ruby/thread_win32.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1013 строки
25 KiB
C
Исходник Обычный вид История

/* -*-c-*- */
/**********************************************************************
thread_win32.c -
$Author$
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION
#include "internal/sanitizers.h"
#include <process.h>
#define TIME_QUANTUM_USEC (10 * 1000)
#define RB_CONDATTR_CLOCK_MONOTONIC 1 /* no effect */
#undef Sleep
#define native_thread_yield() Sleep(0)
#define unregister_ubf_list(th)
#define ubf_wakeup_all_threads() do {} while (0)
#define ubf_threads_empty() (1)
#define ubf_timer_disarm() do {} while (0)
#define ubf_list_atfork() do {} while (0)
static volatile DWORD ruby_native_thread_key = TLS_OUT_OF_INDEXES;
static int w32_wait_events(HANDLE *events, int count, DWORD timeout, rb_thread_t *th);
rb_internal_thread_event_hook_t *
rb_internal_thread_add_event_hook(rb_internal_thread_event_callback callback, rb_event_flag_t internal_event, void *user_data)
{
// not implemented
2022-06-23 10:45:05 +03:00
return NULL;
}
bool
rb_internal_thread_remove_event_hook(rb_internal_thread_event_hook_t * hook)
{
// not implemented
2022-06-23 10:45:05 +03:00
return false;
}
2021-05-02 08:11:28 +03:00
RBIMPL_ATTR_NORETURN()
static void
w32_error(const char *func)
{
LPVOID lpMsgBuf;
DWORD err = GetLastError();
if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
err,
MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US),
(LPTSTR) & lpMsgBuf, 0, NULL) == 0)
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
err,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR) & lpMsgBuf, 0, NULL);
rb_bug("%s: %s", func, (char*)lpMsgBuf);
2021-05-02 08:11:28 +03:00
UNREACHABLE;
}
#define W32_EVENT_DEBUG 0
#if W32_EVENT_DEBUG
#define w32_event_debug printf
#else
#define w32_event_debug if (0) printf
#endif
static int
w32_mutex_lock(HANDLE lock, bool try)
{
DWORD result;
while (1) {
// RUBY_DEBUG_LOG() is not available because RUBY_DEBUG_LOG() calls it.
w32_event_debug("lock:%p\n", lock);
result = w32_wait_events(&lock, 1, try ? 0 : INFINITE, 0);
switch (result) {
case WAIT_OBJECT_0:
/* get mutex object */
w32_event_debug("locked lock:%p\n", lock);
return 0;
case WAIT_OBJECT_0 + 1:
/* interrupt */
errno = EINTR;
w32_event_debug("interrupted lock:%p\n", lock);
return 0;
case WAIT_TIMEOUT:
w32_event_debug("timeout locK:%p\n", lock);
return EBUSY;
case WAIT_ABANDONED:
rb_bug("win32_mutex_lock: WAIT_ABANDONED");
break;
default:
rb_bug("win32_mutex_lock: unknown result (%ld)", result);
break;
}
}
return 0;
}
static HANDLE
w32_mutex_create(void)
{
HANDLE lock = CreateMutex(NULL, FALSE, NULL);
if (lock == NULL) {
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
w32_error("rb_native_mutex_initialize");
}
return lock;
}
#define GVL_DEBUG 0
static void
thread_sched_to_running(struct rb_thread_sched *sched, rb_thread_t *th)
{
w32_mutex_lock(sched->lock, false);
if (GVL_DEBUG) fprintf(stderr, "gvl acquire (%p): acquire\n", th);
}
#define thread_sched_to_dead thread_sched_to_waiting
static void
thread_sched_to_waiting(struct rb_thread_sched *sched, rb_thread_t *th)
{
ReleaseMutex(sched->lock);
}
static void
thread_sched_yield(struct rb_thread_sched *sched, rb_thread_t *th)
{
thread_sched_to_waiting(sched, th);
native_thread_yield();
thread_sched_to_running(sched, th);
}
void
rb_thread_sched_init(struct rb_thread_sched *sched, bool atfork)
{
if (GVL_DEBUG) fprintf(stderr, "sched init\n");
sched->lock = w32_mutex_create();
}
// per-ractor
void
rb_thread_sched_destroy(struct rb_thread_sched *sched)
{
if (GVL_DEBUG) fprintf(stderr, "sched destroy\n");
CloseHandle(sched->lock);
}
rb_thread_t *
ruby_thread_from_native(void)
{
return TlsGetValue(ruby_native_thread_key);
}
int
ruby_thread_set_native(rb_thread_t *th)
{
if (th && th->ec) {
rb_ractor_set_current_ec(th->ractor, th->ec);
}
return TlsSetValue(ruby_native_thread_key, th);
}
void
Init_native_thread(rb_thread_t *main_th)
{
if ((ruby_current_ec_key = TlsAlloc()) == TLS_OUT_OF_INDEXES) {
rb_bug("TlsAlloc() for ruby_current_ec_key fails");
}
if ((ruby_native_thread_key = TlsAlloc()) == TLS_OUT_OF_INDEXES) {
rb_bug("TlsAlloc() for ruby_native_thread_key fails");
}
// setup main thread
ruby_thread_set_native(main_th);
main_th->nt->interrupt_event = CreateEvent(0, TRUE, FALSE, 0);
DuplicateHandle(GetCurrentProcess(),
GetCurrentThread(),
GetCurrentProcess(),
&main_th->nt->thread_id, 0, FALSE, DUPLICATE_SAME_ACCESS);
RUBY_DEBUG_LOG("initial thread th:%u thid:%p, event: %p",
rb_th_serial(main_th),
main_th->nt->thread_id,
main_th->nt->interrupt_event);
}
void
ruby_mn_threads_params(void)
{
}
static int
w32_wait_events(HANDLE *events, int count, DWORD timeout, rb_thread_t *th)
