ruby/vm_dump.c

1199 строки
36 KiB
C
Исходник Обычный вид История

/**********************************************************************
vm_dump.c -
$Author$
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#include "ruby/internal/config.h"
#ifdef HAVE_UCONTEXT_H
# include <ucontext.h>
#endif
#ifdef __APPLE__
# ifdef HAVE_LIBPROC_H
# include <libproc.h>
# endif
# include <mach/vm_map.h>
# include <mach/mach_init.h>
# ifdef __LP64__
# define vm_region_recurse vm_region_recurse_64
# endif
/* that is defined in sys/queue.h, and conflicts with
* ccan/list/list.h */
# undef LIST_HEAD
#endif
#include "addr2line.h"
#include "gc.h"
#include "internal.h"
#include "internal/variable.h"
#include "internal/vm.h"
#include "iseq.h"
#include "vm_core.h"
#include "ractor_core.h"
#define MAX_POSBUF 128
#define VM_CFP_CNT(ec, cfp) \
((rb_control_frame_t *)((ec)->vm_stack + (ec)->vm_stack_size) - \
(rb_control_frame_t *)(cfp))
const char *rb_method_type_name(rb_method_type_t type);
int ruby_on_ci;
static void
control_frame_dump(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
ptrdiff_t pc = -1;
ptrdiff_t ep = cfp->ep - ec->vm_stack;
* vm_core.h: remove lfp (local frame pointer) and rename dfp (dynamic frame pointer) to ep (environment pointer). This change make VM `normal' (similar to other interpreters). Before this commit: Each frame has two env pointers lfp and dfp. lfp points local environment which is method/class/toplevel frame. lfp[0] is block pointer. dfp is block local frame. dfp[0] points previous (parent) environment pointer. lfp == dfp when frame is method/class/toplevel. You can get lfp from dfp by traversing previous environment pointers. After this commit: Each frame has only `ep' to point respective enviornoment. If there is parent environment, then ep[0] points parent envioenment (as dfp). If there are no more environment, then ep[0] points block pointer (as lfp). We call such ep as `LEP' (local EP). We add some macros to get LEP and to detect LEP or not. In short, we replace dfp and lfp with ep and LEP. rb_block_t and rb_binding_t member `lfp' and `dfp' are removed and member `ep' is added. rename rb_thread_t's member `local_lfp' and `local_svar' to `root_lep' and `root_svar'. (VM_EP_PREV_EP(ep)): get previous environment pointer. This macro assume that ep is not LEP. (VM_EP_BLOCK_PTR(ep)): get block pointer. This macro assume that ep is LEP. (VM_EP_LEP_P(ep)): detect ep is LEP or not. (VM_ENVVAL_BLOCK_PTR(ptr)): make block pointer. (VM_ENVVAL_BLOCK_PTR_P(v)): detect v is block pointer. (VM_ENVVAL_PREV_EP_PTR(ptr)): make prev environment pointer. (VM_ENVVAL_PREV_EP_PTR_P(v)): detect v is prev env pointer. * vm.c: apply above changes. (VM_EP_LEP(ep)): get LEP. (VM_CF_LEP(cfp)): get LEP of cfp->ep. (VM_CF_PREV_EP(cfp)): utility function VM_EP_PREV_EP(cfp->ep). (VM_CF_BLOCK_PTR(cfp)): utility function VM_EP_BLOCK_PTR(cfp->ep). * vm.c, vm_eval.c, vm_insnhelper.c, vm_insnhelper.h, insns.def: apply above changes. * cont.c: ditto. * eval.c, eval_intern.h: ditto. * proc.c: ditto. * thread.c: ditto. * vm_dump.c: ditto. * vm_exec.h: fix function name (on vm debug mode). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-11 07:14:59 +04:00
char ep_in_heap = ' ';
char posbuf[MAX_POSBUF+1];
int line = 0;
const char *magic, *iseq_name = "-", *selfstr = "-", *biseq_name = "-";
VALUE tmp;
const rb_iseq_t *iseq = NULL;
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (ep < 0 || (size_t)ep > ec->vm_stack_size) {
* vm_core.h: remove lfp (local frame pointer) and rename dfp (dynamic frame pointer) to ep (environment pointer). This change make VM `normal' (similar to other interpreters). Before this commit: Each frame has two env pointers lfp and dfp. lfp points local environment which is method/class/toplevel frame. lfp[0] is block pointer. dfp is block local frame. dfp[0] points previous (parent) environment pointer. lfp == dfp when frame is method/class/toplevel. You can get lfp from dfp by traversing previous environment pointers. After this commit: Each frame has only `ep' to point respective enviornoment. If there is parent environment, then ep[0] points parent envioenment (as dfp). If there are no more environment, then ep[0] points block pointer (as lfp). We call such ep as `LEP' (local EP). We add some macros to get LEP and to detect LEP or not. In short, we replace dfp and lfp with ep and LEP. rb_block_t and rb_binding_t member `lfp' and `dfp' are removed and member `ep' is added. rename rb_thread_t's member `local_lfp' and `local_svar' to `root_lep' and `root_svar'. (VM_EP_PREV_EP(ep)): get previous environment pointer. This macro assume that ep is not LEP. (VM_EP_BLOCK_PTR(ep)): get block pointer. This macro assume that ep is LEP. (VM_EP_LEP_P(ep)): detect ep is LEP or not. (VM_ENVVAL_BLOCK_PTR(ptr)): make block pointer. (VM_ENVVAL_BLOCK_PTR_P(v)): detect v is block pointer. (VM_ENVVAL_PREV_EP_PTR(ptr)): make prev environment pointer. (VM_ENVVAL_PREV_EP_PTR_P(v)): detect v is prev env pointer. * vm.c: apply above changes. (VM_EP_LEP(ep)): get LEP. (VM_CF_LEP(cfp)): get LEP of cfp->ep. (VM_CF_PREV_EP(cfp)): utility function VM_EP_PREV_EP(cfp->ep). (VM_CF_BLOCK_PTR(cfp)): utility function VM_EP_BLOCK_PTR(cfp->ep). * vm.c, vm_eval.c, vm_insnhelper.c, vm_insnhelper.h, insns.def: apply above changes. * cont.c: ditto. * eval.c, eval_intern.h: ditto. * proc.c: ditto. * thread.c: ditto. * vm_dump.c: ditto. * vm_exec.h: fix function name (on vm debug mode). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-11 07:14:59 +04:00
ep = (ptrdiff_t)cfp->ep;
ep_in_heap = 'p';
}
switch (VM_FRAME_TYPE(cfp)) {
case VM_FRAME_MAGIC_TOP:
magic = "TOP";
break;
case VM_FRAME_MAGIC_METHOD:
magic = "METHOD";
break;
case VM_FRAME_MAGIC_CLASS:
magic = "CLASS";
break;
case VM_FRAME_MAGIC_BLOCK:
magic = "BLOCK";
break;
case VM_FRAME_MAGIC_CFUNC:
magic = "CFUNC";
break;
case VM_FRAME_MAGIC_IFUNC:
magic = "IFUNC";
break;
case VM_FRAME_MAGIC_EVAL:
magic = "EVAL";
break;
case VM_FRAME_MAGIC_RESCUE:
magic = "RESCUE";
break;
case 0:
magic = "------";
break;
default:
magic = "(none)";
break;
}
if (0) {
tmp = rb_inspect(cfp->self);
selfstr = StringValueCStr(tmp);
}
else {
selfstr = "";
}
* vm_core.h: remove VM_FRAME_MAGIC_FINISH (finish frame type). Before this commit: `finish frame' was place holder which indicates that VM loop needs to return function. If a C method calls a Ruby methods (a method written by Ruby), then VM loop will be (re-)invoked. When the Ruby method returns, then also VM loop should be escaped. `finish frame' has only one instruction `finish', which returns VM loop function. VM loop function executes `finish' instruction, then VM loop function returns itself. With such mechanism, `leave' instruction (which returns one frame from current scope) doesn't need to check that this `leave' should also return from VM loop function. Strictly, one branch can be removed from `leave' instructon. Consideration: However, pushing the `finish frame' needs costs because it needs several memory accesses. The number of pushing `finish frame' is greater than I had assumed. Of course, pushing `finish frame' consumes additional control frame. Moreover, recent processors has good branch prediction, with which we can ignore such trivial checking. After this commit: Finally, I decide to remove `finish frame' and `finish' instruction. Some parts of VM depend on `finish frame', so the new frame flag VM_FRAME_FLAG_FINISH is introduced. If this frame should escape from VM function loop, then the result of VM_FRAME_TYPE_FINISH_P(cfp) is true. `leave' instruction checks this flag every time. I measured performance on it. However on my environments, it improves some benchmarks and slows some benchmarks down. Maybe it is because of C compiler optimization parameters. I'll re-visit here if this cause problems. * insns.def (leave, finish): remove finish instruction. * vm.c, vm_eval.c, vm_exec.c, vm_backtrace.c, vm_dump.c: apply above changes. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36099 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-15 14:22:34 +04:00
