_of(key, struct dss_key, sshk);
|
|
|
|
put_mp_ssh2(bs, dss->x);
|
|
}
|
|
|
|
static ssh_key *dss_new_priv(const ssh_keyalg *self, ptrlen pub, ptrlen priv)
|
|
{
|
|
BinarySource src[1];
|
|
ssh_key *sshk;
|
|
struct dss_key *dss;
|
|
ptrlen hash;
|
|
unsigned char digest[20];
|
|
mp_int *ytest;
|
|
|
|
sshk = dss_new_pub(self, pub);
|
|
if (!sshk)
|
|
return NULL;
|
|
|
|
dss = container_of(sshk, struct dss_key, sshk);
|
|
BinarySource_BARE_INIT_PL(src, priv);
|
|
dss->x = get_mp_ssh2(src);
|
|
if (get_err(src)) {
|
|
dss_freekey(&dss->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Check the obsolete hash in the old DSS key format.
|
|
*/
|
|
hash = get_string(src);
|
|
if (hash.len == 20) {
|
|
ssh_hash *h = ssh_hash_new(&ssh_sha1);
|
|
put_mp_ssh2(h, dss->p);
|
|
put_mp_ssh2(h, dss->q);
|
|
put_mp_ssh2(h, dss->g);
|
|
ssh_hash_final(h, digest);
|
|
if (!smemeq(hash.ptr, digest, 20)) {
|
|
dss_freekey(&dss->sshk);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now ensure g^x mod p really is y.
|
|
*/
|
|
ytest = mp_modpow(dss->g, dss->x, dss->p);
|
|
if (!mp_cmp_eq(ytest, dss->y)) {
|
|
mp_free(ytest);
|
|
dss_freekey(&dss->sshk);
|
|
return NULL;
|
|
}
|
|
mp_free(ytest);
|
|
|
|
return &dss->sshk;
|
|
}
|
|
|
|
static ssh_key *dss_new_priv_openssh(const ssh_keyalg *self,
|
|
BinarySource *src)
|
|
{
|
|
struct dss_key *dss;
|
|
|
|
dss = snew(struct dss_key);
|
|
dss->sshk.vt = &ssh_dss;
|
|
|
|
dss->p = get_mp_ssh2(src);
|
|
dss->q = get_mp_ssh2(src);
|
|
dss->g = get_mp_ssh2(src);
|
|
dss->y = get_mp_ssh2(src);
|
|
dss->x = get_mp_ssh2(src);
|
|
|
|
if (get_err(src) ||
|
|
mp_eq_integer(dss->q, 0) || mp_eq_integer(dss->p, 0)) {
|
|
/* Invalid key. */
|
|
dss_freekey(&dss->sshk);
|
|
return NULL;
|
|
}
|
|
|
|
return &dss->sshk;
|
|
}
|
|
|
|
static void dss_openssh_blob(ssh_key *key, BinarySink *bs)
|
|
{
|
|
struct dss_key *dss = container_of(key, struct dss_key, sshk);
|
|
|
|
put_mp_ssh2(bs, dss->p);
|
|
put_mp_ssh2(bs, dss->q);
|
|
put_mp_ssh2(bs, dss->g);
|
|
put_mp_ssh2(bs, dss->y);
|
|
put_mp_ssh2(bs, dss->x);
|
|
}
|
|
|
|
static int dss_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
|
|
{
|
|
ssh_key *sshk;
|
|
struct dss_key *dss;
|
|
int ret;
|
|
|
|
sshk = dss_new_pub(self, pub);
|
|
if (!sshk)
|
|
return -1;
|
|
|
|
dss = container_of(sshk, struct dss_key, sshk);
|
|
ret = mp_get_nbits(dss->p);
|
|
dss_freekey(&dss->sshk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
mp_int *dss_gen_k(const char *id_string, mp_int *modulus,
|
|
mp_int *private_key,
|
|
unsigned char *digest, int digest_len)
|
|
{
|
|
/*
|
|
* The basic DSS signing algorithm is:
|
|
*
|
|
* - invent a random k between 1 and q-1 (exclusive).
|
|
* - Compute r = (g^k mod p) mod q.
|
|
* - Compute s = k^-1 * (hash + x*r) mod q.
|
|
*
|
|
* This has the dangerous properties that:
|
|
*
|
|
* - if an attacker in possession of the public key _and_ the
|
|
* signature (for example, the host you just authenticated
|
|
* to) can guess your k, he can reverse the computation of s
|
|
* and work out x = r^-1 * (s*k - hash) mod q. That is, he
|
|
* can deduce the private half of your key, and masquerade
|
|
* as you for as long as the key is still valid.
|
|
*
|
|
* - since r is a function purely of k and the public key, if
|
|
* the attacker only has a _range of possibilities_ for k
|
|
* it's easy for him to work through them all and check each
|
|
* one against r; he'll never be unsure of whether he's got
|
|
* the right one.
|
|
*
|
|
* - if you ever sign two different hashes with the same k, it
|
|
* will be immediately obvious because the two signatures
|
|
* will have the same r, and moreover an attacker in
|
|
* possession of both signatures (and the public key of
|
|
* course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
|
|
* and from there deduce x as before.
|
|
*
|
|
* - the Bleichenbacher attack on DSA makes use of methods of
|
|
* generating k which are significantly non-uniformly
|
|
* distributed; in particular, generating a 160-bit random
|
|
* number and reducing it mod q is right out.