{
HANDLE *targets = events;
HANDLE intr;
const int initcount = count;
DWORD ret;
w32_event_debug("events:%p, count:%d, timeout:%ld, th:%u\n",
events, count, timeout, th ? rb_th_serial(th) : UINT_MAX);
if (th && (intr = th->nt->interrupt_event)) {
if (ResetEvent(intr) && (!RUBY_VM_INTERRUPTED(th->ec) || SetEvent(intr))) {
targets = ALLOCA_N(HANDLE, count + 1);
memcpy(targets, events, sizeof(HANDLE) * count);
targets[count++] = intr;
w32_event_debug("handle:%p (count:%d, intr)\n", intr, count);
}
else if (intr == th->nt->interrupt_event) {
w32_error("w32_wait_events");
}
}
w32_event_debug("WaitForMultipleObjects start count:%d\n", count);
ret = WaitForMultipleObjects(count, targets, FALSE, timeout);
w32_event_debug("WaitForMultipleObjects end ret:%lu\n", ret);
if (ret == (DWORD)(WAIT_OBJECT_0 + initcount) && th) {
errno = EINTR;
}
if (ret == WAIT_FAILED && W32_EVENT_DEBUG) {
int i;
DWORD dmy;
for (i = 0; i < count; i++) {
w32_event_debug("i:%d %s\n", i, GetHandleInformation(targets[i], &dmy) ? "OK" : "NG");
}
}
return ret;
}
static void ubf_handle(void *ptr);
#define ubf_select ubf_handle
int
rb_w32_wait_events_blocking(HANDLE *events, int num, DWORD timeout)
{
return w32_wait_events(events, num, timeout, ruby_thread_from_native());
}
int
rb_w32_wait_events(HANDLE *events, int num, DWORD timeout)
{
int ret;
rb_thread_t *th = GET_THREAD();
BLOCKING_REGION(th, ret = rb_w32_wait_events_blocking(events, num, timeout),
ubf_handle, ruby_thread_from_native(), FALSE);
return ret;
}
static void
w32_close_handle(HANDLE handle)
{
if (CloseHandle(handle) == 0) {
w32_error("w32_close_handle");
}
}
static void
w32_resume_thread(HANDLE handle)
{
if (ResumeThread(handle) == (DWORD)-1) {
w32_error("w32_resume_thread");
}
}
#ifdef _MSC_VER
#define HAVE__BEGINTHREADEX 1
#else
#undef HAVE__BEGINTHREADEX
#endif
#ifdef HAVE__BEGINTHREADEX
#define start_thread (HANDLE)_beginthreadex
#define thread_errno errno
typedef unsigned long (__stdcall *w32_thread_start_func)(void*);
#else
#define start_thread CreateThread
#define thread_errno rb_w32_map_errno(GetLastError())
typedef LPTHREAD_START_ROUTINE w32_thread_start_func;
#endif
static HANDLE
w32_create_thread(DWORD stack_size, w32_thread_start_func func, void *val)
{
return start_thread(0, stack_size, func, val, CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION, 0);
}
int
rb_w32_sleep(unsigned long msec)
{
return w32_wait_events(0, 0, msec, ruby_thread_from_native());
}
int WINAPI
rb_w32_Sleep(unsigned long msec)
{
int ret;
rb_thread_t *th = GET_THREAD();
BLOCKING_REGION(th, ret = rb_w32_sleep(msec),
ubf_handle, ruby_thread_from_native(), FALSE);
return ret;
}
static DWORD
hrtime2msec(rb_hrtime_t hrt)
{
return (DWORD)hrt / (DWORD)RB_HRTIME_PER_MSEC;
}
static void
native_sleep(rb_thread_t *th, rb_hrtime_t *rel)
{
const volatile DWORD msec = rel ? hrtime2msec(*rel) : INFINITE;
THREAD_BLOCKING_BEGIN(th);
{
DWORD ret;
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
rb_native_mutex_lock(&th->interrupt_lock);
th->unblock.func = ubf_handle;
th->unblock.arg = th;
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
rb_native_mutex_unlock(&th->interrupt_lock);
if (RUBY_VM_INTERRUPTED(th->ec)) {
/* interrupted. return immediate */
}
else {
RUBY_DEBUG_LOG("start msec:%lu", msec);
ret = w32_wait_events(0, 0, msec, th);
RUBY_DEBUG_LOG("done ret:%lu", ret);
(void)ret;
}
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
rb_native_mutex_lock(&th->interrupt_lock);
th->unblock.func = 0;
th->unblock.arg = 0;
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
rb_native_mutex_unlock(&th->interrupt_lock);
}
THREAD_BLOCKING_END(th);
}
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
void
rb_native_mutex_lock(rb_nativethread_lock_t *lock)
{
#ifdef USE_WIN32_MUTEX
w32_mutex_lock(lock->mutex, false);
#else
EnterCriticalSection(&lock->crit);
#endif
}
int
rb_native_mutex_trylock(rb_nativethread_lock_t *lock)
{
#ifdef USE_WIN32_MUTEX
return w32_mutex_lock(lock->mutex, true);
#else
return TryEnterCriticalSection(&lock->crit) == 0 ? EBUSY : 0;
#endif
}
void
rb_native_mutex_unlock(rb_nativethread_lock_t *lock)
{
#ifdef USE_WIN32_MUTEX
RUBY_DEBUG_LOG("lock:%p", lock->mutex);
ReleaseMutex(lock->mutex);
#else
LeaveCriticalSection(&lock->crit);
#endif
}
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
void
rb_native_mutex_initialize(rb_nativethread_lock_t *lock)
{
#ifdef USE_WIN32_MUTEX
lock->mutex = w32_mutex_create();
/* thread_debug("initialize mutex: %p\n", lock->mutex); */
#else
InitializeCriticalSection(&lock->crit);
#endif
}
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
void
rb_native_mutex_destroy(rb_nativethread_lock_t *lock)
{
#ifdef USE_WIN32_MUTEX
w32_close_handle(lock->mutex);