if (cfp->iseq != 0) {
#define RUBY_VM_IFUNC_P(ptr) IMEMO_TYPE_P(ptr, imemo_ifunc)
if (RUBY_VM_IFUNC_P(cfp->iseq)) {
iseq_name = "<ifunc>";
}
else if (SYMBOL_P((VALUE)cfp->iseq)) {
tmp = rb_sym2str((VALUE)cfp->iseq);
iseq_name = RSTRING_PTR(tmp);
snprintf(posbuf, MAX_POSBUF, ":%s", iseq_name);
line = -1;
}
else {
iseq = cfp->iseq;
pc = cfp->pc - ISEQ_BODY(iseq)->iseq_encoded;
iseq_name = RSTRING_PTR(ISEQ_BODY(iseq)->location.label);
line = rb_vm_get_sourceline(cfp);
if (line) {
snprintf(posbuf, MAX_POSBUF, "%s:%d", RSTRING_PTR(rb_iseq_path(iseq)), line);
}
}
}
else if (me != NULL) {
iseq_name = rb_id2name(me->def->original_id);
snprintf(posbuf, MAX_POSBUF, ":%s", iseq_name);
line = -1;
}
fprintf(stderr, "c:%04"PRIdPTRDIFF" ",
((rb_control_frame_t *)(ec->vm_stack + ec->vm_stack_size) - cfp));
if (pc == -1) {
fprintf(stderr, "p:---- ");
}
else {
fprintf(stderr, "p:%04"PRIdPTRDIFF" ", pc);
}
fprintf(stderr, "s:%04"PRIdPTRDIFF" ", cfp->sp - ec->vm_stack);
fprintf(stderr, ep_in_heap == ' ' ? "e:%06"PRIdPTRDIFF" " : "E:%06"PRIxPTRDIFF" ", ep % 10000);
fprintf(stderr, "%-6s", magic);
* vm_core.h: remove VM_FRAME_MAGIC_FINISH (finish frame type). Before this commit: `finish frame' was place holder which indicates that VM loop needs to return function. If a C method calls a Ruby methods (a method written by Ruby), then VM loop will be (re-)invoked. When the Ruby method returns, then also VM loop should be escaped. `finish frame' has only one instruction `finish', which returns VM loop function. VM loop function executes `finish' instruction, then VM loop function returns itself. With such mechanism, `leave' instruction (which returns one frame from current scope) doesn't need to check that this `leave' should also return from VM loop function. Strictly, one branch can be removed from `leave' instructon. Consideration: However, pushing the `finish frame' needs costs because it needs several memory accesses. The number of pushing `finish frame' is greater than I had assumed. Of course, pushing `finish frame' consumes additional control frame. Moreover, recent processors has good branch prediction, with which we can ignore such trivial checking. After this commit: Finally, I decide to remove `finish frame' and `finish' instruction. Some parts of VM depend on `finish frame', so the new frame flag VM_FRAME_FLAG_FINISH is introduced. If this frame should escape from VM function loop, then the result of VM_FRAME_TYPE_FINISH_P(cfp) is true. `leave' instruction checks this flag every time. I measured performance on it. However on my environments, it improves some benchmarks and slows some benchmarks down. Maybe it is because of C compiler optimization parameters. I'll re-visit here if this cause problems. * insns.def (leave, finish): remove finish instruction. * vm.c, vm_eval.c, vm_exec.c, vm_backtrace.c, vm_dump.c: apply above changes. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36099 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-15 14:22:34 +04:00
if (line) {
fprintf(stderr, " %s", posbuf);
}
if (VM_FRAME_FINISHED_P(cfp)) {
* vm_core.h: remove VM_FRAME_MAGIC_FINISH (finish frame type). Before this commit: `finish frame' was place holder which indicates that VM loop needs to return function. If a C method calls a Ruby methods (a method written by Ruby), then VM loop will be (re-)invoked. When the Ruby method returns, then also VM loop should be escaped. `finish frame' has only one instruction `finish', which returns VM loop function. VM loop function executes `finish' instruction, then VM loop function returns itself. With such mechanism, `leave' instruction (which returns one frame from current scope) doesn't need to check that this `leave' should also return from VM loop function. Strictly, one branch can be removed from `leave' instructon. Consideration: However, pushing the `finish frame' needs costs because it needs several memory accesses. The number of pushing `finish frame' is greater than I had assumed. Of course, pushing `finish frame' consumes additional control frame. Moreover, recent processors has good branch prediction, with which we can ignore such trivial checking. After this commit: Finally, I decide to remove `finish frame' and `finish' instruction. Some parts of VM depend on `finish frame', so the new frame flag VM_FRAME_FLAG_FINISH is introduced. If this frame should escape from VM function loop, then the result of VM_FRAME_TYPE_FINISH_P(cfp) is true. `leave' instruction checks this flag every time. I measured performance on it. However on my environments, it improves some benchmarks and slows some benchmarks down. Maybe it is because of C compiler optimization parameters. I'll re-visit here if this cause problems. * insns.def (leave, finish): remove finish instruction. * vm.c, vm_eval.c, vm_exec.c, vm_backtrace.c, vm_dump.c: apply above changes. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36099 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-15 14:22:34 +04:00
fprintf(stderr, " [FINISH]");
}
if (0) {
fprintf(stderr, " \t");
fprintf(stderr, "iseq: %-24s ", iseq_name);
fprintf(stderr, "self: %-24s ", selfstr);
fprintf(stderr, "%-1s ", biseq_name);
}
fprintf(stderr, "\n");
// additional information for CI machines
if (ruby_on_ci) {
char buff[0x100];
if (me) {
if (IMEMO_TYPE_P(me, imemo_ment)) {
fprintf(stderr, " me:\n");
fprintf(stderr, " called_id: %s, type: %s\n", rb_id2name(me->called_id), rb_method_type_name(me->def->type));
fprintf(stderr, " owner class: %s\n", rb_raw_obj_info(buff, 0x100, me->owner));
if (me->owner != me->defined_class) {
fprintf(stderr, " defined_class: %s\n", rb_raw_obj_info(buff, 0x100, me->defined_class));
}
}
else {
fprintf(stderr, " me is corrupted (%s)\n", rb_raw_obj_info(buff, 0x100, (VALUE)me));
}
}
fprintf(stderr, " self: %s\n", rb_raw_obj_info(buff, 0x100, cfp->self));
if (iseq) {
if (ISEQ_BODY(iseq)->local_table_size > 0) {
fprintf(stderr, " lvars:\n");
for (unsigned int i=0; i<ISEQ_BODY(iseq)->local_table_size; i++) {
const VALUE *argv = cfp->ep - ISEQ_BODY(cfp->iseq)->local_table_size - VM_ENV_DATA_SIZE + 1;
fprintf(stderr, " %s: %s\n",
rb_id2name(ISEQ_BODY(iseq)->local_table[i]),
rb_raw_obj_info(buff, 0x100, argv[i]));
}
}
}
}
}
void
rb_vmdebug_stack_dump_raw(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
#if 0
VALUE *sp = cfp->sp;
const VALUE *ep = cfp->ep;
VALUE *p, *st, *t;
fprintf(stderr, "-- stack frame ------------\n");
for (p = st = ec->vm_stack; p < sp; p++) {