|
|
*
|
|
* For this reason we must be pretty careful about how we
|
|
* generate our k. Since this code runs on Windows, with no
|
|
* particularly good system entropy sources, we can't trust our
|
|
* RNG itself to produce properly unpredictable data. Hence, we
|
|
* use a totally different scheme instead.
|
|
*
|
|
* What we do is to take a SHA-512 (_big_) hash of the private
|
|
* key x, and then feed this into another SHA-512 hash that
|
|
* also includes the message hash being signed. That is:
|
|
*
|
|
* proto_k = SHA512 ( SHA512(x) || SHA160(message) )
|
|
*
|
|
* This number is 512 bits long, so reducing it mod q won't be
|
|
* noticeably non-uniform. So
|
|
*
|
|
* k = proto_k mod q
|
|
*
|
|
* This has the interesting property that it's _deterministic_:
|
|
* signing the same hash twice with the same key yields the
|
|
* same signature.
|
|
*
|
|
* Despite this determinism, it's still not predictable to an
|
|
* attacker, because in order to repeat the SHA-512
|
|
* construction that created it, the attacker would have to
|
|
* know the private key value x - and by assumption he doesn't,
|
|
* because if he knew that he wouldn't be attacking k!
|
|
*
|
|
* (This trick doesn't, _per se_, protect against reuse of k.
|
|
* Reuse of k is left to chance; all it does is prevent
|
|
* _excessively high_ chances of reuse of k due to entropy
|
|
* problems.)
|
|
*
|
|
* Thanks to Colin Plumb for the general idea of using x to
|
|
* ensure k is hard to guess, and to the Cambridge University
|
|
* Computer Security Group for helping to argue out all the
|
|
* fine details.
|
|
*/
|
|
ssh_hash *h;
|
|
unsigned char digest512[64];
|
|
|
|
/*
|
|
* Hash some identifying text plus x.
|
|
*/
|
|
h = ssh_hash_new(&ssh_sha512);
|
|
put_asciz(h, id_string);
|
|
put_mp_ssh2(h, private_key);
|
|
ssh_hash_digest(h, digest512);
|
|
|
|
/*
|
|
* Now hash that digest plus the message hash.
|
|
*/
|
|
ssh_hash_reset(h);
|
|
put_data(h, digest512, sizeof(digest512));
|
|
put_data(h, digest, digest_len);
|
|
ssh_hash_final(h, digest512);
|
|
|
|
/*
|
|
* Now convert the result into a bignum, and coerce it to the
|
|
* range [2,q), which we do by reducing it mod q-2 and adding 2.
|
|
*/
|
|
mp_int *modminus2 = mp_copy(modulus);
|
|
mp_sub_integer_into(modminus2, modminus2, 2);
|
|
mp_int *proto_k = mp_from_bytes_be(make_ptrlen(digest512, 64));
|
|
mp_int *k = mp_mod(proto_k, modminus2);
|
|
mp_free(proto_k);
|
|
mp_free(modminus2);
|
|
mp_add_integer_into(k, k, 2);
|
|
|
|
smemclr(digest512, sizeof(digest512));
|
|
|
|
return k;
|
|
}
|
|
|
|
static void dss_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs)
|
|
{
|
|
struct dss_key *dss = container_of(key, struct dss_key, sshk);
|
|
unsigned char digest[20];
|
|
int i;
|
|
|
|
hash_simple(&ssh_sha1, data, digest);
|
|
|
|
mp_int *k = dss_gen_k("DSA deterministic k generator", dss->q, dss->x,
|
|
digest, sizeof(digest));
|
|
mp_int *kinv = mp_invert(k, dss->q); /* k^-1 mod q */
|
|
|
|
/*
|
|
* Now we have k, so just go ahead and compute the signature.
|
|
*/
|
|
mp_int *gkp = mp_modpow(dss->g, k, dss->p); /* g^k mod p */
|
|
mp_int *r = mp_mod(gkp, dss->q); /* r = (g^k mod p) mod q */
|
|
mp_free(gkp);
|
|
|
|
mp_int *hash = mp_from_bytes_be(make_ptrlen(digest, 20));
|
|
mp_int *xr = mp_mul(dss->x, r);
|
|
mp_int *hxr = mp_add(xr, hash); /* hash + x*r */
|
|
mp_int *s = mp_modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash+x*r) mod q */
|
|
mp_free(hxr);
|
|
mp_free(xr);
|
|
mp_free(kinv);
|
|
mp_free(k);
|
|
mp_free(hash);
|
|
|
|
put_stringz(bs, "ssh-dss");
|
|
put_uint32(bs, 40);
|
|
for (i = 0; i < 20; i++)
|
|
put_byte(bs, mp_get_byte(r, 19 - i));
|
|
for (i = 0; i < 20; i++)
|
|
put_byte(bs, mp_get_byte(s, 19 - i));
|
|
mp_free(r);
|
|
mp_free(s);
|
|
}
|
|
|
|
const ssh_keyalg ssh_dss = {
|
|
dss_new_pub,
|
|
dss_new_priv,
|
|
dss_new_priv_openssh,
|
|
|
|
dss_freekey,
|
|
dss_invalid,
|
|
dss_sign,
|
|
dss_verify,
|
|
dss_public_blob,
|
|
dss_private_blob,
|
|
dss_openssh_blob,
|
|
dss_cache_str,
|
|
|
|
dss_pubkey_bits,
|
|
|
|
"ssh-dss",
|
|
"dss",
|
|
NULL,
|
|
0, /* no supported flags */
|
|
};
|