#else
DeleteCriticalSection(&lock->crit);
#endif
}
struct cond_event_entry {
struct cond_event_entry* next;
struct cond_event_entry* prev;
HANDLE event;
};
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
void
rb_native_cond_signal(rb_nativethread_cond_t *cond)
{
/* cond is guarded by mutex */
struct cond_event_entry *e = cond->next;
struct cond_event_entry *head = (struct cond_event_entry*)cond;
if (e != head) {
struct cond_event_entry *next = e->next;
struct cond_event_entry *prev = e->prev;
prev->next = next;
next->prev = prev;
e->next = e->prev = e;
SetEvent(e->event);
}
}
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
void
rb_native_cond_broadcast(rb_nativethread_cond_t *cond)
{
/* cond is guarded by mutex */
struct cond_event_entry *e = cond->next;
struct cond_event_entry *head = (struct cond_event_entry*)cond;
while (e != head) {
struct cond_event_entry *next = e->next;
struct cond_event_entry *prev = e->prev;
SetEvent(e->event);
prev->next = next;
next->prev = prev;
e->next = e->prev = e;
e = next;
}
}
static int
native_cond_timedwait_ms(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex, unsigned long msec)
{
DWORD r;
struct cond_event_entry entry;
struct cond_event_entry *head = (struct cond_event_entry*)cond;
entry.event = CreateEvent(0, FALSE, FALSE, 0);
/* cond is guarded by mutex */
entry.next = head;
entry.prev = head->prev;
head->prev->next = &entry;
head->prev = &entry;
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
rb_native_mutex_unlock(mutex);
{
r = WaitForSingleObject(entry.event, msec);
if ((r != WAIT_OBJECT_0) && (r != WAIT_TIMEOUT)) {
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
rb_bug("rb_native_cond_wait: WaitForSingleObject returns %lu", r);
}
}
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
rb_native_mutex_lock(mutex);
entry.prev->next = entry.next;
entry.next->prev = entry.prev;
w32_close_handle(entry.event);
return (r == WAIT_OBJECT_0) ? 0 : ETIMEDOUT;
}
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
void
rb_native_cond_wait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex)
{
native_cond_timedwait_ms(cond, mutex, INFINITE);
}
static unsigned long
abs_timespec_to_timeout_ms(const struct timespec *ts)
{
struct timeval tv;
struct timeval now;
gettimeofday(&now, NULL);
tv.tv_sec = ts->tv_sec;
tv.tv_usec = ts->tv_nsec / 1000;
if (!rb_w32_time_subtract(&tv, &now))
return 0;
return (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
}
static int
native_cond_timedwait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex, const struct timespec *ts)
{
unsigned long timeout_ms;
timeout_ms = abs_timespec_to_timeout_ms(ts);
if (!timeout_ms)
return ETIMEDOUT;
return native_cond_timedwait_ms(cond, mutex, timeout_ms);
}
static struct timespec native_cond_timeout(rb_nativethread_cond_t *cond, struct timespec timeout_rel);
void
rb_native_cond_timedwait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex, unsigned long msec)
{
struct timespec rel = {
.tv_sec = msec / 1000,
.tv_nsec = (msec % 1000) * 1000 * 1000,
};
struct timespec ts = native_cond_timeout(cond, rel);
native_cond_timedwait(cond, mutex, &ts);
}
static struct timespec
native_cond_timeout(rb_nativethread_cond_t *cond, struct timespec timeout_rel)
{
int ret;
struct timeval tv;
struct timespec timeout;
struct timespec now;
ret = gettimeofday(&tv, 0);
if (ret != 0)
rb_sys_fail(0);
now.tv_sec = tv.tv_sec;
now.tv_nsec = tv.tv_usec * 1000;
timeout.tv_sec = now.tv_sec;
timeout.tv_nsec = now.tv_nsec;
timeout.tv_sec += timeout_rel.tv_sec;
timeout.tv_nsec += timeout_rel.tv_nsec;
if (timeout.tv_nsec >= 1000*1000*1000) {
timeout.tv_sec++;
timeout.tv_nsec -= 1000*1000*1000;
}
if (timeout.tv_sec < now.tv_sec)
timeout.tv_sec = TIMET_MAX;
return timeout;
}
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
void
rb_native_cond_initialize(rb_nativethread_cond_t *cond)
{
cond->next = (struct cond_event_entry *)cond;
cond->prev = (struct cond_event_entry *)cond;
}
mjit.c: merge MJIT infrastructure that allows to JIT-compile Ruby methods by generating C code and using C compiler. See the first comment of mjit.c to know what this file does. mjit.c is authored by Vladimir Makarov <vmakarov@redhat.com>. After he invented great method JIT infrastructure for MRI as MJIT, Lars Kanis <lars@greiz-reinsdorf.de> sent the patch to support MinGW in MJIT. In addition to merging it, I ported pthread to Windows native threads. Now this MJIT infrastructure can be compiled on Visual Studio. This commit simplifies mjit.c to decrease code at initial merge. For example, this commit does not provide multiple JIT threads support. We can resurrect them later if we really want them, but I wanted to minimize diff to