fprintf(stderr, "%04ld (%p): %08"PRIxVALUE, (long)(p - st), p, *p);
t = (VALUE *)*p;
if (ec->vm_stack <= t && t < sp) {
fprintf(stderr, " (= %ld)", (long)((VALUE *)GC_GUARDED_PTR_REF((VALUE)t) - ec->vm_stack));
}
* vm_core.h: remove lfp (local frame pointer) and rename dfp (dynamic frame pointer) to ep (environment pointer). This change make VM `normal' (similar to other interpreters). Before this commit: Each frame has two env pointers lfp and dfp. lfp points local environment which is method/class/toplevel frame. lfp[0] is block pointer. dfp is block local frame. dfp[0] points previous (parent) environment pointer. lfp == dfp when frame is method/class/toplevel. You can get lfp from dfp by traversing previous environment pointers. After this commit: Each frame has only `ep' to point respective enviornoment. If there is parent environment, then ep[0] points parent envioenment (as dfp). If there are no more environment, then ep[0] points block pointer (as lfp). We call such ep as `LEP' (local EP). We add some macros to get LEP and to detect LEP or not. In short, we replace dfp and lfp with ep and LEP. rb_block_t and rb_binding_t member `lfp' and `dfp' are removed and member `ep' is added. rename rb_thread_t's member `local_lfp' and `local_svar' to `root_lep' and `root_svar'. (VM_EP_PREV_EP(ep)): get previous environment pointer. This macro assume that ep is not LEP. (VM_EP_BLOCK_PTR(ep)): get block pointer. This macro assume that ep is LEP. (VM_EP_LEP_P(ep)): detect ep is LEP or not. (VM_ENVVAL_BLOCK_PTR(ptr)): make block pointer. (VM_ENVVAL_BLOCK_PTR_P(v)): detect v is block pointer. (VM_ENVVAL_PREV_EP_PTR(ptr)): make prev environment pointer. (VM_ENVVAL_PREV_EP_PTR_P(v)): detect v is prev env pointer. * vm.c: apply above changes. (VM_EP_LEP(ep)): get LEP. (VM_CF_LEP(cfp)): get LEP of cfp->ep. (VM_CF_PREV_EP(cfp)): utility function VM_EP_PREV_EP(cfp->ep). (VM_CF_BLOCK_PTR(cfp)): utility function VM_EP_BLOCK_PTR(cfp->ep). * vm.c, vm_eval.c, vm_insnhelper.c, vm_insnhelper.h, insns.def: apply above changes. * cont.c: ditto. * eval.c, eval_intern.h: ditto. * proc.c: ditto. * thread.c: ditto. * vm_dump.c: ditto. * vm_exec.h: fix function name (on vm debug mode). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-11 07:14:59 +04:00
if (p == ep)
fprintf(stderr, " <- ep");
fprintf(stderr, "\n");
}
#endif
fprintf(stderr, "-- Control frame information "
"-----------------------------------------------\n");
while ((void *)cfp < (void *)(ec->vm_stack + ec->vm_stack_size)) {
control_frame_dump(ec, cfp);
cfp++;
}
fprintf(stderr, "\n");
}
void
rb_vmdebug_stack_dump_raw_current(void)
{
const rb_execution_context_t *ec = GET_EC();
rb_vmdebug_stack_dump_raw(ec, ec->cfp);
}
void
rb_vmdebug_env_dump_raw(const rb_env_t *env, const VALUE *ep)
{
unsigned int i;
fprintf(stderr, "-- env --------------------\n");
while (env) {
fprintf(stderr, "--\n");
for (i = 0; i < env->env_size; i++) {
fprintf(stderr, "%04d: %08"PRIxVALUE" (%p)", i, env->env[i], (void *)&env->env[i]);
if (&env->env[i] == ep) fprintf(stderr, " <- ep");
fprintf(stderr, "\n");
}
env = rb_vm_env_prev_env(env);
}
fprintf(stderr, "---------------------------\n");
}
void
rb_vmdebug_proc_dump_raw(rb_proc_t *proc)
{
const rb_env_t *env;
char *selfstr;
VALUE val = rb_inspect(vm_block_self(&proc->block));
selfstr = StringValueCStr(val);
fprintf(stderr, "-- proc -------------------\n");
fprintf(stderr, "self: %s\n", selfstr);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&proc->block));
rb_vmdebug_env_dump_raw(env, vm_block_ep(&proc->block));
}
void
rb_vmdebug_stack_dump_th(VALUE thval)
{
rb_thread_t *target_th = rb_thread_ptr(thval);
rb_vmdebug_stack_dump_raw(target_th->ec, target_th->ec->cfp);
}
#if VMDEBUG > 2
/* copy from vm.c */
static const VALUE *
vm_base_ptr(const rb_control_frame_t *cfp)
{
const rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
const VALUE *bp = prev_cfp->sp + ISEQ_BODY(cfp->iseq)->local_table_size + VM_ENV_DATA_SIZE;
if (ISEQ_BODY(cfp->iseq)->type == ISEQ_TYPE_METHOD) {
bp += 1;
}
return bp;
}
static void
vm_stack_dump_each(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
int i, argc = 0, local_table_size = 0;
VALUE rstr;
VALUE *sp = cfp->sp;
const VALUE *ep = cfp->ep;
if (VM_FRAME_RUBYFRAME_P(cfp)) {
const rb_iseq_t *iseq = cfp->iseq;
argc = ISEQ_BODY(iseq)->param.lead_num;
local_table_size = ISEQ_BODY(iseq)->local_table_size;
}
/* stack trace header */
if (VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_METHOD||
VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_TOP ||
VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_BLOCK ||
VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_CLASS ||
VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_CFUNC ||
VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_IFUNC ||
VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_EVAL ||
VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_RESCUE)
{
const VALUE *ptr = ep - local_table_size;
control_frame_dump(ec, cfp);
for (i = 0; i < argc; i++) {
rstr = rb_inspect(*ptr);
fprintf(stderr, " arg %2d: %8s (%p)\n", i, StringValueCStr(rstr),
(void *)ptr++);
}
for (; i < local_table_size - 1; i++) {
rstr = rb_inspect(*ptr);
fprintf(stderr, " local %2d: %8s (%p)\n", i, StringValueCStr(rstr),
(void *)ptr++);
}
ptr = vm_base_ptr(cfp);
for (; ptr < sp; ptr++, i++) {
switch (TYPE(*ptr)) {
case T_UNDEF:
rstr = rb_str_new2("undef");
break;
case T_IMEMO:
rstr = rb_str_new2("imemo"); /* TODO: can put mode detail information */
break;
default:
rstr = rb_inspect(*ptr);
break;
}
fprintf(stderr, " stack %2d: %8s (%"PRIdPTRDIFF")\n", i, StringValueCStr(rstr),
(ptr - ec->vm_stack));
}
}
else if (VM_FRAME_FINISHED_P(cfp)) {
if (ec->vm_stack + ec->vm_stack_size > (VALUE *)(cfp + 1)) {
vm_stack_dump_each(ec, cfp + 1);
}
else {
/* SDR(); */
}
}
else {
rb_bug("unsupported frame type: %08lx", VM_FRAME_TYPE(cfp));
}
}
#endif
void
rb_vmdebug_debug_print_register(const rb_execution_context_t *ec)
{
rb_control_frame_t *cfp = ec->cfp;
ptrdiff_t pc = -1;
ptrdiff_t ep = cfp->ep - ec->vm_stack;
ptrdiff_t cfpi;
if (VM_FRAME_RUBYFRAME_P(cfp)) {
pc = cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded;
}
if (ep < 0 || (size_t)ep > ec->vm_stack_size) {
* vm_core.h: remove lfp (local frame pointer) and rename dfp (dynamic frame pointer) to ep (environment pointer). This change make VM `normal' (similar to other interpreters). Before this commit: Each frame has two env pointers lfp and dfp. lfp points local environment which is method/class/toplevel frame. lfp[0] is block pointer. dfp is block local frame. dfp[0] points previous (parent) environment pointer. lfp == dfp when frame is method/class/toplevel. You can get lfp from dfp by traversing previous environment pointers. After this commit: Each frame has only `ep' to point respective enviornoment. If there is parent environment, then ep[0] points parent envioenment (as dfp). If there are no more environment, then ep[0] points block pointer (as lfp). We call such ep as `LEP' (local EP). We add some macros to get LEP and to detect LEP or not. In short, we replace dfp and lfp with ep and LEP. rb_block_t and rb_binding_t member `lfp' and `dfp' are removed and member `ep' is added. rename rb_thread_t's member `local_lfp' and `local_svar' to `root_lep' and `root_svar'. (VM_EP_PREV_EP(ep)): get previous environment pointer. This macro assume that ep is not LEP. (VM_EP_BLOCK_PTR(ep)): get block pointer. This macro assume that ep is LEP. (VM_EP_LEP_P(ep)): detect ep is LEP or not. (VM_ENVVAL_BLOCK_PTR(ptr)): make block pointer. (VM_ENVVAL_BLOCK_PTR_P(v)): detect v is block pointer. (VM_ENVVAL_PREV_EP_PTR(ptr)): make prev environment pointer. (VM_ENVVAL_PREV_EP_PTR_P(v)): detect v is prev env pointer. * vm.c: apply above changes. (VM_EP_LEP(ep)): get LEP. (VM_CF_LEP(cfp)): get LEP of cfp->ep. (VM_CF_PREV_EP(cfp)): utility function VM_EP_PREV_EP(cfp->ep). (VM_CF_BLOCK_PTR(cfp)): utility function VM_EP_BLOCK_PTR(cfp->ep). * vm.c, vm_eval.c, vm_insnhelper.c, vm_insnhelper.h, insns.def: apply above changes. * cont.c: ditto. * eval.c, eval_intern.h: ditto. * proc.c: ditto. * thread.c: ditto. * vm_dump.c: ditto. * vm_exec.h: fix function name (on vm debug mode). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-11 07:14:59 +04:00