make it easier to review this patch. `/tmp/_mjitXXX` file is renamed to `/tmp/_ruby_mjitXXX` because non-Ruby developers may not know the name "mjit" and the file name should make sure it's from Ruby and not from some harmful programs. TODO: it may be better to store this to some temporary directory which Ruby is already using by Tempfile, if it's not bad for performance. mjit.h: New. It has `mjit_exec` interface similar to `vm_exec`, which is for triggering MJIT. This drops interface for AOT compared to the original MJIT. Makefile.in: define macros to let MJIT know the path of MJIT header. Probably we can refactor this to reduce the number of macros (TODO). win32/Makefile.sub: ditto. common.mk: compile mjit.o and mjit_compile.o. Unlike original MJIT, this commit separates MJIT infrastructure and JIT compiler code as independent object files. As initial patch is NOT going to have ultra-fast JIT compiler, it's likely to replace JIT compiler, e.g. original MJIT's compiler or some future JIT impelementations which are not public now. inits.c: define MJIT module. This is added because `MJIT.enabled?` was necessary for testing. test/lib/zombie_hunter.rb: skip if `MJIT.enabled?`. Obviously this wouldn't work with current code when JIT is enabled. test/ruby/test_io.rb: skip this too. This would make no sense with MJIT. ruby.c: define MJIT CLI options. As major difference from original MJIT, "-j:l"/"--jit:llvm" are renamed to "--jit-cc" because I want to support not only gcc/clang but also cl.exe (Visual Studio) in the future. But it takes only "--jit-cc=gcc", "--jit-cc=clang" for now. And only long "--jit" options are allowed since some Ruby committers preferred it at Ruby developers Meeting on January, and some of options are renamed. This file also triggers to initialize MJIT thread and variables. eval.c: finalize MJIT worker thread and variables. test/ruby/test_rubyoptions.rb: fix number of CLI options for --jit. thread_pthread.c: change for pthread abstraction in MJIT. Prefix rb_ for functions which are used by other files. thread_win32.c: ditto, for Windows. Those pthread porting is one of major works that YARV-MJIT created, which is my fork of MJIT, in Feature 14235. thread.c: follow rb_ prefix changes vm.c: trigger MJIT call on VM invocation. Also trigger `mjit_mark` to avoid SEGV by race between JIT and GC of ISeq. The improvement was provided by wanabe <s.wanabe@gmail.com>. In JIT compiler I created and am going to add in my next commit, I found that having `mjit_exec` after `vm_loop_start:` is harmful because the JIT-ed function doesn't proceed other ISeqs on RESTORE_REGS of leave insn. Executing non-FINISH frame is unexpected for my JIT compiler and `exception_handler` triggers executions of such ISeqs. So `mjit_exec` here should be executed only when it directly comes from `vm_exec` call. `RubyVM::MJIT` module and `.enabled?` method is added so that we can skip some tests which don't expect JIT threads or compiler file descriptors. vm_insnhelper.h: trigger MJIT on method calls during VM execution. vm_core.h: add fields required for mjit.c. `bp` must be `cfp[6]` because rb_control_frame_struct is likely to be casted to another struct. The last position is the safest place to add the new field. vm_insnhelper.c: save initial value of cfp->ep as cfp->bp. This is an optimization which are done in both MJIT and YARV-MJIT. So this change is added in this commit. Calculating bp from ep is a little heavy work, so bp is kind of cache for it. iseq.c: notify ISeq GC to MJIT. We should know which iseq in MJIT queue is GCed to avoid SEGV. TODO: unload some GCed units in some safe way. gc.c: add hooks so that MJIT can wait GC, and vice versa. Simultaneous JIT and GC executions may cause SEGV and so we should synchronize them. cont.c: save continuation information in MJIT worker. As MJIT shouldn't unload JIT-ed code which is being used, MJIT wants to know full list of saved execution contexts for continuation and detect ISeqs in use. mjit_compile.c: added empty JIT compiler so that you can reuse this commit to build your own JIT compiler. This commit tries to compile ISeqs but all of them are considered as not supported in this commit. So you can't use JIT compiler in this commit yet while we added --jit option now. Patch author: Vladimir Makarov <vmakarov@redhat.com>. Contributors: Takashi Kokubun <takashikkbn@gmail.com>. wanabe <s.wanabe@gmail.com>. Lars Kanis <lars@greiz-reinsdorf.de>. Part of Feature 12589 and 14235. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62189 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 09:58:09 +03:00
void
rb_native_cond_destroy(rb_nativethread_cond_t *cond)
{
/* */
}
#define CHECK_ERR(expr) \
{if (!(expr)) {rb_bug("err: %lu - %s", GetLastError(), #expr);}}
COMPILER_WARNING_PUSH
#if defined(__GNUC__)
COMPILER_WARNING_IGNORED(-Wmaybe-uninitialized)
#endif
static inline SIZE_T
Pass down "stack start" variables from closer to the top of the stack This commit changes how stack extents are calculated for both the main thread and other threads. Ruby uses the address of a local variable as part of the calculation for machine stack extents: * pthreads uses it as a lower-bound on the start of the stack, because glibc (and maybe other libcs) can store its own data on the stack before calling into user code on thread creation. * win32 uses it as an argument to VirtualQuery, which gets the extent of the memory mapping which contains the variable However, the local being used for this is actually too low (too close to the leaf function call) in both the main thread case and the new thread case. In the main thread case, we have the `INIT_STACK` macro, which is used for pthreads to set the `native_main_thread->stack_start` value. This value is correctly captured at the very top level of the program (in main.c). However, this is _not_ what's used to set the execution context machine stack (`th->ec->machine_stack.stack_start`); that gets set as part of a call to `ruby_thread_init_stack` in `Init_BareVM`, using the address of a local variable allocated _inside_ `Init_BareVM`. This is too low; we need to use a local allocated closer to the top of the program. In the new thread case, the lolcal is allocated inside `native_thread_init_stack`, which is, again, too low. In both cases, this means that we might have VALUEs lying outside the bounds of `th->ec->machine.stack_{start,end}`, which won't be marked correctly by the GC machinery. To fix this, * In the main thread case: We already have `INIT_STACK` at the right level, so just pass that local var to `ruby_thread_init_stack`. * In the new thread case: Allocate the local one level above the call to `native_thread_init_stack` in `call_thread_start_func2`. [Bug #20001] fix
2023-11-12 05:24:55 +03:00
query_memory_basic_info(PMEMORY_BASIC_INFORMATION mi, void *local_in_parent_frame)
{
return VirtualQuery(asan_get_real_stack_addr(local_in_parent_frame), mi, sizeof(*mi));
}
COMPILER_WARNING_POP
static void
Pass down "stack start" variables from closer to the top of the stack This commit changes how stack extents are calculated for both the main thread and other threads. Ruby uses the address of a local variable as part of the calculation for machine stack extents: * pthreads uses it as a lower-bound on the start of the stack, because glibc (and maybe other libcs) can store its own data on the stack before calling into user code on thread creation. * win32 uses it as an argument to VirtualQuery, which gets the extent of the memory mapping which contains the variable However, the local being used for this is actually too low (too close to the leaf function call) in both the main thread case and the new thread case. In the main thread case, we have the `INIT_STACK` macro, which is used for pthreads to set the `native_main_thread->stack_start` value. This value is correctly captured at the very top level of the program (in main.c). However, this is _not_ what's used to set the execution context machine stack (`th->ec->machine_stack.stack_start`); that gets set as part of a call to `ruby_thread_init_stack` in `Init_BareVM`, using the address of a local variable allocated _inside_ `Init_BareVM`. This is too low; we need to use a local allocated closer to the top of the program. In the new thread case, the lolcal is allocated inside `native_thread_init_stack`, which is, again, too low. In both cases, this means that we might have VALUEs lying outside the bounds of `th->ec->machine.stack_{start,end}`, which won't be marked correctly by the GC machinery. To fix this, * In the main thread case: We already have `INIT_STACK` at the right level, so just pass that local var to `ruby_thread_init_stack`. * In the new thread case: Allocate the local one level above the call to `native_thread_init_stack` in `call_thread_start_func2`. [Bug #20001] fix
2023-11-12 05:24:55 +03:00
native_thread_init_stack(rb_thread_t *th, void *local_in_parent_frame)
{
MEMORY_BASIC_INFORMATION mi;
char *base, *end;
DWORD size, space;