ep = -1;
}
cfpi = ((rb_control_frame_t *)(ec->vm_stack + ec->vm_stack_size)) - cfp;
* vm_core.h: remove lfp (local frame pointer) and rename dfp (dynamic frame pointer) to ep (environment pointer). This change make VM `normal' (similar to other interpreters). Before this commit: Each frame has two env pointers lfp and dfp. lfp points local environment which is method/class/toplevel frame. lfp[0] is block pointer. dfp is block local frame. dfp[0] points previous (parent) environment pointer. lfp == dfp when frame is method/class/toplevel. You can get lfp from dfp by traversing previous environment pointers. After this commit: Each frame has only `ep' to point respective enviornoment. If there is parent environment, then ep[0] points parent envioenment (as dfp). If there are no more environment, then ep[0] points block pointer (as lfp). We call such ep as `LEP' (local EP). We add some macros to get LEP and to detect LEP or not. In short, we replace dfp and lfp with ep and LEP. rb_block_t and rb_binding_t member `lfp' and `dfp' are removed and member `ep' is added. rename rb_thread_t's member `local_lfp' and `local_svar' to `root_lep' and `root_svar'. (VM_EP_PREV_EP(ep)): get previous environment pointer. This macro assume that ep is not LEP. (VM_EP_BLOCK_PTR(ep)): get block pointer. This macro assume that ep is LEP. (VM_EP_LEP_P(ep)): detect ep is LEP or not. (VM_ENVVAL_BLOCK_PTR(ptr)): make block pointer. (VM_ENVVAL_BLOCK_PTR_P(v)): detect v is block pointer. (VM_ENVVAL_PREV_EP_PTR(ptr)): make prev environment pointer. (VM_ENVVAL_PREV_EP_PTR_P(v)): detect v is prev env pointer. * vm.c: apply above changes. (VM_EP_LEP(ep)): get LEP. (VM_CF_LEP(cfp)): get LEP of cfp->ep. (VM_CF_PREV_EP(cfp)): utility function VM_EP_PREV_EP(cfp->ep). (VM_CF_BLOCK_PTR(cfp)): utility function VM_EP_BLOCK_PTR(cfp->ep). * vm.c, vm_eval.c, vm_insnhelper.c, vm_insnhelper.h, insns.def: apply above changes. * cont.c: ditto. * eval.c, eval_intern.h: ditto. * proc.c: ditto. * thread.c: ditto. * vm_dump.c: ditto. * vm_exec.h: fix function name (on vm debug mode). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-11 07:14:59 +04:00
fprintf(stderr, " [PC] %04"PRIdPTRDIFF", [SP] %04"PRIdPTRDIFF", [EP] %04"PRIdPTRDIFF", [CFP] %04"PRIdPTRDIFF"\n",
pc, (cfp->sp - ec->vm_stack), ep, cfpi);
}
void
rb_vmdebug_thread_dump_regs(VALUE thval)
{
rb_vmdebug_debug_print_register(rb_thread_ptr(thval)->ec);
}
void
rb_vmdebug_debug_print_pre(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, const VALUE *_pc)
{
const rb_iseq_t *iseq = cfp->iseq;
if (iseq != 0) {
ptrdiff_t pc = _pc - ISEQ_BODY(iseq)->iseq_encoded;
* vm_core.h: remove lfp (local frame pointer) and rename dfp (dynamic frame pointer) to ep (environment pointer). This change make VM `normal' (similar to other interpreters). Before this commit: Each frame has two env pointers lfp and dfp. lfp points local environment which is method/class/toplevel frame. lfp[0] is block pointer. dfp is block local frame. dfp[0] points previous (parent) environment pointer. lfp == dfp when frame is method/class/toplevel. You can get lfp from dfp by traversing previous environment pointers. After this commit: Each frame has only `ep' to point respective enviornoment. If there is parent environment, then ep[0] points parent envioenment (as dfp). If there are no more environment, then ep[0] points block pointer (as lfp). We call such ep as `LEP' (local EP). We add some macros to get LEP and to detect LEP or not. In short, we replace dfp and lfp with ep and LEP. rb_block_t and rb_binding_t member `lfp' and `dfp' are removed and member `ep' is added. rename rb_thread_t's member `local_lfp' and `local_svar' to `root_lep' and `root_svar'. (VM_EP_PREV_EP(ep)): get previous environment pointer. This macro assume that ep is not LEP. (VM_EP_BLOCK_PTR(ep)): get block pointer. This macro assume that ep is LEP. (VM_EP_LEP_P(ep)): detect ep is LEP or not. (VM_ENVVAL_BLOCK_PTR(ptr)): make block pointer. (VM_ENVVAL_BLOCK_PTR_P(v)): detect v is block pointer. (VM_ENVVAL_PREV_EP_PTR(ptr)): make prev environment pointer. (VM_ENVVAL_PREV_EP_PTR_P(v)): detect v is prev env pointer. * vm.c: apply above changes. (VM_EP_LEP(ep)): get LEP. (VM_CF_LEP(cfp)): get LEP of cfp->ep. (VM_CF_PREV_EP(cfp)): utility function VM_EP_PREV_EP(cfp->ep). (VM_CF_BLOCK_PTR(cfp)): utility function VM_EP_BLOCK_PTR(cfp->ep). * vm.c, vm_eval.c, vm_insnhelper.c, vm_insnhelper.h, insns.def: apply above changes. * cont.c: ditto. * eval.c, eval_intern.h: ditto. * proc.c: ditto. * thread.c: ditto. * vm_dump.c: ditto. * vm_exec.h: fix function name (on vm debug mode). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-11 07:14:59 +04:00
int i;
for (i=0; i<(int)VM_CFP_CNT(ec, cfp); i++) {
* vm_core.h: remove lfp (local frame pointer) and rename dfp (dynamic frame pointer) to ep (environment pointer). This change make VM `normal' (similar to other interpreters). Before this commit: Each frame has two env pointers lfp and dfp. lfp points local environment which is method/class/toplevel frame. lfp[0] is block pointer. dfp is block local frame. dfp[0] points previous (parent) environment pointer. lfp == dfp when frame is method/class/toplevel. You can get lfp from dfp by traversing previous environment pointers. After this commit: Each frame has only `ep' to point respective enviornoment. If there is parent environment, then ep[0] points parent envioenment (as dfp). If there are no more environment, then ep[0] points block pointer (as lfp). We call such ep as `LEP' (local EP). We add some macros to get LEP and to detect LEP or not. In short, we replace dfp and lfp with ep and LEP. rb_block_t and rb_binding_t member `lfp' and `dfp' are removed and member `ep' is added. rename rb_thread_t's member `local_lfp' and `local_svar' to `root_lep' and `root_svar'. (VM_EP_PREV_EP(ep)): get previous environment pointer. This macro assume that ep is not LEP. (VM_EP_BLOCK_PTR(ep)): get block pointer. This macro assume that ep is LEP. (VM_EP_LEP_P(ep)): detect ep is LEP or not. (VM_ENVVAL_BLOCK_PTR(ptr)): make block pointer. (VM_ENVVAL_BLOCK_PTR_P(v)): detect v is block pointer. (VM_ENVVAL_PREV_EP_PTR(ptr)): make prev environment pointer. (VM_ENVVAL_PREV_EP_PTR_P(v)): detect v is prev env pointer. * vm.c: apply above changes. (VM_EP_LEP(ep)): get LEP. (VM_CF_LEP(cfp)): get LEP of cfp->ep. (VM_CF_PREV_EP(cfp)): utility function VM_EP_PREV_EP(cfp->ep). (VM_CF_BLOCK_PTR(cfp)): utility function VM_EP_BLOCK_PTR(cfp->ep). * vm.c, vm_eval.c, vm_insnhelper.c, vm_insnhelper.h, insns.def: apply above changes. * cont.c: ditto. * eval.c, eval_intern.h: ditto. * proc.c: ditto. * thread.c: ditto. * vm_dump.c: ditto. * vm_exec.h: fix function name (on vm debug mode). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-11 07:14:59 +04:00