Pass down "stack start" variables from closer to the top of the stack This commit changes how stack extents are calculated for both the main thread and other threads. Ruby uses the address of a local variable as part of the calculation for machine stack extents: * pthreads uses it as a lower-bound on the start of the stack, because glibc (and maybe other libcs) can store its own data on the stack before calling into user code on thread creation. * win32 uses it as an argument to VirtualQuery, which gets the extent of the memory mapping which contains the variable However, the local being used for this is actually too low (too close to the leaf function call) in both the main thread case and the new thread case. In the main thread case, we have the `INIT_STACK` macro, which is used for pthreads to set the `native_main_thread->stack_start` value. This value is correctly captured at the very top level of the program (in main.c). However, this is _not_ what's used to set the execution context machine stack (`th->ec->machine_stack.stack_start`); that gets set as part of a call to `ruby_thread_init_stack` in `Init_BareVM`, using the address of a local variable allocated _inside_ `Init_BareVM`. This is too low; we need to use a local allocated closer to the top of the program. In the new thread case, the lolcal is allocated inside `native_thread_init_stack`, which is, again, too low. In both cases, this means that we might have VALUEs lying outside the bounds of `th->ec->machine.stack_{start,end}`, which won't be marked correctly by the GC machinery. To fix this, * In the main thread case: We already have `INIT_STACK` at the right level, so just pass that local var to `ruby_thread_init_stack`. * In the new thread case: Allocate the local one level above the call to `native_thread_init_stack` in `call_thread_start_func2`. [Bug #20001] fix
2023-11-12 05:24:55 +03:00
CHECK_ERR(query_memory_basic_info(&mi, local_in_parent_frame));
base = mi.AllocationBase;
end = mi.BaseAddress;
end += mi.RegionSize;
size = end - base;
space = size / 5;
if (space > 1024*1024) space = 1024*1024;
th->ec->machine.stack_start = (VALUE *)end - 1;
th->ec->machine.stack_maxsize = size - space;
}
#ifndef InterlockedExchangePointer
#define InterlockedExchangePointer(t, v) \
(void *)InterlockedExchange((long *)(t), (long)(v))
#endif
static void
native_thread_destroy(struct rb_native_thread *nt)
{
if (nt) {
HANDLE intr = InterlockedExchangePointer(&nt->interrupt_event, 0);
RUBY_DEBUG_LOG("close handle intr:%p, thid:%p\n", intr, nt->thread_id);
w32_close_handle(intr);
}
}
static unsigned long __stdcall
thread_start_func_1(void *th_ptr)
{
rb_thread_t *th = th_ptr;
volatile HANDLE thread_id = th->nt->thread_id;
Pass down "stack start" variables from closer to the top of the stack This commit changes how stack extents are calculated for both the main thread and other threads. Ruby uses the address of a local variable as part of the calculation for machine stack extents: * pthreads uses it as a lower-bound on the start of the stack, because glibc (and maybe other libcs) can store its own data on the stack before calling into user code on thread creation. * win32 uses it as an argument to VirtualQuery, which gets the extent of the memory mapping which contains the variable However, the local being used for this is actually too low (too close to the leaf function call) in both the main thread case and the new thread case. In the main thread case, we have the `INIT_STACK` macro, which is used for pthreads to set the `native_main_thread->stack_start` value. This value is correctly captured at the very top level of the program (in main.c). However, this is _not_ what's used to set the execution context machine stack (`th->ec->machine_stack.stack_start`); that gets set as part of a call to `ruby_thread_init_stack` in `Init_BareVM`, using the address of a local variable allocated _inside_ `Init_BareVM`. This is too low; we need to use a local allocated closer to the top of the program. In the new thread case, the lolcal is allocated inside `native_thread_init_stack`, which is, again, too low. In both cases, this means that we might have VALUEs lying outside the bounds of `th->ec->machine.stack_{start,end}`, which won't be marked correctly by the GC machinery. To fix this, * In the main thread case: We already have `INIT_STACK` at the right level, so just pass that local var to `ruby_thread_init_stack`. * In the new thread case: Allocate the local one level above the call to `native_thread_init_stack` in `call_thread_start_func2`. [Bug #20001] fix
2023-11-12 05:24:55 +03:00
native_thread_init_stack(th, &th);
th->nt->interrupt_event = CreateEvent(0, TRUE, FALSE, 0);
/* run */
RUBY_DEBUG_LOG("thread created th:%u, thid: %p, event: %p",
rb_th_serial(th), th->nt->thread_id, th->nt->interrupt_event);
thread_sched_to_running(TH_SCHED(th), th);
ruby_thread_set_native(th);
// kick threads
2019-06-19 12:06:57 +03:00
thread_start_func_2(th, th->ec->machine.stack_start);
w32_close_handle(thread_id);
RUBY_DEBUG_LOG("thread deleted th:%u", rb_th_serial(th));