printf(" ");
}
printf("| ");
if(0)printf("[%03ld] ", (long)(cfp->sp - ec->vm_stack));
/* printf("%3"PRIdPTRDIFF" ", VM_CFP_CNT(ec, cfp)); */
if (pc >= 0) {
const VALUE *iseq_original = rb_iseq_original_iseq((rb_iseq_t *)iseq);
rb_iseq_disasm_insn(0, iseq_original, (size_t)pc, iseq, 0);
}
}
#if VMDEBUG > 3
fprintf(stderr, " (1)");
rb_vmdebug_debug_print_register(ec);
#endif
}
void
rb_vmdebug_debug_print_post(const rb_execution_context_t *ec, const rb_control_frame_t *cfp
#if OPT_STACK_CACHING
, VALUE reg_a, VALUE reg_b
#endif
)
{
#if VMDEBUG > 9
SDR2(cfp);
#endif
#if VMDEBUG > 3
fprintf(stderr, " (2)");
rb_vmdebug_debug_print_register(ec);
#endif
/* stack_dump_raw(ec, cfp); */
#if VMDEBUG > 2
/* stack_dump_thobj(ec); */
vm_stack_dump_each(ec, ec->cfp);
#if OPT_STACK_CACHING
{
VALUE rstr;
rstr = rb_inspect(reg_a);
fprintf(stderr, " sc reg A: %s\n", StringValueCStr(rstr));
rstr = rb_inspect(reg_b);
fprintf(stderr, " sc reg B: %s\n", StringValueCStr(rstr));
}
#endif
printf
("--------------------------------------------------------------\n");
#endif
}
VALUE
rb_vmdebug_thread_dump_state(VALUE self)
{
rb_thread_t *th = rb_thread_ptr(self);
rb_control_frame_t *cfp = th->ec->cfp;
fprintf(stderr, "Thread state dump:\n");
fprintf(stderr, "pc : %p, sp : %p\n", (void *)cfp->pc, (void *)cfp->sp);
* vm_core.h: remove lfp (local frame pointer) and rename dfp (dynamic frame pointer) to ep (environment pointer). This change make VM `normal' (similar to other interpreters). Before this commit: Each frame has two env pointers lfp and dfp. lfp points local environment which is method/class/toplevel frame. lfp[0] is block pointer. dfp is block local frame. dfp[0] points previous (parent) environment pointer. lfp == dfp when frame is method/class/toplevel. You can get lfp from dfp by traversing previous environment pointers. After this commit: Each frame has only `ep' to point respective enviornoment. If there is parent environment, then ep[0] points parent envioenment (as dfp). If there are no more environment, then ep[0] points block pointer (as lfp). We call such ep as `LEP' (local EP). We add some macros to get LEP and to detect LEP or not. In short, we replace dfp and lfp with ep and LEP. rb_block_t and rb_binding_t member `lfp' and `dfp' are removed and member `ep' is added. rename rb_thread_t's member `local_lfp' and `local_svar' to `root_lep' and `root_svar'. (VM_EP_PREV_EP(ep)): get previous environment pointer. This macro assume that ep is not LEP. (VM_EP_BLOCK_PTR(ep)): get block pointer. This macro assume that ep is LEP. (VM_EP_LEP_P(ep)): detect ep is LEP or not. (VM_ENVVAL_BLOCK_PTR(ptr)): make block pointer. (VM_ENVVAL_BLOCK_PTR_P(v)): detect v is block pointer. (VM_ENVVAL_PREV_EP_PTR(ptr)): make prev environment pointer. (VM_ENVVAL_PREV_EP_PTR_P(v)): detect v is prev env pointer. * vm.c: apply above changes. (VM_EP_LEP(ep)): get LEP. (VM_CF_LEP(cfp)): get LEP of cfp->ep. (VM_CF_PREV_EP(cfp)): utility function VM_EP_PREV_EP(cfp->ep). (VM_CF_BLOCK_PTR(cfp)): utility function VM_EP_BLOCK_PTR(cfp->ep). * vm.c, vm_eval.c, vm_insnhelper.c, vm_insnhelper.h, insns.def: apply above changes. * cont.c: ditto. * eval.c, eval_intern.h: ditto. * proc.c: ditto. * thread.c: ditto. * vm_dump.c: ditto. * vm_exec.h: fix function name (on vm debug mode). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36030 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-11 07:14:59 +04:00
fprintf(stderr, "cfp: %p, ep : %p\n", (void *)cfp, (void *)cfp->ep);
return Qnil;
}
#if defined __APPLE__
# if __DARWIN_UNIX03
# define MCTX_SS_REG(reg) __ss.__##reg
# else
# define MCTX_SS_REG(reg) ss.reg
# endif
#endif
#if defined(HAVE_BACKTRACE)
# define USE_BACKTRACE 1
# ifdef HAVE_LIBUNWIND
# undef backtrace
# define backtrace unw_backtrace
# elif defined(__APPLE__) && defined(HAVE_LIBUNWIND_H)
# define UNW_LOCAL_ONLY
# include <libunwind.h>
# include <sys/mman.h>
# undef backtrace
int
backtrace(void **trace, int size)
{
unw_cursor_t cursor; unw_context_t uc;
unw_word_t ip;
int n = 0;
unw_getcontext(&uc);
unw_init_local(&cursor, &uc);
while (unw_step(&cursor) > 0) {
unw_get_reg(&cursor, UNW_REG_IP, &ip);
trace[n++] = (void *)ip;
{
char buf[256];
unw_get_proc_name(&cursor, buf, 256, &ip);
if (strncmp("_sigtramp", buf, sizeof("_sigtramp")) == 0) {
goto darwin_sigtramp;
}
}
}
return n;
darwin_sigtramp:
/* darwin's bundled libunwind doesn't support signal trampoline */
{
#if defined(__x86_64__)
ucontext_t *uctx;
char vec[1];
int r;
/* get previous frame information from %rbx at _sigtramp and set values to cursor
2022-04-09 10:53:13 +03:00
* https://www.opensource.apple.com/source/Libc/Libc-825.25/i386/sys/_sigtramp.s
* https://www.opensource.apple.com/source/libunwind/libunwind-35.1/src/unw_getcontext.s
*/
unw_get_reg(&cursor, UNW_X86_64_RBX, &ip);
uctx = (ucontext_t *)ip;
unw_set_reg(&cursor, UNW_X86_64_RAX, uctx->uc_mcontext->MCTX_SS_REG(rax));
unw_set_reg(&cursor, UNW_X86_64_RBX, uctx->uc_mcontext->MCTX_SS_REG(rbx));
unw_set_reg(&cursor, UNW_X86_64_RCX, uctx->uc_mcontext->MCTX_SS_REG(rcx));
unw_set_reg(&cursor, UNW_X86_64_RDX, uctx->uc_mcontext->MCTX_SS_REG(rdx));
unw_set_reg(&cursor, UNW_X86_64_RDI, uctx->uc_mcontext->MCTX_SS_REG(rdi));
unw_set_reg(&cursor, UNW_X86_64_RSI, uctx->uc_mcontext->MCTX_SS_REG(rsi));
unw_set_reg(&cursor, UNW_X86_64_RBP, uctx->uc_mcontext->MCTX_SS_REG(rbp));
unw_set_reg(&cursor, UNW_X86_64_RSP, 8+(uctx->uc_mcontext->MCTX_SS_REG(rsp)));
unw_set_reg(&cursor, UNW_X86_64_R8, uctx->uc_mcontext->MCTX_SS_REG(r8));
unw_set_reg(&cursor, UNW_X86_64_R9, uctx->uc_mcontext->MCTX_SS_REG(r9));
unw_set_reg(&cursor, UNW_X86_64_R10, uctx->uc_mcontext->MCTX_SS_REG(r10));
unw_set_reg(&cursor, UNW_X86_64_R11, uctx->uc_mcontext->MCTX_SS_REG(r11));
unw_set_reg(&cursor, UNW_X86_64_R12, uctx->uc_mcontext->MCTX_SS_REG(r12));
unw_set_reg(&cursor, UNW_X86_64_R13, uctx->uc_mcontext->MCTX_SS_REG(r13));
unw_set_reg(&cursor, UNW_X86_64_R14, uctx->uc_mcontext->MCTX_SS_REG(r14));
unw_set_reg(&cursor, UNW_X86_64_R15, uctx->uc_mcontext->MCTX_SS_REG(r15));
ip = uctx->uc_mcontext->MCTX_SS_REG(rip);
/* There are 4 cases for SEGV:
* (1) called invalid address
* (2) read or write invalid address
* (3) received signal
*
* Detail:
* (1) called invalid address
* In this case, saved ip is invalid address.
* It needs to just save the address for the information,
* skip the frame, and restore the frame calling the
* invalid address from %rsp.
* The problem is how to check whether the ip is valid or not.
* This code uses mincore(2) and assume the address's page is
* incore/referenced or not reflects the problem.
* Note that High Sierra's mincore(2) may return -128.
* (2) read or write invalid address
* saved ip is valid. just restart backtracing.
* (3) received signal in user space
* Same as (2).
* (4) received signal in kernel
* In this case saved ip points just after syscall, but registers are
* already overwritten by kernel. To fix register consistency,
* skip libc's kernel wrapper.
* To detect this case, just previous two bytes of ip is "\x0f\x05",
* syscall instruction of x86_64.
*/
r = mincore((const void *)ip, 1, vec);
if (r || vec[0] <= 0 || memcmp((const char *)ip-2, "\x0f\x05", 2) == 0) {
/* if segv is caused by invalid call or signal received in syscall */
/* the frame is invalid; skip */
trace[n++] = (void *)ip;
ip = *(unw_word_t*)uctx->uc_mcontext->MCTX_SS_REG(rsp);
}
#endif
trace[n++] = (void *)ip;
unw_set_reg(&cursor, UNW_REG_IP, ip);
}
while (unw_step(&cursor) > 0) {
unw_get_reg(&cursor, UNW_REG_IP, &ip);
trace[n++] = (void *)ip;
}
return n;
}
# elif defined(BROKEN_BACKTRACE)
# undef USE_BACKTRACE
# define USE_BACKTRACE 0
# endif
#else
# define USE_BACKTRACE 0
#endif
#if USE_BACKTRACE
# include <execinfo.h>
#elif defined(_WIN32)
# include <imagehlp.h>
# ifndef SYMOPT_DEBUG
# define SYMOPT_DEBUG 0x80000000
# endif
# ifndef MAX_SYM_NAME
# define MAX_SYM_NAME 2000
typedef struct {
DWORD64 Offset;
WORD Segment;
ADDRESS_MODE Mode;
} ADDRESS64;
typedef struct {
DWORD64 Thread;
DWORD ThCallbackStack;
DWORD ThCallbackBStore;
DWORD NextCallback;
DWORD FramePointer;
DWORD64 KiCallUserMode;
DWORD64 KeUserCallbackDispatcher;
DWORD64 SystemRangeStart;
DWORD64 KiUserExceptionDispatcher;
DWORD64 StackBase;
DWORD64 StackLimit;
DWORD64 Reserved[5];
} KDHELP64;
typedef struct {
ADDRESS64 AddrPC;
ADDRESS64 AddrReturn;
ADDRESS64 AddrFrame;
ADDRESS64 AddrStack;
ADDRESS64 AddrBStore;
void *FuncTableEntry;
DWORD64 Params[4];
BOOL Far;
BOOL Virtual;
DWORD64 Reserved[3];
KDHELP64 KdHelp;
} STACKFRAME64;
typedef struct {
ULONG SizeOfStruct;
ULONG TypeIndex;
ULONG64 Reserved[2];
ULONG Index;
ULONG Size;
ULONG64 ModBase;
ULONG Flags;
ULONG64 Value;
ULONG64 Address;
ULONG Register;
ULONG Scope;
ULONG Tag;
ULONG NameLen;
ULONG MaxNameLen;
char Name[1];
} SYMBOL_INFO;
typedef struct {
DWORD SizeOfStruct;
void *Key;
DWORD LineNumber;
char *FileName;
DWORD64 Address;
} IMAGEHLP_LINE64;
typedef void *PREAD_PROCESS_MEMORY_ROUTINE64;
typedef void *PFUNCTION_TABLE_ACCESS_ROUTINE64;
typedef void *PGET_MODULE_BASE_ROUTINE64;
typedef void *PTRANSLATE_ADDRESS_ROUTINE64;
# endif
static void
dump_thread(void *arg)
{
HANDLE dbghelp;
BOOL (WINAPI *pSymInitialize)(HANDLE, const char *, BOOL);
BOOL (WINAPI *pSymCleanup)(HANDLE);
BOOL (WINAPI *pStackWalk64)(DWORD, HANDLE, HANDLE, STACKFRAME64 *, void *, PREAD_PROCESS_MEMORY_ROUTINE64, PFUNCTION_TABLE_ACCESS_ROUTINE64, PGET_MODULE_BASE_ROUTINE64, PTRANSLATE_ADDRESS_ROUTINE64);
DWORD64 (WINAPI *pSymGetModuleBase64)(HANDLE, DWORD64);
BOOL (WINAPI *pSymFromAddr)(HANDLE, DWORD64, DWORD64 *, SYMBOL_INFO *);
BOOL (WINAPI *pSymGetLineFromAddr64)(HANDLE, DWORD64, DWORD *, IMAGEHLP_LINE64 *);
HANDLE (WINAPI *pOpenThread)(DWORD, BOOL, DWORD);
DWORD tid = *(DWORD *)arg;
HANDLE ph;
HANDLE th;
dbghelp = LoadLibrary("dbghelp.dll");
if (!dbghelp) return;
pSymInitialize = (BOOL (WINAPI *)(HANDLE, const char *, BOOL))GetProcAddress(dbghelp, "SymInitialize");
pSymCleanup = (BOOL (WINAPI *)(HANDLE))GetProcAddress(dbghelp, "SymCleanup");
pStackWalk64 = (BOOL (WINAPI *)(DWORD, HANDLE, HANDLE, STACKFRAME64 *, void *, PREAD_PROCESS_MEMORY_ROUTINE64, PFUNCTION_TABLE_ACCESS_ROUTINE64, PGET_MODULE_BASE_ROUTINE64, PTRANSLATE_ADDRESS_ROUTINE64))GetProcAddress(dbghelp, "StackWalk64");
pSymGetModuleBase64 = (DWORD64 (WINAPI *)(HANDLE, DWORD64))GetProcAddress(dbghelp, "SymGetModuleBase64");
pSymFromAddr = (BOOL (WINAPI *)(HANDLE, DWORD64, DWORD64 *, SYMBOL_INFO *))GetProcAddress(dbghelp, "SymFromAddr");
pSymGetLineFromAddr64 = (BOOL (WINAPI *)(HANDLE, DWORD64, DWORD *, IMAGEHLP_LINE64 *))GetProcAddress(dbghelp, "SymGetLineFromAddr64");
pOpenThread = (HANDLE (WINAPI *)(DWORD, BOOL, DWORD))GetProcAddress(GetModuleHandle("kernel32.dll"), "OpenThread");
if (pSymInitialize && pSymCleanup && pStackWalk64 && pSymGetModuleBase64 &&
pSymFromAddr && pSymGetLineFromAddr64 && pOpenThread) {
SymSetOptions(SYMOPT_UNDNAME | SYMOPT_DEFERRED_LOADS | SYMOPT_DEBUG | SYMOPT_LOAD_LINES);
ph = GetCurrentProcess();
pSymInitialize(ph, NULL, TRUE);
th = pOpenThread(THREAD_SUSPEND_RESUME|THREAD_GET_CONTEXT, FALSE, tid);
if (th) {
if (SuspendThread(th) != (DWORD)-1) {
CONTEXT context;
memset(&context, 0, sizeof(context));
context.ContextFlags = CONTEXT_FULL;
if (GetThreadContext(th, &context)) {
char libpath[MAX_PATH];
char buf[sizeof(SYMBOL_INFO) + MAX_SYM_NAME];
SYMBOL_INFO *info = (SYMBOL_INFO *)buf;
DWORD mac;
STACKFRAME64 frame;
memset(&frame, 0, sizeof(frame));
#if defined(_M_AMD64) || defined(__x86_64__)
mac = IMAGE_FILE_MACHINE_AMD64;
frame.AddrPC.Mode = AddrModeFlat;
frame.AddrPC.Offset = context.Rip;
frame.AddrFrame.Mode = AddrModeFlat;
frame.AddrFrame.Offset = context.Rbp;
frame.AddrStack.Mode = AddrModeFlat;
frame.AddrStack.Offset = context.Rsp;
#else /* i386 */
mac = IMAGE_FILE_MACHINE_I386;
frame.AddrPC.Mode = AddrModeFlat;
frame.AddrPC.Offset = context.Eip;
frame.AddrFrame.Mode = AddrModeFlat;
frame.AddrFrame.Offset = context.Ebp;
frame.AddrStack.Mode = AddrModeFlat;
frame.AddrStack.Offset = context.Esp;
#endif
while (pStackWalk64(mac, ph, th, &frame, &context, NULL,
NULL, NULL, NULL)) {
DWORD64 addr = frame.AddrPC.Offset;
IMAGEHLP_LINE64 line;
DWORD64 displacement;
DWORD tmp;
if (addr == frame.AddrReturn.Offset || addr == 0 ||
frame.AddrReturn.Offset == 0)
break;
memset(buf, 0, sizeof(buf));
info->SizeOfStruct = sizeof(SYMBOL_INFO);
info->MaxNameLen = MAX_SYM_NAME;
if (pSymFromAddr(ph, addr, &displacement, info)) {
if (GetModuleFileName((HANDLE)(uintptr_t)pSymGetModuleBase64(ph, addr), libpath, sizeof(libpath)))
fprintf(stderr, "%s", libpath);
fprintf(stderr, "(%s+0x%"PRI_64_PREFIX"x)",
info->Name, displacement);
}
fprintf(stderr, " [0x%p]", (void *)(VALUE)addr);
memset(&line, 0, sizeof(line));
line.SizeOfStruct = sizeof(line);
if (pSymGetLineFromAddr64(ph, addr, &tmp, &line))
fprintf(stderr, " %s:%lu", line.FileName, line.LineNumber);
fprintf(stderr, "\n");
}
}
ResumeThread(th);
}
CloseHandle(th);
}
pSymCleanup(ph);
}
FreeLibrary(dbghelp);
}
#endif
void
rb_print_backtrace(void)
{
#if USE_BACKTRACE
#define MAX_NATIVE_TRACE 1024
static void *trace[MAX_NATIVE_TRACE];
int n = (int)backtrace(trace, MAX_NATIVE_TRACE);