return 0;
}
static int
native_thread_create(rb_thread_t *th)
{
// setup nt
const size_t stack_size = th->vm->default_params.thread_machine_stack_size;
th->nt = ZALLOC(struct rb_native_thread);
th->nt->thread_id = w32_create_thread(stack_size, thread_start_func_1, th);
// setup vm stack
size_t vm_stack_word_size = th->vm->default_params.thread_vm_stack_size / sizeof(VALUE);
void *vm_stack = ruby_xmalloc(vm_stack_word_size * sizeof(VALUE));
th->sched.vm_stack = vm_stack;
rb_ec_initialize_vm_stack(th->ec, vm_stack, vm_stack_word_size);
if ((th->nt->thread_id) == 0) {
return thread_errno;
}
w32_resume_thread(th->nt->thread_id);
if (USE_RUBY_DEBUG_LOG) {
Sleep(0);
RUBY_DEBUG_LOG("th:%u thid:%p intr:%p), stack size: %"PRIuSIZE"",
rb_th_serial(th), th->nt->thread_id,
th->nt->interrupt_event, stack_size);
}
return 0;
}
static void
native_thread_join(HANDLE th)
{
w32_wait_events(&th, 1, INFINITE, 0);
}
#if USE_NATIVE_THREAD_PRIORITY
static void
native_thread_apply_priority(rb_thread_t *th)
{
int priority = th->priority;
if (th->priority > 0) {
priority = THREAD_PRIORITY_ABOVE_NORMAL;
}
else if (th->priority < 0) {
priority = THREAD_PRIORITY_BELOW_NORMAL;
}
else {
priority = THREAD_PRIORITY_NORMAL;
}
SetThreadPriority(th->nt->thread_id, priority);
}
#endif /* USE_NATIVE_THREAD_PRIORITY */
int rb_w32_select_with_thread(int, fd_set *, fd_set *, fd_set *, struct timeval *, void *); /* @internal */
static int
native_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout, rb_thread_t *th)
{
fd_set *r = NULL, *w = NULL, *e = NULL;
if (readfds) {
rb_fd_resize(n - 1, readfds);
r = rb_fd_ptr(readfds);
}
if (writefds) {
rb_fd_resize(n - 1, writefds);
w = rb_fd_ptr(writefds);
}
if (exceptfds) {
rb_fd_resize(n - 1, exceptfds);
e = rb_fd_ptr(exceptfds);
}
return rb_w32_select_with_thread(n, r, w, e, timeout, th);
}
/* @internal */
int
rb_w32_check_interrupt(rb_thread_t *th)
{
return w32_wait_events(0, 0, 0, th);
}
static void
ubf_handle(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
RUBY_DEBUG_LOG("th:%u\n", rb_th_serial(th));
if (!SetEvent(th->nt->interrupt_event)) {
w32_error("ubf_handle");
}
}
int rb_w32_set_thread_description(HANDLE th, const WCHAR *name);
int rb_w32_set_thread_description_str(HANDLE th, VALUE name);
#define native_set_another_thread_name rb_w32_set_thread_description_str
static struct {
HANDLE id;
HANDLE lock;
} timer_thread;
#define TIMER_THREAD_CREATED_P() (timer_thread.id != 0)
static unsigned long __stdcall
timer_thread_func(void *dummy)
{
rb_vm_t *vm = GET_VM();
RUBY_DEBUG_LOG("start");
rb_w32_set_thread_description(GetCurrentThread(), L"ruby-timer-thread");
while (WaitForSingleObject(timer_thread.lock,
TIME_QUANTUM_USEC/1000) == WAIT_TIMEOUT) {
vm->clock++;
rb_threadptr_check_signal(vm->ractor.main_thread);
}
RUBY_DEBUG_LOG("end");
return 0;
}
2011-06-27 04:30:41 +04:00
void
rb_thread_wakeup_timer_thread(int sig)
2011-06-27 04:30:41 +04:00
{
/* do nothing */
}
static void
rb_thread_create_timer_thread(void)
{
if (timer_thread.id == 0) {
if (!timer_thread.lock) {
timer_thread.lock = CreateEvent(0, TRUE, FALSE, 0);
}
timer_thread.id = w32_create_thread(1024 + (USE_RUBY_DEBUG_LOG ? BUFSIZ : 0),
timer_thread_func, 0);
w32_resume_thread(timer_thread.id);
}
}
static int
improve handling of timer thread shutdown Shutting down the timer thread now always closes pipes to free FDs. In fact, we close the write ends of the pipes is done in the main RubyVM to signal the timer thread shutdown. To effectively close pipes, we implement userspace locks via atomics to force the pipe closing thread to wait on any signal handlers which may be waking up. While we're at it, improve robustness during resource exhaustion and allow it to limp along non-fatally if restarting a timer thread fails. This reverts r51268 Note: this change is tested with VM_CHECK_MODE 1 in vm_core.h * process.c (close_unless_reserved): add extra check (dup2_with_divert): remove (redirect_dup2): use dup2 without divert (before_exec_non_async_signal_safe): adjust call + comment (rb_f_exec): stop timer thread for all OSes (rb_exec_without_timer_thread): remove * eval.c (ruby_cleanup): adjust call * thread.c (rb_thread_stop_timer_thread): always close pipes * thread_pthread.c (struct timer_thread_pipe): add writing field, mark owner_process volatile for signal handlers (rb_thread_wakeup_timer_thread_fd): check valid FD (rb_thread_wakeup_timer_thread): set writing flag to prevent close (rb_thread_wakeup_timer_thread_low): ditto (CLOSE_INVALIDATE): new macro (close_invalidate): new function (close_communication_pipe): removed (setup_communication_pipe_internal): make errors non-fatal (setup_communication_pipe): ditto (thread_timer): close reading ends inside timer thread (rb_thread_create_timer_thread): make errors non-fatal (native_stop_timer_thread): close write ends only, always, wait for signal handlers to finish (rb_divert_reserved_fd): remove * thread_win32.c (native_stop_timer_thread): adjust (untested) (rb_divert_reserved_fd): remove * vm_core.h: adjust prototype git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51576 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-08-14 12:44:10 +03:00