#if (defined(USE_ELF) || defined(HAVE_MACH_O_LOADER_H)) && defined(HAVE_DLADDR) && !defined(__sparc)
rb_dump_backtrace_with_lines(n, trace);
#else
char **syms = backtrace_symbols(trace, n);
if (syms) {
int i;
for (i=0; i<n; i++) {
fprintf(stderr, "%s\n", syms[i]);
}
free(syms);
}
#endif
#elif defined(_WIN32)
DWORD tid = GetCurrentThreadId();
HANDLE th = (HANDLE)_beginthread(dump_thread, 0, &tid);
if (th != (HANDLE)-1)
WaitForSingleObject(th, INFINITE);
#endif
}
#ifdef HAVE_LIBPROCSTAT
#include "missing/procstat_vm.c"
#endif
#if defined __linux__
# if defined __x86_64__ || defined __i386__ || defined __aarch64__ || defined __arm__ || defined __riscv
# define HAVE_PRINT_MACHINE_REGISTERS 1
# endif
#elif defined __APPLE__
2021-01-30 02:43:35 +03:00
# if defined __x86_64__ || defined __i386__ || defined __aarch64__
# define HAVE_PRINT_MACHINE_REGISTERS 1
# endif
#endif
#ifdef HAVE_PRINT_MACHINE_REGISTERS
static int
print_machine_register(size_t reg, const char *reg_name, int col_count, int max_col)
{
int ret;
char buf[64];
2021-04-04 15:52:50 +03:00
static const int size_width = sizeof(size_t) * CHAR_BIT / 4;
2021-04-04 15:52:50 +03:00
ret = snprintf(buf, sizeof(buf), " %3.3s: 0x%.*" PRIxSIZE, reg_name, size_width, reg);
if (col_count + ret > max_col) {
fputs("\n", stderr);
col_count = 0;
}
col_count += ret;
fputs(buf, stderr);
return col_count;
}
# ifdef __linux__
# if defined(__x86_64__) || defined(__i386__)
# define dump_machine_register(reg) (col_count = print_machine_register(mctx->gregs[REG_##reg], #reg, col_count, 80))
# elif defined(__aarch64__) || defined(__arm__) || defined(__riscv)
# define dump_machine_register(reg, regstr) (col_count = print_machine_register(reg, regstr, col_count, 80))
# endif
# elif defined __APPLE__
# if defined(__aarch64__)
# define dump_machine_register(reg, regstr) (col_count = print_machine_register(mctx->MCTX_SS_REG(reg), regstr, col_count, 80))
# else
# define dump_machine_register(reg) (col_count = print_machine_register(mctx->MCTX_SS_REG(reg), #reg, col_count, 80))
# endif
# endif
static void
rb_dump_machine_register(const ucontext_t *ctx)
{
int col_count = 0;
if (!ctx) return;
fprintf(stderr, "-- Machine register context "
"------------------------------------------------\n");
# if defined __linux__
{
const mcontext_t *const mctx = &ctx->uc_mcontext;
# if defined __x86_64__
dump_machine_register(RIP);
dump_machine_register(RBP);
dump_machine_register(RSP);
dump_machine_register(RAX);
dump_machine_register(RBX);
dump_machine_register(RCX);
dump_machine_register(RDX);
dump_machine_register(RDI);
dump_machine_register(RSI);
dump_machine_register(R8);
dump_machine_register(R9);
dump_machine_register(R10);
dump_machine_register(R11);
dump_machine_register(R12);
dump_machine_register(R13);
dump_machine_register(R14);
dump_machine_register(R15);
dump_machine_register(EFL);
# elif defined __i386__
dump_machine_register(GS);
dump_machine_register(FS);
dump_machine_register(ES);
dump_machine_register(DS);
dump_machine_register(EDI);
dump_machine_register(ESI);
dump_machine_register(EBP);
dump_machine_register(ESP);
dump_machine_register(EBX);
dump_machine_register(EDX);
dump_machine_register(ECX);
dump_machine_register(EAX);
dump_machine_register(TRAPNO);
dump_machine_register(ERR);
dump_machine_register(EIP);
dump_machine_register(CS);
dump_machine_register(EFL);
dump_machine_register(UESP);
dump_machine_register(SS);
# elif defined __aarch64__
dump_machine_register(mctx->regs[0], "x0");
dump_machine_register(mctx->regs[1], "x1");
dump_machine_register(mctx->regs[2], "x2");
dump_machine_register(mctx->regs[3], "x3");
dump_machine_register(mctx->regs[4], "x4");
dump_machine_register(mctx->regs[5], "x5");
dump_machine_register(mctx->regs[6], "x6");
dump_machine_register(mctx->regs[7], "x7");
dump_machine_register(mctx->regs[18], "x18");
dump_machine_register(mctx->regs[19], "x19");
dump_machine_register(mctx->regs[20], "x20");
dump_machine_register(mctx->regs[21], "x21");
dump_machine_register(mctx->regs[22], "x22");
dump_machine_register(mctx->regs[23], "x23");
dump_machine_register(mctx->regs[24], "x24");
dump_machine_register(mctx->regs[25], "x25");
dump_machine_register(mctx->regs[26], "x26");
dump_machine_register(mctx->regs[27], "x27");
dump_machine_register(mctx->regs[28], "x28");
dump_machine_register(mctx->regs[29], "x29");
dump_machine_register(mctx->sp, "sp");
dump_machine_register(mctx->fault_address, "fault_address");
# elif defined __arm__
dump_machine_register(mctx->arm_r0, "r0");
dump_machine_register(mctx->arm_r1, "r1");
dump_machine_register(mctx->arm_r2, "r2");
dump_machine_register(mctx->arm_r3, "r3");
dump_machine_register(mctx->arm_r4, "r4");
dump_machine_register(mctx->arm_r5, "r5");
dump_machine_register(mctx->arm_r6, "r6");
dump_machine_register(mctx->arm_r7, "r7");
dump_machine_register(mctx->arm_r8, "r8");
dump_machine_register(mctx->arm_r9, "r9");
dump_machine_register(mctx->arm_r10, "r10");
dump_machine_register(mctx->arm_sp, "sp");
dump_machine_register(mctx->fault_address, "fault_address");
# elif defined __riscv
dump_machine_register(mctx->__gregs[REG_SP], "sp");
dump_machine_register(mctx->__gregs[REG_S0], "s0");
dump_machine_register(mctx->__gregs[REG_S1], "s1");
dump_machine_register(mctx->__gregs[REG_A0], "a0");
dump_machine_register(mctx->__gregs[REG_A0+1], "a1");
dump_machine_register(mctx->__gregs[REG_A0+2], "a2");
dump_machine_register(mctx->__gregs[REG_A0+3], "a3");
dump_machine_register(mctx->__gregs[REG_A0+4], "a4");
dump_machine_register(mctx->__gregs[REG_A0+5], "a5");
dump_machine_register(mctx->__gregs[REG_A0+6], "a6");
dump_machine_register(mctx->__gregs[REG_A0+7], "a7");
dump_machine_register(mctx->__gregs[REG_S2], "s2");
dump_machine_register(mctx->__gregs[REG_S2+1], "s3");
dump_machine_register(mctx->__gregs[REG_S2+2], "s4");
dump_machine_register(mctx->__gregs[REG_S2+3], "s5");
dump_machine_register(mctx->__gregs[REG_S2+4], "s6");
dump_machine_register(mctx->__gregs[REG_S2+5], "s7");
dump_machine_register(mctx->__gregs[REG_S2+6], "s8");
dump_machine_register(mctx->__gregs[REG_S2+7], "s9");
dump_machine_register(mctx->__gregs[REG_S2+8], "s10");
dump_machine_register(mctx->__gregs[REG_S2+9], "s11");
# endif
}
# elif defined __APPLE__
{
const mcontext_t mctx = ctx->uc_mcontext;
# if defined __x86_64__
dump_machine_register(rax);
dump_machine_register(rbx);
dump_machine_register(rcx);
dump_machine_register(rdx);
dump_machine_register(rdi);
dump_machine_register(rsi);
dump_machine_register(rbp);
dump_machine_register(rsp);
dump_machine_register(r8);
dump_machine_register(r9);
dump_machine_register(r10);
dump_machine_register(r11);
dump_machine_register(r12);
dump_machine_register(r13);
dump_machine_register(r14);
dump_machine_register(r15);
dump_machine_register(rip);
dump_machine_register(rflags);
# elif defined __i386__
dump_machine_register(eax);
dump_machine_register(ebx);
dump_machine_register(ecx);
dump_machine_register(edx);
dump_machine_register(edi);
dump_machine_register(esi);
dump_machine_register(ebp);
dump_machine_register(esp);
dump_machine_register(ss);
dump_machine_register(eflags);
dump_machine_register(eip);
dump_machine_register(cs);
dump_machine_register(ds);
dump_machine_register(es);
dump_machine_register(fs);
dump_machine_register(gs);
2021-01-30 02:43:35 +03:00
# elif defined __aarch64__
dump_machine_register(x[0], "x0");
dump_machine_register(x[1], "x1");
dump_machine_register(x[2], "x2");
dump_machine_register(x[3], "x3");
dump_machine_register(x[4], "x4");
dump_machine_register(x[5], "x5");
dump_machine_register(x[6], "x6");
dump_machine_register(x[7], "x7");
dump_machine_register(x[18], "x18");
dump_machine_register(x[19], "x19");
dump_machine_register(x[20], "x20");
dump_machine_register(x[21], "x21");
dump_machine_register(x[22], "x22");
dump_machine_register(x[23], "x23");
dump_machine_register(x[24], "x24");
dump_machine_register(x[25], "x25");
dump_machine_register(x[26], "x26");
dump_machine_register(x[27], "x27");
dump_machine_register(x[28], "x28");
dump_machine_register(lr, "lr");
dump_machine_register(fp, "fp");
dump_machine_register(sp, "sp");
# endif
}
# endif
fprintf(stderr, "\n\n");
}
#else
# define rb_dump_machine_register(ctx) ((void)0)
#endif /* HAVE_PRINT_MACHINE_REGISTERS */
void
rb_vm_bugreport(const void *ctx)
{
const char *cmd = getenv("RUBY_ON_BUG");
if (cmd) {
char buf[0x100];
snprintf(buf, sizeof(buf), "%s %"PRI_PIDT_PREFIX"d", cmd, getpid());
int r = system(buf);
if (r == -1) {
snprintf(buf, sizeof(buf), "Launching RUBY_ON_BUG command failed.");
}
}
#ifdef __linux__
# define PROC_MAPS_NAME "/proc/self/maps"
#endif
#ifdef PROC_MAPS_NAME
enum {other_runtime_info = 1};
#else
enum {other_runtime_info = 0};
#endif
const rb_vm_t *const vm = GET_VM();
const rb_execution_context_t *ec = rb_current_execution_context(false);
if (vm && ec) {
SDR();
rb_backtrace_print_as_bugreport();
fputs("\n", stderr);
}
rb_dump_machine_register(ctx);
#if USE_BACKTRACE || defined(_WIN32)
fprintf(stderr, "-- C level backtrace information "
"-------------------------------------------\n");
rb_print_backtrace();
fprintf(stderr, "\n");
#endif /* USE_BACKTRACE */
if (other_runtime_info || vm) {
fprintf(stderr, "-- Other runtime information "
"-----------------------------------------------\n\n");
}
if (vm && !rb_during_gc()) {
int i;
VALUE name;
long len;
const int max_name_length = 1024;
# define LIMITED_NAME_LENGTH(s) \
(((len = RSTRING_LEN(s)) > max_name_length) ? max_name_length : (int)len)
name = vm->progname;
if (name) {
fprintf(stderr, "* Loaded script: %.*s\n",
LIMITED_NAME_LENGTH(name), RSTRING_PTR(name));
fprintf(stderr, "\n");
}
if (vm->loaded_features) {
fprintf(stderr, "* Loaded features:\n\n");
for (i=0; i<RARRAY_LEN(vm->loaded_features); i++) {
name = RARRAY_AREF(vm->loaded_features, i);
if (RB_TYPE_P(name, T_STRING)) {
fprintf(stderr, " %4d %.*s\n", i,
LIMITED_NAME_LENGTH(name), RSTRING_PTR(name));
}
else if (RB_TYPE_P(name, T_CLASS) || RB_TYPE_P(name, T_MODULE)) {
const char *const type = RB_TYPE_P(name, T_CLASS) ?
"class" : "module";
name = rb_search_class_path(rb_class_real(name));
if (!RB_TYPE_P(name, T_STRING)) {
fprintf(stderr, " %4d %s:<unnamed>\n", i, type);
continue;
}
fprintf(stderr, " %4d %s:%.*s\n", i, type,
LIMITED_NAME_LENGTH(name), RSTRING_PTR(name));
}
else {
VALUE klass = rb_search_class_path(rb_obj_class(name));
if (!RB_TYPE_P(klass, T_STRING)) {
fprintf(stderr, " %4d #<%p:%p>\n", i,
(void *)CLASS_OF(name), (void *)name);
continue;
}
fprintf(stderr, " %4d #<%.*s:%p>\n", i,
LIMITED_NAME_LENGTH(klass), RSTRING_PTR(klass),
(void *)name);
}
}
}
fprintf(stderr, "\n");
}
{
#ifdef PROC_MAPS_NAME
{
FILE *fp = fopen(PROC_MAPS_NAME, "r");
if (fp) {
fprintf(stderr, "* Process memory map:\n\n");
while (!feof(fp)) {
char buff[0x100];
size_t rn = fread(buff, 1, 0x100, fp);
if (fwrite(buff, 1, rn, stderr) != rn)
break;
}
fclose(fp);
fprintf(stderr, "\n\n");
}
}
#endif /* __linux__ */
#ifdef HAVE_LIBPROCSTAT
# define MIB_KERN_PROC_PID_LEN 4
int mib[MIB_KERN_PROC_PID_LEN];
struct kinfo_proc kp;
size_t len = sizeof(struct kinfo_proc);
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();
if (sysctl(mib, MIB_KERN_PROC_PID_LEN, &kp, &len, NULL, 0) == -1) {
perror("sysctl");
}
else {
struct procstat *prstat = procstat_open_sysctl();
fprintf(stderr, "* Process memory map:\n\n");
procstat_vm(prstat, &kp);
procstat_close(prstat);
fprintf(stderr, "\n");
}
#endif /* __FreeBSD__ */
#ifdef __APPLE__
vm_address_t addr = 0;
vm_size_t size = 0;
struct vm_region_submap_info map;
mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT;
natural_t depth = 0;
fprintf(stderr, "* Process memory map:\n\n");
while (1) {
if (vm_region_recurse(mach_task_self(), &addr, &size, &depth,
(vm_region_recurse_info_t)&map, &count) != KERN_SUCCESS) {
break;
}
if (map.is_submap) {
// We only look at main addresses
depth++;
2019-09-27 04:20:56 +03:00
}
else {
fprintf(stderr, "%lx-%lx %s%s%s", addr, (addr+size),
((map.protection & VM_PROT_READ) != 0 ? "r" : "-"),
((map.protection & VM_PROT_WRITE) != 0 ? "w" : "-"),
((map.protection & VM_PROT_EXECUTE) != 0 ? "x" : "-"));
#ifdef HAVE_LIBPROC_H
char buff[PATH_MAX];
if (proc_regionfilename(getpid(), addr, buff, sizeof(buff)) > 0) {
fprintf(stderr, " %s", buff);
}
#endif
fprintf(stderr, "\n");
}
addr += size;
size = 0;
}
#endif
}
}
void
rb_vmdebug_stack_dump_all_threads(void)
{
rb_thread_t *th = NULL;
rb_ractor_t *r = GET_RACTOR();
// TODO: now it only shows current ractor
ccan_list_for_each(&r->threads.set, th, lt_node) {
#ifdef NON_SCALAR_THREAD_ID
fprintf(stderr, "th: %p, native_id: N/A\n", th);
#else
fprintf(stderr, "th: %p, native_id: %p\n", (void *)th, (void *)(uintptr_t)th->nt->thread_id);
#endif
rb_vmdebug_stack_dump_raw(th->ec, th->ec->cfp);
}
}