native_stop_timer_thread(void)
{
int stopped = --system_working <= 0;
if (stopped) {
SetEvent(timer_thread.lock);
native_thread_join(timer_thread.id);
CloseHandle(timer_thread.lock);
timer_thread.lock = 0;
}
return stopped;
}
static void
native_reset_timer_thread(void)
{
if (timer_thread.id) {
CloseHandle(timer_thread.id);
timer_thread.id = 0;
}
}
int
ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
{
return rb_ec_raised_p(th->ec, RAISED_STACKOVERFLOW);
}
#if defined(__MINGW32__)
LONG WINAPI
rb_w32_stack_overflow_handler(struct _EXCEPTION_POINTERS *exception)
{
if (exception->ExceptionRecord->ExceptionCode == EXCEPTION_STACK_OVERFLOW) {
rb_ec_raised_set(GET_EC(), RAISED_STACKOVERFLOW);
raise(SIGSEGV);
}
return EXCEPTION_CONTINUE_SEARCH;
}
#endif
#ifdef RUBY_ALLOCA_CHKSTK
void
ruby_alloca_chkstk(size_t len, void *sp)
{
if (ruby_stack_length(NULL) * sizeof(VALUE) >= len) {
rb_execution_context_t *ec = GET_EC();
if (!rb_ec_raised_p(ec, RAISED_STACKOVERFLOW)) {
rb_ec_raised_set(ec, RAISED_STACKOVERFLOW);
rb_exc_raise(sysstack_error);
}
}
}
#endif
int
rb_reserved_fd_p(int fd)
{
return 0;
}
rb_nativethread_id_t
rb_nativethread_self(void)
{
return GetCurrentThread();
}
static void
native_set_thread_name(rb_thread_t *th)
{
}
static VALUE
native_thread_native_thread_id(rb_thread_t *th)
{
DWORD tid = GetThreadId(th->nt->thread_id);
if (tid == 0) rb_sys_fail("GetThreadId");
return ULONG2NUM(tid);
}
#define USE_NATIVE_THREAD_NATIVE_THREAD_ID 1
void
rb_add_running_thread(rb_thread_t *th){
// do nothing
}
void
rb_del_running_thread(rb_thread_t *th)
{
// do nothing
}
static bool
th_has_dedicated_nt(const rb_thread_t *th)
{
return true;
}
void
rb_threadptr_sched_free(rb_thread_t *th)
{
native_thread_destroy(th->nt);
ruby_xfree(th->nt);
ruby_xfree(th->sched.vm_stack);
}
void
rb_threadptr_remove(rb_thread_t *th)
{
// do nothing
}
void
rb_thread_sched_mark_zombies(rb_vm_t *vm)
{
// do nothing
}
static bool
vm_barrier_finish_p(rb_vm_t *vm)
{
RUBY_DEBUG_LOG("cnt:%u living:%u blocking:%u",
vm->ractor.blocking_cnt == vm->ractor.cnt,
vm->ractor.sync.barrier_cnt,
vm->ractor.cnt,
vm->ractor.blocking_cnt);
VM_ASSERT(vm->ractor.blocking_cnt <= vm->ractor.cnt);
return vm->ractor.blocking_cnt == vm->ractor.cnt;
}
void
rb_ractor_sched_barrier_start(rb_vm_t *vm, rb_ractor_t *cr)
{
vm->ractor.sync.barrier_waiting = true;
RUBY_DEBUG_LOG("barrier start. cnt:%u living:%u blocking:%u",
vm->ractor.sync.barrier_cnt,
vm->ractor.cnt,
vm->ractor.blocking_cnt);
rb_vm_ractor_blocking_cnt_inc(vm, cr, __FILE__, __LINE__);
// send signal
rb_ractor_t *r = 0;
ccan_list_for_each(&vm->ractor.set, r, vmlr_node) {
if (r != cr) {
rb_ractor_vm_barrier_interrupt_running_thread(r);
}
}
// wait
while (!vm_barrier_finish_p(vm)) {
rb_vm_cond_wait(vm, &vm->ractor.sync.barrier_cond);
}
RUBY_DEBUG_LOG("cnt:%u barrier success", vm->ractor.sync.barrier_cnt);
rb_vm_ractor_blocking_cnt_dec(vm, cr, __FILE__, __LINE__);
vm->ractor.sync.barrier_waiting = false;
vm->ractor.sync.barrier_cnt++;
ccan_list_for_each(&vm->ractor.set, r, vmlr_node) {
rb_native_cond_signal(&r->barrier_wait_cond);
}
}
void
rb_ractor_sched_barrier_join(rb_vm_t *vm, rb_ractor_t *cr)
{
vm->ractor.sync.lock_owner = cr;
unsigned int barrier_cnt = vm->ractor.sync.barrier_cnt;
rb_thread_t *th = GET_THREAD();
bool running;
RB_VM_SAVE_MACHINE_CONTEXT(th);
if (rb_ractor_status_p(cr, ractor_running)) {
rb_vm_ractor_blocking_cnt_inc(vm, cr, __FILE__, __LINE__);
running = true;
}
else {
running = false;
}
VM_ASSERT(rb_ractor_status_p(cr, ractor_blocking));
if (vm_barrier_finish_p(vm)) {
RUBY_DEBUG_LOG("wakeup barrier owner");
rb_native_cond_signal(&vm->ractor.sync.barrier_cond);
}
else {
RUBY_DEBUG_LOG("wait for barrier finish");
}
// wait for restart
while (barrier_cnt == vm->ractor.sync.barrier_cnt) {
vm->ractor.sync.lock_owner = NULL;
rb_native_cond_wait(&cr->barrier_wait_cond, &vm->ractor.sync.lock);
VM_ASSERT(vm->ractor.sync.lock_owner == NULL);
vm->ractor.sync.lock_owner = cr;
}
RUBY_DEBUG_LOG("barrier is released. Acquire vm_lock");
if (running) {
rb_vm_ractor_blocking_cnt_dec(vm, cr, __FILE__, __LINE__);
}
vm->ractor.sync.lock_owner = NULL;
}
bool
rb_thread_lock_native_thread(void)
{
return false;
}
#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */