ruby/bignum.c

7062 строки
179 KiB
C
Исходник Обычный вид История

/**********************************************************************
bignum.c -
$Author$
created at: Fri Jun 10 00:48:55 JST 1994
* encoding.c: provide basic features for M17N. * parse.y: encoding aware parsing. * parse.y (pragma_encoding): encoding specification pragma. * parse.y (rb_intern3): encoding specified symbols. * string.c (rb_str_length): length based on characters. for older behavior, bytesize method added. * string.c (rb_str_index_m): index based on characters. rindex as well. * string.c (succ_char): encoding aware succeeding string. * string.c (rb_str_reverse): reverse based on characters. * string.c (rb_str_inspect): encoding aware string description. * string.c (rb_str_upcase_bang): encoding aware case conversion. downcase, capitalize, swapcase as well. * string.c (rb_str_tr_bang): tr based on characters. delete, squeeze, tr_s, count as well. * string.c (rb_str_split_m): split based on characters. * string.c (rb_str_each_line): encoding aware each_line. * string.c (rb_str_each_char): added. iteration based on characters. * string.c (rb_str_strip_bang): encoding aware whitespace stripping. lstrip, rstrip as well. * string.c (rb_str_justify): encoding aware justifying (ljust, rjust, center). * string.c (str_encoding): get encoding attribute from a string. * re.c (rb_reg_initialize): encoding aware regular expression * sprintf.c (rb_str_format): formatting (i.e. length count) based on characters. * io.c (rb_io_getc): getc to return one-character string. for older behavior, getbyte method added. * ext/stringio/stringio.c (strio_getc): ditto. * io.c (rb_io_ungetc): allow pushing arbitrary string at the current reading point. * ext/stringio/stringio.c (strio_ungetc): ditto. * ext/strscan/strscan.c: encoding support. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@13261 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2007-08-25 07:29:39 +04:00
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "internal.h"
#include "ruby/thread.h"
#include "ruby/util.h"
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#include <math.h>
#include <float.h>
#include <ctype.h>
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#include <assert.h>
#if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H)
#define USE_GMP
#include <gmp.h>
#endif
#define RB_BIGNUM_TYPE_P(x) RB_TYPE_P((x), T_BIGNUM)
VALUE rb_cBignum;
const char ruby_digitmap[] = "0123456789abcdefghijklmnopqrstuvwxyz";
#ifndef SIZEOF_BDIGIT_DBL
# if SIZEOF_INT*2 <= SIZEOF_LONG_LONG
# define SIZEOF_BDIGIT_DBL SIZEOF_LONG_LONG
# else
# define SIZEOF_BDIGIT_DBL SIZEOF_LONG
# endif
#endif
STATIC_ASSERT(sizeof_bdigit_dbl, sizeof(BDIGIT_DBL) == SIZEOF_BDIGIT_DBL);
STATIC_ASSERT(sizeof_bdigit_dbl_signed, sizeof(BDIGIT_DBL_SIGNED) == SIZEOF_BDIGIT_DBL);
STATIC_ASSERT(sizeof_bdigit, SIZEOF_BDIGIT <= sizeof(BDIGIT));
STATIC_ASSERT(sizeof_bdigit_and_dbl, SIZEOF_BDIGIT*2 <= SIZEOF_BDIGIT_DBL);
STATIC_ASSERT(bdigit_signedness, 0 < (BDIGIT)-1);
STATIC_ASSERT(bdigit_dbl_signedness, 0 < (BDIGIT_DBL)-1);
STATIC_ASSERT(bdigit_dbl_signed_signedness, 0 > (BDIGIT_DBL_SIGNED)-1);
STATIC_ASSERT(rbignum_embed_len_max, BIGNUM_EMBED_LEN_MAX <= (BIGNUM_EMBED_LEN_MASK >> BIGNUM_EMBED_LEN_SHIFT));
#if SIZEOF_BDIGIT < SIZEOF_LONG
STATIC_ASSERT(sizeof_long_and_sizeof_bdigit, SIZEOF_LONG % SIZEOF_BDIGIT == 0);
#else
STATIC_ASSERT(sizeof_long_and_sizeof_bdigit, SIZEOF_BDIGIT % SIZEOF_LONG == 0);
#endif
#ifdef WORDS_BIGENDIAN
# define HOST_BIGENDIAN_P 1
#else
# define HOST_BIGENDIAN_P 0
#endif
#define ALIGNOF(type) ((int)offsetof(struct { char f1; type f2; }, f2))
/* (!LSHIFTABLE(d, n) ? 0 : (n)) is same as n but suppress a warning, C4293, by Visual Studio. */
#define LSHIFTABLE(d, n) ((n) < sizeof(d) * CHAR_BIT)
#define LSHIFTX(d, n) (!LSHIFTABLE(d, n) ? 0 : ((d) << (!LSHIFTABLE(d, n) ? 0 : (n))))
#define CLEAR_LOWBITS(d, numbits) ((d) & LSHIFTX(~((d)*0), (numbits)))
#define FILL_LOWBITS(d, numbits) ((d) | (LSHIFTX(((d)*0+1), (numbits))-1))
#define POW2_P(x) (((x)&((x)-1))==0)
#define BDIGITS(x) (BIGNUM_DIGITS(x))
#define BITSPERDIG (SIZEOF_BDIGIT*CHAR_BIT)
#define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG)
#define BIGRAD_HALF ((BDIGIT)(BIGRAD >> 1))
#define BDIGIT_MSB(d) (((d) & BIGRAD_HALF) != 0)
#define BIGUP(x) LSHIFTX(((x) + (BDIGIT_DBL)0), BITSPERDIG)
#define BIGDN(x) RSHIFT((x),BITSPERDIG)
#define BIGLO(x) ((BDIGIT)((x) & BDIGMAX))
#define BDIGMAX ((BDIGIT)(BIGRAD-1))
#define BDIGIT_DBL_MAX (~(BDIGIT_DBL)0)
#if SIZEOF_BDIGIT == 2
# define swap_bdigit(x) swap16(x)
#elif SIZEOF_BDIGIT == 4
# define swap_bdigit(x) swap32(x)
#elif SIZEOF_BDIGIT == 8
# define swap_bdigit(x) swap64(x)
#endif
#define BIGZEROP(x) (BIGNUM_LEN(x) == 0 || \
(BDIGITS(x)[0] == 0 && \
(BIGNUM_LEN(x) == 1 || bigzero_p(x))))
#define BIGSIZE(x) (BIGNUM_LEN(x) == 0 ? (size_t)0 : \
BDIGITS(x)[BIGNUM_LEN(x)-1] ? \
(size_t)(BIGNUM_LEN(x)*SIZEOF_BDIGIT - nlz(BDIGITS(x)[BIGNUM_LEN(x)-1])/CHAR_BIT) : \
rb_absint_size(x, NULL))
#define BIGDIVREM_EXTRA_WORDS 1
#define bdigit_roomof(n) roomof(n, SIZEOF_BDIGIT)
#define BARY_ARGS(ary) ary, numberof(ary)
#define BARY_ADD(z, x, y) bary_add(BARY_ARGS(z), BARY_ARGS(x), BARY_ARGS(y))
#define BARY_SUB(z, x, y) bary_sub(BARY_ARGS(z), BARY_ARGS(x), BARY_ARGS(y))
#define BARY_SHORT_MUL(z, x, y) bary_short_mul(BARY_ARGS(z), BARY_ARGS(x), BARY_ARGS(y))
#define BARY_DIVMOD(q, r, x, y) bary_divmod(BARY_ARGS(q), BARY_ARGS(r), BARY_ARGS(x), BARY_ARGS(y))
#define BARY_ZERO_P(x) bary_zero_p(BARY_ARGS(x))
#define BIGNUM_SET_NEGATIVE_SIGN(b) BIGNUM_SET_SIGN(b, 0)
#define BIGNUM_SET_POSITIVE_SIGN(b) BIGNUM_SET_SIGN(b, 1)
#define bignew(len,sign) bignew_1(rb_cBignum,(len),(sign))
#define BDIGITS_ZERO(ptr, n) do { \
BDIGIT *bdigitz_zero_ptr = (ptr); \
size_t bdigitz_zero_n = (n); \
while (bdigitz_zero_n) { \
*bdigitz_zero_ptr++ = 0; \
bdigitz_zero_n--; \
} \
} while (0)
#define BARY_TRUNC(ds, n) do { \
while (0 < (n) && (ds)[(n)-1] == 0) \
(n)--; \
} while (0)
#define KARATSUBA_BALANCED(xn, yn) ((yn)/2 < (xn))
#define TOOM3_BALANCED(xn, yn) (((yn)+2)/3 * 2 < (xn))
#define GMP_MUL_DIGITS 20
#define KARATSUBA_MUL_DIGITS 70
#define TOOM3_MUL_DIGITS 150
#define GMP_DIV_DIGITS 20
#define GMP_BIG2STR_DIGITS 20
#define GMP_STR2BIG_DIGITS 20
typedef void (mulfunc_t)(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn);
static mulfunc_t bary_mul_toom3_start;
static mulfunc_t bary_mul_karatsuba_start;
static BDIGIT bigdivrem_single(BDIGIT *qds, const BDIGIT *xds, size_t xn, BDIGIT y);
static void bary_divmod(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn);
static VALUE bigmul0(VALUE x, VALUE y);
static void bary_mul_toom3(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn);
static VALUE bignew_1(VALUE klass, size_t len, int sign);
static inline VALUE bigtrunc(VALUE x);
static VALUE bigsq(VALUE x);
static void bigdivmod(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp);
static inline VALUE power_cache_get_power(int base, int power_level, size_t *numdigits_ret);
#if SIZEOF_BDIGIT <= SIZEOF_INT
static int nlz(BDIGIT x) { return nlz_int((unsigned int)x) - (SIZEOF_INT-SIZEOF_BDIGIT) * CHAR_BIT; }
#elif SIZEOF_BDIGIT <= SIZEOF_LONG
static int nlz(BDIGIT x) { return nlz_long((unsigned long)x) - (SIZEOF_LONG-SIZEOF_BDIGIT) * CHAR_BIT; }
#elif SIZEOF_BDIGIT <= SIZEOF_LONG_LONG
static int nlz(BDIGIT x) { return nlz_long_long((unsigned LONG_LONG)x) - (SIZEOF_LONG_LONG-SIZEOF_BDIGIT) * CHAR_BIT; }
#elif SIZEOF_BDIGIT <= SIZEOF_INT128_T
static int nlz(BDIGIT x) { return nlz_int128((uint128_t)x) - (SIZEOF_INT128_T-SIZEOF_BDIGIT) * CHAR_BIT; }
#endif
#define U16(a) ((uint16_t)(a))
#define U32(a) ((uint32_t)(a))
#ifdef HAVE_UINT64_T
#define U64(a,b) (((uint64_t)(a) << 32) | (b))
#endif
#ifdef HAVE_UINT128_T
#define U128(a,b,c,d) (((uint128_t)U64(a,b) << 64) | U64(c,d))
#endif
/* The following script, maxpow.rb, generates the tables follows.
def big(n, bits)
ns = []
((bits+31)/32).times {
ns << sprintf("0x%08x", n & 0xffff_ffff)
n >>= 32
}
"U#{bits}(" + ns.reverse.join(",") + ")"
end
def values(ary, width, indent)
lines = [""]
ary.each {|e|
lines << "" if !ary.last.empty? && width < (lines.last + e + ", ").length
lines.last << e + ", "
}
lines.map {|line| " " * indent + line.chomp(" ") + "\n" }.join
end
[16,32,64,128].each {|bits|
max = 2**bits-1
exps = []
nums = []
2.upto(36) {|base|
exp = 0
n = 1
while n * base <= max
exp += 1
n *= base
end
exps << exp.to_s
nums << big(n, bits)
}
puts "#ifdef HAVE_UINT#{bits}_T"
puts "static const int maxpow#{bits}_exp[35] = {"
print values(exps, 70, 4)
puts "};"
puts "static const uint#{bits}_t maxpow#{bits}_num[35] = {"
print values(nums, 70, 4)
puts "};"
puts "#endif"
}
*/
#if SIZEOF_BDIGIT_DBL == 2
static const int maxpow16_exp[35] = {
15, 10, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
};
static const uint16_t maxpow16_num[35] = {
U16(0x00008000), U16(0x0000e6a9), U16(0x00004000), U16(0x00003d09),
U16(0x0000b640), U16(0x000041a7), U16(0x00008000), U16(0x0000e6a9),
U16(0x00002710), U16(0x00003931), U16(0x00005100), U16(0x00006f91),
U16(0x00009610), U16(0x0000c5c1), U16(0x00001000), U16(0x00001331),
U16(0x000016c8), U16(0x00001acb), U16(0x00001f40), U16(0x0000242d),
U16(0x00002998), U16(0x00002f87), U16(0x00003600), U16(0x00003d09),
U16(0x000044a8), U16(0x00004ce3), U16(0x000055c0), U16(0x00005f45),
U16(0x00006978), U16(0x0000745f), U16(0x00008000), U16(0x00008c61),
U16(0x00009988), U16(0x0000a77b), U16(0x0000b640),
};
#elif SIZEOF_BDIGIT_DBL == 4
static const int maxpow32_exp[35] = {
31, 20, 15, 13, 12, 11, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7,
7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
};
static const uint32_t maxpow32_num[35] = {
U32(0x80000000), U32(0xcfd41b91), U32(0x40000000), U32(0x48c27395),
U32(0x81bf1000), U32(0x75db9c97), U32(0x40000000), U32(0xcfd41b91),
U32(0x3b9aca00), U32(0x8c8b6d2b), U32(0x19a10000), U32(0x309f1021),
U32(0x57f6c100), U32(0x98c29b81), U32(0x10000000), U32(0x18754571),
U32(0x247dbc80), U32(0x3547667b), U32(0x4c4b4000), U32(0x6b5a6e1d),
U32(0x94ace180), U32(0xcaf18367), U32(0x0b640000), U32(0x0e8d4a51),
U32(0x1269ae40), U32(0x17179149), U32(0x1cb91000), U32(0x23744899),
U32(0x2b73a840), U32(0x34e63b41), U32(0x40000000), U32(0x4cfa3cc1),
U32(0x5c13d840), U32(0x6d91b519), U32(0x81bf1000),
};
#elif SIZEOF_BDIGIT_DBL == 8 && defined HAVE_UINT64_T
static const int maxpow64_exp[35] = {
63, 40, 31, 27, 24, 22, 21, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15,
15, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12,
12,
};
static const uint64_t maxpow64_num[35] = {
U64(0x80000000,0x00000000), U64(0xa8b8b452,0x291fe821),
U64(0x40000000,0x00000000), U64(0x6765c793,0xfa10079d),
U64(0x41c21cb8,0xe1000000), U64(0x36427987,0x50226111),
U64(0x80000000,0x00000000), U64(0xa8b8b452,0x291fe821),
U64(0x8ac72304,0x89e80000), U64(0x4d28cb56,0xc33fa539),
U64(0x1eca170c,0x00000000), U64(0x780c7372,0x621bd74d),
U64(0x1e39a505,0x7d810000), U64(0x5b27ac99,0x3df97701),
U64(0x10000000,0x00000000), U64(0x27b95e99,0x7e21d9f1),
U64(0x5da0e1e5,0x3c5c8000), U64(0xd2ae3299,0xc1c4aedb),
U64(0x16bcc41e,0x90000000), U64(0x2d04b7fd,0xd9c0ef49),
U64(0x5658597b,0xcaa24000), U64(0xa0e20737,0x37609371),
U64(0x0c29e980,0x00000000), U64(0x14adf4b7,0x320334b9),
U64(0x226ed364,0x78bfa000), U64(0x383d9170,0xb85ff80b),
U64(0x5a3c23e3,0x9c000000), U64(0x8e651373,0x88122bcd),
U64(0xdd41bb36,0xd259e000), U64(0x0aee5720,0xee830681),
U64(0x10000000,0x00000000), U64(0x172588ad,0x4f5f0981),
U64(0x211e44f7,0xd02c1000), U64(0x2ee56725,0xf06e5c71),
U64(0x41c21cb8,0xe1000000),
};
#elif SIZEOF_BDIGIT_DBL == 16 && defined HAVE_UINT128_T
static const int maxpow128_exp[35] = {
127, 80, 63, 55, 49, 45, 42, 40, 38, 37, 35, 34, 33, 32, 31, 31, 30,
30, 29, 29, 28, 28, 27, 27, 27, 26, 26, 26, 26, 25, 25, 25, 25, 24,
24,
};
static const uint128_t maxpow128_num[35] = {
U128(0x80000000,0x00000000,0x00000000,0x00000000),
U128(0x6f32f1ef,0x8b18a2bc,0x3cea5978,0x9c79d441),
U128(0x40000000,0x00000000,0x00000000,0x00000000),
U128(0xd0cf4b50,0xcfe20765,0xfff4b4e3,0xf741cf6d),
U128(0x6558e2a0,0x921fe069,0x42860000,0x00000000),
U128(0x5080c7b7,0xd0e31ba7,0x5911a67d,0xdd3d35e7),
U128(0x40000000,0x00000000,0x00000000,0x00000000),
U128(0x6f32f1ef,0x8b18a2bc,0x3cea5978,0x9c79d441),
U128(0x4b3b4ca8,0x5a86c47a,0x098a2240,0x00000000),
U128(0xffd1390a,0x0adc2fb8,0xdabbb817,0x4d95c99b),
U128(0x2c6fdb36,0x4c25e6c0,0x00000000,0x00000000),
U128(0x384bacd6,0x42c343b4,0xe90c4272,0x13506d29),
U128(0x31f5db32,0xa34aced6,0x0bf13a0e,0x00000000),
U128(0x20753ada,0xfd1e839f,0x53686d01,0x3143ee01),
U128(0x10000000,0x00000000,0x00000000,0x00000000),
U128(0x68ca11d6,0xb4f6d1d1,0xfaa82667,0x8073c2f1),
U128(0x223e493b,0xb3bb69ff,0xa4b87d6c,0x40000000),
U128(0xad62418d,0x14ea8247,0x01c4b488,0x6cc66f59),
U128(0x2863c1f5,0xcdae42f9,0x54000000,0x00000000),
U128(0xa63fd833,0xb9386b07,0x36039e82,0xbe651b25),
U128(0x1d1f7a9c,0xd087a14d,0x28cdf3d5,0x10000000),
U128(0x651b5095,0xc2ea8fc1,0xb30e2c57,0x77aaf7e1),
U128(0x0ddef20e,0xff760000,0x00000000,0x00000000),
U128(0x29c30f10,0x29939b14,0x6664242d,0x97d9f649),
U128(0x786a435a,0xe9558b0e,0x6aaf6d63,0xa8000000),
U128(0x0c5afe6f,0xf302bcbf,0x94fd9829,0xd87f5079),
U128(0x1fce575c,0xe1692706,0x07100000,0x00000000),
U128(0x4f34497c,0x8597e144,0x36e91802,0x00528229),
U128(0xbf3a8e1d,0x41ef2170,0x7802130d,0x84000000),
U128(0x0e7819e1,0x7f1eb0fb,0x6ee4fb89,0x01d9531f),
U128(0x20000000,0x00000000,0x00000000,0x00000000),
U128(0x4510460d,0xd9e879c0,0x14a82375,0x2f22b321),
U128(0x91abce3c,0x4b4117ad,0xe76d35db,0x22000000),
U128(0x08973ea3,0x55d75bc2,0x2e42c391,0x727d69e1),
U128(0x10e425c5,0x6daffabc,0x35c10000,0x00000000),
};
#endif
static BDIGIT_DBL
maxpow_in_bdigit_dbl(int base, int *exp_ret)
{
BDIGIT_DBL maxpow;
int exponent;
assert(2 <= base && base <= 36);
{
#if SIZEOF_BDIGIT_DBL == 2
maxpow = maxpow16_num[base-2];
exponent = maxpow16_exp[base-2];
#elif SIZEOF_BDIGIT_DBL == 4
maxpow = maxpow32_num[base-2];
exponent = maxpow32_exp[base-2];
#elif SIZEOF_BDIGIT_DBL == 8 && defined HAVE_UINT64_T
maxpow = maxpow64_num[base-2];
exponent = maxpow64_exp[base-2];
#elif SIZEOF_BDIGIT_DBL == 16 && defined HAVE_UINT128_T
maxpow = maxpow128_num[base-2];
exponent = maxpow128_exp[base-2];
#else
maxpow = base;
exponent = 1;
while (maxpow <= BDIGIT_DBL_MAX / base) {
maxpow *= base;
exponent++;
}
#endif
}
*exp_ret = exponent;
return maxpow;
}
static inline BDIGIT_DBL
bary2bdigitdbl(const BDIGIT *ds, size_t n)
{
assert(n <= 2);
if (n == 2)
return ds[0] | BIGUP(ds[1]);
if (n == 1)
return ds[0];
return 0;
}
static inline void
bdigitdbl2bary(BDIGIT *ds, size_t n, BDIGIT_DBL num)
{
assert(n == 2);
ds[0] = BIGLO(num);
ds[1] = (BDIGIT)BIGDN(num);
}
static int
bary_cmp(const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
BARY_TRUNC(xds, xn);
BARY_TRUNC(yds, yn);
if (xn < yn)
return -1;
if (xn > yn)
return 1;
while (xn-- && xds[xn] == yds[xn])
;
if (xn == (size_t)-1)
return 0;
return xds[xn] < yds[xn] ? -1 : 1;
}
static BDIGIT
bary_small_lshift(BDIGIT *zds, const BDIGIT *xds, size_t n, int shift)
{
size_t i;
BDIGIT_DBL num = 0;
assert(0 <= shift && shift < BITSPERDIG);
for (i=0; i<n; i++) {
num = num | (BDIGIT_DBL)*xds++ << shift;
*zds++ = BIGLO(num);
num = BIGDN(num);
}
return BIGLO(num);
}
static void
bary_small_rshift(BDIGIT *zds, const BDIGIT *xds, size_t n, int shift, BDIGIT higher_bdigit)
{
BDIGIT_DBL num = 0;
BDIGIT x;
assert(0 <= shift && shift < BITSPERDIG);
num = BIGUP(higher_bdigit);
while (n--) {
num = (num | xds[n]) >> shift;
x = xds[n];
zds[n] = BIGLO(num);
num = BIGUP(x);
}
}
static int
bary_zero_p(BDIGIT *xds, size_t xn)
{
if (xn == 0)
return 1;
do {
if (xds[--xn]) return 0;
} while (xn);
return 1;
}
static void
bary_neg(BDIGIT *ds, size_t n)
{
while (n--)
ds[n] = BIGLO(~ds[n]);
}
static int
bary_2comp(BDIGIT *ds, size_t n)
{
size_t i;
i = 0;
for (i = 0; i < n; i++) {
if (ds[i] != 0) {
goto non_zero;
}
}
return 1;
non_zero:
ds[i] = BIGLO(~ds[i] + 1);
i++;
for (; i < n; i++) {
ds[i] = BIGLO(~ds[i]);
}
return 0;
}
static void
bary_swap(BDIGIT *ds, size_t num_bdigits)
{
BDIGIT *p1 = ds;
BDIGIT *p2 = ds + num_bdigits - 1;
for (; p1 < p2; p1++, p2--) {
BDIGIT tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
}
#define INTEGER_PACK_WORDORDER_MASK \
(INTEGER_PACK_MSWORD_FIRST | \
INTEGER_PACK_LSWORD_FIRST)
#define INTEGER_PACK_BYTEORDER_MASK \
(INTEGER_PACK_MSBYTE_FIRST | \
INTEGER_PACK_LSBYTE_FIRST | \
INTEGER_PACK_NATIVE_BYTE_ORDER)
static void
validate_integer_pack_format(size_t numwords, size_t wordsize, size_t nails, int flags, int supported_flags)
{
int wordorder_bits = flags & INTEGER_PACK_WORDORDER_MASK;
int byteorder_bits = flags & INTEGER_PACK_BYTEORDER_MASK;
if (flags & ~supported_flags) {
rb_raise(rb_eArgError, "unsupported flags specified");
}
if (wordorder_bits == 0) {
if (1 < numwords)
rb_raise(rb_eArgError, "word order not specified");
}
else if (wordorder_bits != INTEGER_PACK_MSWORD_FIRST &&
wordorder_bits != INTEGER_PACK_LSWORD_FIRST)
rb_raise(rb_eArgError, "unexpected word order");
if (byteorder_bits == 0) {
rb_raise(rb_eArgError, "byte order not specified");
}
else if (byteorder_bits != INTEGER_PACK_MSBYTE_FIRST &&
byteorder_bits != INTEGER_PACK_LSBYTE_FIRST &&
byteorder_bits != INTEGER_PACK_NATIVE_BYTE_ORDER)
rb_raise(rb_eArgError, "unexpected byte order");
if (wordsize == 0)
rb_raise(rb_eArgError, "invalid wordsize: %"PRI_SIZE_PREFIX"u", wordsize);
if (SSIZE_MAX < wordsize)
rb_raise(rb_eArgError, "too big wordsize: %"PRI_SIZE_PREFIX"u", wordsize);
if (wordsize <= nails / CHAR_BIT)
rb_raise(rb_eArgError, "too big nails: %"PRI_SIZE_PREFIX"u", nails);
if (SIZE_MAX / wordsize < numwords)
rb_raise(rb_eArgError, "too big numwords * wordsize: %"PRI_SIZE_PREFIX"u * %"PRI_SIZE_PREFIX"u", numwords, wordsize);
}
static void
integer_pack_loop_setup(
size_t numwords, size_t wordsize, size_t nails, int flags,
size_t *word_num_fullbytes_ret,
int *word_num_partialbits_ret,
size_t *word_start_ret,
ssize_t *word_step_ret,
size_t *word_last_ret,
size_t *byte_start_ret,
int *byte_step_ret)
{
int wordorder_bits = flags & INTEGER_PACK_WORDORDER_MASK;
int byteorder_bits = flags & INTEGER_PACK_BYTEORDER_MASK;
size_t word_num_fullbytes;
int word_num_partialbits;
size_t word_start;
ssize_t word_step;
size_t word_last;
size_t byte_start;
int byte_step;
word_num_partialbits = CHAR_BIT - (int)(nails % CHAR_BIT);
if (word_num_partialbits == CHAR_BIT)
word_num_partialbits = 0;
word_num_fullbytes = wordsize - (nails / CHAR_BIT);
if (word_num_partialbits != 0) {
word_num_fullbytes--;
}
if (wordorder_bits == INTEGER_PACK_MSWORD_FIRST) {
word_start = wordsize*(numwords-1);
word_step = -(ssize_t)wordsize;
word_last = 0;
}
else {
word_start = 0;
word_step = wordsize;
word_last = wordsize*(numwords-1);
}
if (byteorder_bits == INTEGER_PACK_NATIVE_BYTE_ORDER) {
#ifdef WORDS_BIGENDIAN
byteorder_bits = INTEGER_PACK_MSBYTE_FIRST;
#else
byteorder_bits = INTEGER_PACK_LSBYTE_FIRST;
#endif
}
if (byteorder_bits == INTEGER_PACK_MSBYTE_FIRST) {
byte_start = wordsize-1;
byte_step = -1;
}
else {
byte_start = 0;
byte_step = 1;
}
*word_num_partialbits_ret = word_num_partialbits;
*word_num_fullbytes_ret = word_num_fullbytes;
*word_start_ret = word_start;
*word_step_ret = word_step;
*word_last_ret = word_last;
*byte_start_ret = byte_start;
*byte_step_ret = byte_step;
}
static inline void
integer_pack_fill_dd(BDIGIT **dpp, BDIGIT **dep, BDIGIT_DBL *ddp, int *numbits_in_dd_p)
{
if (*dpp < *dep && BITSPERDIG <= (int)sizeof(*ddp) * CHAR_BIT - *numbits_in_dd_p) {
*ddp |= (BDIGIT_DBL)(*(*dpp)++) << *numbits_in_dd_p;
*numbits_in_dd_p += BITSPERDIG;
}
else if (*dpp == *dep) {
/* higher bits are infinity zeros */
*numbits_in_dd_p = (int)sizeof(*ddp) * CHAR_BIT;
}
}
static inline BDIGIT_DBL
integer_pack_take_lowbits(int n, BDIGIT_DBL *ddp, int *numbits_in_dd_p)
{
BDIGIT_DBL ret;
ret = (*ddp) & (((BDIGIT_DBL)1 << n) - 1);
*ddp >>= n;
*numbits_in_dd_p -= n;
return ret;
}
#if !defined(WORDS_BIGENDIAN)
static int
bytes_2comp(unsigned char *buf, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
buf[i] = ~buf[i];
for (i = 0; i < len; i++) {
buf[i]++;
if (buf[i] != 0)
return 0;
}
return 1;
}
#endif
static int
bary_pack(int sign, BDIGIT *ds, size_t num_bdigits, void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
{
BDIGIT *dp, *de;
unsigned char *buf, *bufend;
dp = ds;
de = ds + num_bdigits;
validate_integer_pack_format(numwords, wordsize, nails, flags,
INTEGER_PACK_MSWORD_FIRST|
INTEGER_PACK_LSWORD_FIRST|
INTEGER_PACK_MSBYTE_FIRST|
INTEGER_PACK_LSBYTE_FIRST|
INTEGER_PACK_NATIVE_BYTE_ORDER|
INTEGER_PACK_2COMP|
INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION);
while (dp < de && de[-1] == 0)
de--;
if (dp == de) {
sign = 0;
}
if (!(flags & INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION)) {
if (sign == 0) {
MEMZERO(words, unsigned char, numwords * wordsize);
return 0;
}
if (nails == 0 && numwords == 1) {
int need_swap = wordsize != 1 &&
(flags & INTEGER_PACK_BYTEORDER_MASK) != INTEGER_PACK_NATIVE_BYTE_ORDER &&
((flags & INTEGER_PACK_MSBYTE_FIRST) ? !HOST_BIGENDIAN_P : HOST_BIGENDIAN_P);
if (0 < sign || !(flags & INTEGER_PACK_2COMP)) {
BDIGIT d;
if (wordsize == 1) {
*((unsigned char *)words) = (unsigned char)(d = dp[0]);
return ((1 < de - dp || CLEAR_LOWBITS(d, 8) != 0) ? 2 : 1) * sign;
}
#if defined(HAVE_UINT16_T) && 2 <= SIZEOF_BDIGIT
if (wordsize == 2 && (uintptr_t)words % ALIGNOF(uint16_t) == 0) {
uint16_t u = (uint16_t)(d = dp[0]);
if (need_swap) u = swap16(u);
*((uint16_t *)words) = u;
return ((1 < de - dp || CLEAR_LOWBITS(d, 16) != 0) ? 2 : 1) * sign;
}
#endif
#if defined(HAVE_UINT32_T) && 4 <= SIZEOF_BDIGIT
if (wordsize == 4 && (uintptr_t)words % ALIGNOF(uint32_t) == 0) {
uint32_t u = (uint32_t)(d = dp[0]);
if (need_swap) u = swap32(u);
*((uint32_t *)words) = u;
return ((1 < de - dp || CLEAR_LOWBITS(d, 32) != 0) ? 2 : 1) * sign;
}
#endif
#if defined(HAVE_UINT64_T) && 8 <= SIZEOF_BDIGIT
if (wordsize == 8 && (uintptr_t)words % ALIGNOF(uint64_t) == 0) {
uint64_t u = (uint64_t)(d = dp[0]);
if (need_swap) u = swap64(u);
*((uint64_t *)words) = u;
return ((1 < de - dp || CLEAR_LOWBITS(d, 64) != 0) ? 2 : 1) * sign;
}
#endif
}
else { /* sign < 0 && (flags & INTEGER_PACK_2COMP) */
BDIGIT_DBL_SIGNED d;
if (wordsize == 1) {
*((unsigned char *)words) = (unsigned char)(d = -(BDIGIT_DBL_SIGNED)dp[0]);
return (1 < de - dp || FILL_LOWBITS(d, 8) != -1) ? -2 : -1;
}
#if defined(HAVE_UINT16_T) && 2 <= SIZEOF_BDIGIT
if (wordsize == 2 && (uintptr_t)words % ALIGNOF(uint16_t) == 0) {
uint16_t u = (uint16_t)(d = -(BDIGIT_DBL_SIGNED)dp[0]);
if (need_swap) u = swap16(u);
*((uint16_t *)words) = u;
return (wordsize == SIZEOF_BDIGIT && de - dp == 2 && dp[1] == 1 && dp[0] == 0) ? -1 :
(1 < de - dp || FILL_LOWBITS(d, 16) != -1) ? -2 : -1;
}
#endif
#if defined(HAVE_UINT32_T) && 4 <= SIZEOF_BDIGIT
if (wordsize == 4 && (uintptr_t)words % ALIGNOF(uint32_t) == 0) {
uint32_t u = (uint32_t)(d = -(BDIGIT_DBL_SIGNED)dp[0]);
if (need_swap) u = swap32(u);
*((uint32_t *)words) = u;
return (wordsize == SIZEOF_BDIGIT && de - dp == 2 && dp[1] == 1 && dp[0] == 0) ? -1 :
(1 < de - dp || FILL_LOWBITS(d, 32) != -1) ? -2 : -1;
}
#endif
#if defined(HAVE_UINT64_T) && 8 <= SIZEOF_BDIGIT
if (wordsize == 8 && (uintptr_t)words % ALIGNOF(uint64_t) == 0) {
uint64_t u = (uint64_t)(d = -(BDIGIT_DBL_SIGNED)dp[0]);
if (need_swap) u = swap64(u);
*((uint64_t *)words) = u;
return (wordsize == SIZEOF_BDIGIT && de - dp == 2 && dp[1] == 1 && dp[0] == 0) ? -1 :
(1 < de - dp || FILL_LOWBITS(d, 64) != -1) ? -2 : -1;
}
#endif
}
}
#if !defined(WORDS_BIGENDIAN)
if (nails == 0 && SIZEOF_BDIGIT == sizeof(BDIGIT) &&
(flags & INTEGER_PACK_WORDORDER_MASK) == INTEGER_PACK_LSWORD_FIRST &&
(flags & INTEGER_PACK_BYTEORDER_MASK) != INTEGER_PACK_MSBYTE_FIRST) {
size_t src_size = (de - dp) * SIZEOF_BDIGIT;
size_t dst_size = numwords * wordsize;
int overflow = 0;
while (0 < src_size && ((unsigned char *)ds)[src_size-1] == 0)
src_size--;
if (src_size <= dst_size) {
MEMCPY(words, dp, char, src_size);
MEMZERO((char*)words + src_size, char, dst_size - src_size);
}
else {
MEMCPY(words, dp, char, dst_size);
overflow = 1;
}
if (sign < 0 && (flags & INTEGER_PACK_2COMP)) {
int zero_p = bytes_2comp(words, dst_size);
if (zero_p && overflow) {
unsigned char *p = (unsigned char *)dp;
if (dst_size == src_size-1 &&
p[dst_size] == 1) {
overflow = 0;
}
}
}
if (overflow)
sign *= 2;
return sign;
}
#endif
if (nails == 0 && SIZEOF_BDIGIT == sizeof(BDIGIT) &&
wordsize % SIZEOF_BDIGIT == 0 && (uintptr_t)words % ALIGNOF(BDIGIT) == 0) {
size_t bdigits_per_word = wordsize / SIZEOF_BDIGIT;
size_t src_num_bdigits = de - dp;
size_t dst_num_bdigits = numwords * bdigits_per_word;
int overflow = 0;
int mswordfirst_p = (flags & INTEGER_PACK_MSWORD_FIRST) != 0;
int msbytefirst_p = (flags & INTEGER_PACK_NATIVE_BYTE_ORDER) ? HOST_BIGENDIAN_P :
(flags & INTEGER_PACK_MSBYTE_FIRST) != 0;
if (src_num_bdigits <= dst_num_bdigits) {
MEMCPY(words, dp, BDIGIT, src_num_bdigits);
BDIGITS_ZERO((BDIGIT*)words + src_num_bdigits, dst_num_bdigits - src_num_bdigits);
}
else {
MEMCPY(words, dp, BDIGIT, dst_num_bdigits);
overflow = 1;
}
if (sign < 0 && (flags & INTEGER_PACK_2COMP)) {
int zero_p = bary_2comp(words, dst_num_bdigits);
if (zero_p && overflow &&
dst_num_bdigits == src_num_bdigits-1 &&
dp[dst_num_bdigits] == 1)
overflow = 0;
}
if (msbytefirst_p != HOST_BIGENDIAN_P) {
size_t i;
for (i = 0; i < dst_num_bdigits; i++) {
BDIGIT d = ((BDIGIT*)words)[i];
((BDIGIT*)words)[i] = swap_bdigit(d);
}
}
if (mswordfirst_p ? !msbytefirst_p : msbytefirst_p) {
size_t i;
BDIGIT *p = words;
for (i = 0; i < numwords; i++) {
bary_swap(p, bdigits_per_word);
p += bdigits_per_word;
}
}
if (mswordfirst_p) {
bary_swap(words, dst_num_bdigits);
}
if (overflow)
sign *= 2;
return sign;
}
}
buf = words;
bufend = buf + numwords * wordsize;
if (buf == bufend) {
/* overflow if non-zero*/
if (!(flags & INTEGER_PACK_2COMP) || 0 <= sign)
sign *= 2;
else {
if (de - dp == 1 && dp[0] == 1)
sign = -1; /* val == -1 == -2**(numwords*(wordsize*CHAR_BIT-nails)) */
else
sign = -2; /* val < -1 == -2**(numwords*(wordsize*CHAR_BIT-nails)) */
}
}
else if (dp == de) {
memset(buf, '\0', bufend - buf);
}
else if (dp < de && buf < bufend) {
int word_num_partialbits;
size_t word_num_fullbytes;
ssize_t word_step;
size_t byte_start;
int byte_step;
size_t word_start, word_last;
unsigned char *wordp, *last_wordp;
BDIGIT_DBL dd;
int numbits_in_dd;
integer_pack_loop_setup(numwords, wordsize, nails, flags,
&word_num_fullbytes, &word_num_partialbits,
&word_start, &word_step, &word_last, &byte_start, &byte_step);
wordp = buf + word_start;
last_wordp = buf + word_last;
dd = 0;
numbits_in_dd = 0;
#define FILL_DD \
integer_pack_fill_dd(&dp, &de, &dd, &numbits_in_dd)
#define TAKE_LOWBITS(n) \
integer_pack_take_lowbits(n, &dd, &numbits_in_dd)
while (1) {
size_t index_in_word = 0;
unsigned char *bytep = wordp + byte_start;
while (index_in_word < word_num_fullbytes) {
FILL_DD;
*bytep = TAKE_LOWBITS(CHAR_BIT);
bytep += byte_step;
index_in_word++;
}
if (word_num_partialbits) {
FILL_DD;
*bytep = TAKE_LOWBITS(word_num_partialbits);
bytep += byte_step;
index_in_word++;
}
while (index_in_word < wordsize) {
*bytep = 0;
bytep += byte_step;
index_in_word++;
}
if (wordp == last_wordp)
break;
wordp += word_step;
}
FILL_DD;
/* overflow tests */
if (dp != de || 1 < dd) {
/* 2**(numwords*(wordsize*CHAR_BIT-nails)+1) <= abs(val) */
sign *= 2;
}
else if (dd == 1) {
/* 2**(numwords*(wordsize*CHAR_BIT-nails)) <= abs(val) < 2**(numwords*(wordsize*CHAR_BIT-nails)+1) */
if (!(flags & INTEGER_PACK_2COMP) || 0 <= sign)
sign *= 2;
else { /* overflow_2comp && sign == -1 */
/* test lower bits are all zero. */
dp = ds;
while (dp < de && *dp == 0)
dp++;
if (de - dp == 1 && /* only one non-zero word. */
POW2_P(*dp)) /* *dp contains only one bit set. */
sign = -1; /* val == -2**(numwords*(wordsize*CHAR_BIT-nails)) */
else
sign = -2; /* val < -2**(numwords*(wordsize*CHAR_BIT-nails)) */
}
}
}
if ((flags & INTEGER_PACK_2COMP) && (sign < 0 && numwords != 0)) {
unsigned char *buf;
int word_num_partialbits;
size_t word_num_fullbytes;
ssize_t word_step;
size_t byte_start;
int byte_step;
size_t word_start, word_last;
unsigned char *wordp, *last_wordp;
unsigned int partialbits_mask;
int carry;
integer_pack_loop_setup(numwords, wordsize, nails, flags,
&word_num_fullbytes, &word_num_partialbits,
&word_start, &word_step, &word_last, &byte_start, &byte_step);
partialbits_mask = (1 << word_num_partialbits) - 1;
buf = words;
wordp = buf + word_start;
last_wordp = buf + word_last;
carry = 1;
while (1) {
size_t index_in_word = 0;
unsigned char *bytep = wordp + byte_start;
while (index_in_word < word_num_fullbytes) {
carry += (unsigned char)~*bytep;
*bytep = (unsigned char)carry;
carry >>= CHAR_BIT;
bytep += byte_step;
index_in_word++;
}
if (word_num_partialbits) {
carry += (*bytep & partialbits_mask) ^ partialbits_mask;
*bytep = carry & partialbits_mask;
carry >>= word_num_partialbits;
bytep += byte_step;
index_in_word++;
}
if (wordp == last_wordp)
break;
wordp += word_step;
}
}
return sign;
#undef FILL_DD
#undef TAKE_LOWBITS
}
static size_t
integer_unpack_num_bdigits_small(size_t numwords, size_t wordsize, size_t nails, int *nlp_bits_ret)
{
/* nlp_bits stands for number of leading padding bits */
size_t num_bits = (wordsize * CHAR_BIT - nails) * numwords;
size_t num_bdigits = (num_bits + BITSPERDIG - 1) / BITSPERDIG;
*nlp_bits_ret = (int)(num_bdigits * BITSPERDIG - num_bits);
return num_bdigits;
}
static size_t
integer_unpack_num_bdigits_generic(size_t numwords, size_t wordsize, size_t nails, int *nlp_bits_ret)
{
/* BITSPERDIG = SIZEOF_BDIGIT * CHAR_BIT */
/* num_bits = (wordsize * CHAR_BIT - nails) * numwords */
/* num_bdigits = (num_bits + BITSPERDIG - 1) / BITSPERDIG */
/* num_bits = CHAR_BIT * (wordsize * numwords) - nails * numwords = CHAR_BIT * num_bytes1 - nails * numwords */
size_t num_bytes1 = wordsize * numwords;
/* q1 * CHAR_BIT + r1 = numwords */
size_t q1 = numwords / CHAR_BIT;
size_t r1 = numwords % CHAR_BIT;
/* num_bits = CHAR_BIT * num_bytes1 - nails * (q1 * CHAR_BIT + r1) = CHAR_BIT * num_bytes2 - nails * r1 */
size_t num_bytes2 = num_bytes1 - nails * q1;
/* q2 * CHAR_BIT + r2 = nails */
size_t q2 = nails / CHAR_BIT;
size_t r2 = nails % CHAR_BIT;
/* num_bits = CHAR_BIT * num_bytes2 - (q2 * CHAR_BIT + r2) * r1 = CHAR_BIT * num_bytes3 - r1 * r2 */
size_t num_bytes3 = num_bytes2 - q2 * r1;
/* q3 * BITSPERDIG + r3 = num_bytes3 */
size_t q3 = num_bytes3 / BITSPERDIG;
size_t r3 = num_bytes3 % BITSPERDIG;
/* num_bits = CHAR_BIT * (q3 * BITSPERDIG + r3) - r1 * r2 = BITSPERDIG * num_digits1 + CHAR_BIT * r3 - r1 * r2 */
size_t num_digits1 = CHAR_BIT * q3;
/*
* if CHAR_BIT * r3 >= r1 * r2
* CHAR_BIT * r3 - r1 * r2 = CHAR_BIT * BITSPERDIG - (CHAR_BIT * BITSPERDIG - (CHAR_BIT * r3 - r1 * r2))
* q4 * BITSPERDIG + r4 = CHAR_BIT * BITSPERDIG - (CHAR_BIT * r3 - r1 * r2)
* num_bits = BITSPERDIG * num_digits1 + CHAR_BIT * BITSPERDIG - (q4 * BITSPERDIG + r4) = BITSPERDIG * num_digits2 - r4
* else
* q4 * BITSPERDIG + r4 = -(CHAR_BIT * r3 - r1 * r2)
* num_bits = BITSPERDIG * num_digits1 - (q4 * BITSPERDIG + r4) = BITSPERDIG * num_digits2 - r4
* end
*/
if (CHAR_BIT * r3 >= r1 * r2) {
size_t tmp1 = CHAR_BIT * BITSPERDIG - (CHAR_BIT * r3 - r1 * r2);
size_t q4 = tmp1 / BITSPERDIG;
int r4 = (int)(tmp1 % BITSPERDIG);
size_t num_digits2 = num_digits1 + CHAR_BIT - q4;
*nlp_bits_ret = r4;
return num_digits2;
}
else {
size_t tmp1 = r1 * r2 - CHAR_BIT * r3;
size_t q4 = tmp1 / BITSPERDIG;
int r4 = (int)(tmp1 % BITSPERDIG);
size_t num_digits2 = num_digits1 - q4;
*nlp_bits_ret = r4;
return num_digits2;
}
}
static size_t
integer_unpack_num_bdigits(size_t numwords, size_t wordsize, size_t nails, int *nlp_bits_ret)
{
size_t num_bdigits;
if (numwords <= (SIZE_MAX - (BITSPERDIG-1)) / CHAR_BIT / wordsize) {
num_bdigits = integer_unpack_num_bdigits_small(numwords, wordsize, nails, nlp_bits_ret);
#ifdef DEBUG_INTEGER_PACK
{
int nlp_bits1;
size_t num_bdigits1 = integer_unpack_num_bdigits_generic(numwords, wordsize, nails, &nlp_bits1);
assert(num_bdigits == num_bdigits1);
assert(*nlp_bits_ret == nlp_bits1);
}
#endif
}
else {
num_bdigits = integer_unpack_num_bdigits_generic(numwords, wordsize, nails, nlp_bits_ret);
}
return num_bdigits;
}
static inline void
integer_unpack_push_bits(int data, int numbits, BDIGIT_DBL *ddp, int *numbits_in_dd_p, BDIGIT **dpp)
{
(*ddp) |= ((BDIGIT_DBL)data) << (*numbits_in_dd_p);
*numbits_in_dd_p += numbits;
while (BITSPERDIG <= *numbits_in_dd_p) {
*(*dpp)++ = BIGLO(*ddp);
*ddp = BIGDN(*ddp);
*numbits_in_dd_p -= BITSPERDIG;
}
}
static int
integer_unpack_single_bdigit(BDIGIT u, size_t size, int flags, BDIGIT *dp)
{
int sign;
if (flags & INTEGER_PACK_2COMP) {
sign = (flags & INTEGER_PACK_NEGATIVE) ?
((size == SIZEOF_BDIGIT && u == 0) ? -2 : -1) :
((u >> (size * CHAR_BIT - 1)) ? -1 : 1);
if (sign < 0) {
u |= LSHIFTX(BDIGMAX, size * CHAR_BIT);
u = BIGLO(1 + ~u);
}
}
else
sign = (flags & INTEGER_PACK_NEGATIVE) ? -1 : 1;
*dp = u;
return sign;
}
static int
bary_unpack_internal(BDIGIT *bdigits, size_t num_bdigits, const void *words, size_t numwords, size_t wordsize, size_t nails, int flags, int nlp_bits)
{
int sign;
const unsigned char *buf = words;
BDIGIT *dp;
BDIGIT *de;
dp = bdigits;
de = dp + num_bdigits;
if (!(flags & INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION)) {
if (nails == 0 && numwords == 1) {
int need_swap = wordsize != 1 &&
(flags & INTEGER_PACK_BYTEORDER_MASK) != INTEGER_PACK_NATIVE_BYTE_ORDER &&
((flags & INTEGER_PACK_MSBYTE_FIRST) ? !HOST_BIGENDIAN_P : HOST_BIGENDIAN_P);
if (wordsize == 1) {
return integer_unpack_single_bdigit(*(uint8_t *)buf, sizeof(uint8_t), flags, dp);
}
#if defined(HAVE_UINT16_T) && 2 <= SIZEOF_BDIGIT
if (wordsize == 2 && (uintptr_t)words % ALIGNOF(uint16_t) == 0) {
uint16_t u = *(uint16_t *)buf;
return integer_unpack_single_bdigit(need_swap ? swap16(u) : u, sizeof(uint16_t), flags, dp);
}
#endif
#if defined(HAVE_UINT32_T) && 4 <= SIZEOF_BDIGIT
if (wordsize == 4 && (uintptr_t)words % ALIGNOF(uint32_t) == 0) {
uint32_t u = *(uint32_t *)buf;
return integer_unpack_single_bdigit(need_swap ? swap32(u) : u, sizeof(uint32_t), flags, dp);
}
#endif
#if defined(HAVE_UINT64_T) && 8 <= SIZEOF_BDIGIT
if (wordsize == 8 && (uintptr_t)words % ALIGNOF(uint64_t) == 0) {
uint64_t u = *(uint64_t *)buf;
return integer_unpack_single_bdigit(need_swap ? swap64(u) : u, sizeof(uint64_t), flags, dp);
}
#endif
}
#if !defined(WORDS_BIGENDIAN)
if (nails == 0 && SIZEOF_BDIGIT == sizeof(BDIGIT) &&
(flags & INTEGER_PACK_WORDORDER_MASK) == INTEGER_PACK_LSWORD_FIRST &&
(flags & INTEGER_PACK_BYTEORDER_MASK) != INTEGER_PACK_MSBYTE_FIRST) {
size_t src_size = numwords * wordsize;
size_t dst_size = num_bdigits * SIZEOF_BDIGIT;
MEMCPY(dp, words, char, src_size);
if (flags & INTEGER_PACK_2COMP) {
if (flags & INTEGER_PACK_NEGATIVE) {
int zero_p;
memset((char*)dp + src_size, 0xff, dst_size - src_size);
zero_p = bary_2comp(dp, num_bdigits);
sign = zero_p ? -2 : -1;
}
else if (buf[src_size-1] >> (CHAR_BIT-1)) {
memset((char*)dp + src_size, 0xff, dst_size - src_size);
bary_2comp(dp, num_bdigits);
sign = -1;
}
else {
MEMZERO((char*)dp + src_size, char, dst_size - src_size);
sign = 1;
}
}
else {
MEMZERO((char*)dp + src_size, char, dst_size - src_size);
sign = (flags & INTEGER_PACK_NEGATIVE) ? -1 : 1;
}
return sign;
}
#endif
if (nails == 0 && SIZEOF_BDIGIT == sizeof(BDIGIT) &&
wordsize % SIZEOF_BDIGIT == 0) {
size_t bdigits_per_word = wordsize / SIZEOF_BDIGIT;
int mswordfirst_p = (flags & INTEGER_PACK_MSWORD_FIRST) != 0;
int msbytefirst_p = (flags & INTEGER_PACK_NATIVE_BYTE_ORDER) ? HOST_BIGENDIAN_P :
(flags & INTEGER_PACK_MSBYTE_FIRST) != 0;
MEMCPY(dp, words, BDIGIT, numwords*bdigits_per_word);
if (mswordfirst_p) {
bary_swap(dp, num_bdigits);
}
if (mswordfirst_p ? !msbytefirst_p : msbytefirst_p) {
size_t i;
BDIGIT *p = dp;
for (i = 0; i < numwords; i++) {
bary_swap(p, bdigits_per_word);
p += bdigits_per_word;
}
}
if (msbytefirst_p != HOST_BIGENDIAN_P) {
BDIGIT *p;
for (p = dp; p < de; p++) {
BDIGIT d = *p;
*p = swap_bdigit(d);
}
}
if (flags & INTEGER_PACK_2COMP) {
if (flags & INTEGER_PACK_NEGATIVE) {
int zero_p = bary_2comp(dp, num_bdigits);
sign = zero_p ? -2 : -1;
}
else if (BDIGIT_MSB(de[-1])) {
bary_2comp(dp, num_bdigits);
sign = -1;
}
else {
sign = 1;
}
}
else {
sign = (flags & INTEGER_PACK_NEGATIVE) ? -1 : 1;
}
return sign;
}
}
if (num_bdigits != 0) {
int word_num_partialbits;
size_t word_num_fullbytes;
ssize_t word_step;
size_t byte_start;
int byte_step;
size_t word_start, word_last;
const unsigned char *wordp, *last_wordp;
BDIGIT_DBL dd;
int numbits_in_dd;
integer_pack_loop_setup(numwords, wordsize, nails, flags,
&word_num_fullbytes, &word_num_partialbits,
&word_start, &word_step, &word_last, &byte_start, &byte_step);
wordp = buf + word_start;
last_wordp = buf + word_last;
dd = 0;
numbits_in_dd = 0;
#define PUSH_BITS(data, numbits) \
integer_unpack_push_bits(data, numbits, &dd, &numbits_in_dd, &dp)
while (1) {
size_t index_in_word = 0;
const unsigned char *bytep = wordp + byte_start;
while (index_in_word < word_num_fullbytes) {
PUSH_BITS(*bytep, CHAR_BIT);
bytep += byte_step;
index_in_word++;
}
if (word_num_partialbits) {
PUSH_BITS(*bytep & ((1 << word_num_partialbits) - 1), word_num_partialbits);
bytep += byte_step;
index_in_word++;
}
if (wordp == last_wordp)
break;
wordp += word_step;
}
if (dd)
*dp++ = (BDIGIT)dd;
assert(dp <= de);
while (dp < de)
*dp++ = 0;
#undef PUSH_BITS
}
if (!(flags & INTEGER_PACK_2COMP)) {
sign = (flags & INTEGER_PACK_NEGATIVE) ? -1 : 1;
}
else {
if (nlp_bits) {
if ((flags & INTEGER_PACK_NEGATIVE) ||
(bdigits[num_bdigits-1] >> (BITSPERDIG - nlp_bits - 1))) {
bdigits[num_bdigits-1] |= BIGLO(BDIGMAX << (BITSPERDIG - nlp_bits));
sign = -1;
}
else {
sign = 1;
}
}
else {
if (flags & INTEGER_PACK_NEGATIVE) {
sign = bary_zero_p(bdigits, num_bdigits) ? -2 : -1;
}
else {
if (num_bdigits != 0 && BDIGIT_MSB(bdigits[num_bdigits-1]))
sign = -1;
else
sign = 1;
}
}
if (sign == -1 && num_bdigits != 0) {
bary_2comp(bdigits, num_bdigits);
}
}
return sign;
}
static void
bary_unpack(BDIGIT *bdigits, size_t num_bdigits, const void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
{
size_t num_bdigits0;
int nlp_bits;
int sign;
validate_integer_pack_format(numwords, wordsize, nails, flags,
INTEGER_PACK_MSWORD_FIRST|
INTEGER_PACK_LSWORD_FIRST|
INTEGER_PACK_MSBYTE_FIRST|
INTEGER_PACK_LSBYTE_FIRST|
INTEGER_PACK_NATIVE_BYTE_ORDER|
INTEGER_PACK_2COMP|
INTEGER_PACK_FORCE_BIGNUM|
INTEGER_PACK_NEGATIVE|
INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION);
num_bdigits0 = integer_unpack_num_bdigits(numwords, wordsize, nails, &nlp_bits);
assert(num_bdigits0 <= num_bdigits);
sign = bary_unpack_internal(bdigits, num_bdigits0, words, numwords, wordsize, nails, flags, nlp_bits);
if (num_bdigits0 < num_bdigits) {
BDIGITS_ZERO(bdigits + num_bdigits0, num_bdigits - num_bdigits0);
if (sign == -2) {
bdigits[num_bdigits0] = 1;
}
}
}
static int
bary_subb(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, int borrow)
{
BDIGIT_DBL_SIGNED num;
size_t i;
size_t sn;
assert(xn <= zn);
assert(yn <= zn);
sn = xn < yn ? xn : yn;
num = borrow ? -1 : 0;
for (i = 0; i < sn; i++) {
num += (BDIGIT_DBL_SIGNED)xds[i] - yds[i];
zds[i] = BIGLO(num);
num = BIGDN(num);
}
if (yn <= xn) {
for (; i < xn; i++) {
if (num == 0) goto num_is_zero;
num += xds[i];
zds[i] = BIGLO(num);
num = BIGDN(num);
}
}
else {
for (; i < yn; i++) {
num -= yds[i];
zds[i] = BIGLO(num);
num = BIGDN(num);
}
}
if (num == 0) goto num_is_zero;
for (; i < zn; i++) {
zds[i] = BDIGMAX;
}
return 1;
num_is_zero:
if (xds == zds && xn == zn)
return 0;
for (; i < xn; i++) {
zds[i] = xds[i];
}
for (; i < zn; i++) {
zds[i] = 0;
}
return 0;
}
static int
bary_sub(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
return bary_subb(zds, zn, xds, xn, yds, yn, 0);
}
static int
bary_sub_one(BDIGIT *zds, size_t zn)
{
return bary_subb(zds, zn, zds, zn, NULL, 0, 1);
}
static int
bary_addc(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, int carry)
{
BDIGIT_DBL num;
size_t i;
assert(xn <= zn);
assert(yn <= zn);
if (xn > yn) {
const BDIGIT *tds;
tds = xds; xds = yds; yds = tds;
i = xn; xn = yn; yn = i;
}
num = carry ? 1 : 0;
for (i = 0; i < xn; i++) {
num += (BDIGIT_DBL)xds[i] + yds[i];
zds[i] = BIGLO(num);
num = BIGDN(num);
}
for (; i < yn; i++) {
if (num == 0) goto num_is_zero;
num += yds[i];
zds[i] = BIGLO(num);
num = BIGDN(num);
}
for (; i < zn; i++) {
if (num == 0) goto num_is_zero;
zds[i] = BIGLO(num);
num = BIGDN(num);
}
return num != 0;
num_is_zero:
if (yds == zds && yn == zn)
return 0;
for (; i < yn; i++) {
zds[i] = yds[i];
}
for (; i < zn; i++) {
zds[i] = 0;
}
return 0;
}
static int
bary_add(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
return bary_addc(zds, zn, xds, xn, yds, yn, 0);
}
static int
bary_add_one(BDIGIT *ds, size_t n)
{
size_t i;
for (i = 0; i < n; i++) {
ds[i] = BIGLO(ds[i]+1);
if (ds[i] != 0)
return 0;
}
return 1;
}
static void
bary_mul_single(BDIGIT *zds, size_t zn, BDIGIT x, BDIGIT y)
{
BDIGIT_DBL n;
assert(2 <= zn);
n = (BDIGIT_DBL)x * y;
bdigitdbl2bary(zds, 2, n);
BDIGITS_ZERO(zds + 2, zn - 2);
}
static int
bary_muladd_1xN(BDIGIT *zds, size_t zn, BDIGIT x, const BDIGIT *yds, size_t yn)
{
BDIGIT_DBL n;
BDIGIT_DBL dd;
size_t j;
assert(zn > yn);
if (x == 0)
return 0;
dd = x;
n = 0;
for (j = 0; j < yn; j++) {
BDIGIT_DBL ee = n + dd * yds[j];
if (ee) {
n = zds[j] + ee;
zds[j] = BIGLO(n);
n = BIGDN(n);
}
else {
n = 0;
}
}
for (; j < zn; j++) {
if (n == 0)
break;
n += zds[j];
zds[j] = BIGLO(n);
n = BIGDN(n);
}
return n != 0;
}
static BDIGIT_DBL_SIGNED
bigdivrem_mulsub(BDIGIT *zds, size_t zn, BDIGIT x, const BDIGIT *yds, size_t yn)
{
size_t i;
BDIGIT_DBL t2;
BDIGIT_DBL_SIGNED num;
assert(zn == yn + 1);
num = 0;
t2 = 0;
i = 0;
do {
BDIGIT_DBL ee;
t2 += (BDIGIT_DBL)yds[i] * x;
ee = num - BIGLO(t2);
num = (BDIGIT_DBL)zds[i] + ee;
if (ee) zds[i] = BIGLO(num);
num = BIGDN(num);
t2 = BIGDN(t2);
} while (++i < yn);
num += zds[i] - t2; /* borrow from high digit; don't update */
return num;
}
static int
bary_mulsub_1xN(BDIGIT *zds, size_t zn, BDIGIT x, const BDIGIT *yds, size_t yn)
{
BDIGIT_DBL_SIGNED num;
assert(zn == yn + 1);
num = bigdivrem_mulsub(zds, zn, x, yds, yn);
zds[yn] = BIGLO(num);
if (BIGDN(num))
return 1;
return 0;
}
static void
bary_mul_normal(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
size_t i;
assert(xn + yn <= zn);
BDIGITS_ZERO(zds, zn);
for (i = 0; i < xn; i++) {
bary_muladd_1xN(zds+i, zn-i, xds[i], yds, yn);
}
}
VALUE
rb_big_mul_normal(VALUE x, VALUE y)
{
size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
bary_mul_normal(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return z;
}
/* efficient squaring (2 times faster than normal multiplication)
* ref: Handbook of Applied Cryptography, Algorithm 14.16
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
*/
static void
bary_sq_fast(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn)
{
size_t i, j;
BDIGIT_DBL c, v, w;
BDIGIT vl;
int vh;
assert(xn * 2 <= zn);
BDIGITS_ZERO(zds, zn);
if (xn == 0)
return;
for (i = 0; i < xn-1; i++) {
v = (BDIGIT_DBL)xds[i];
if (!v)
continue;
c = (BDIGIT_DBL)zds[i + i] + v * v;
zds[i + i] = BIGLO(c);
c = BIGDN(c);
v *= 2;
vl = BIGLO(v);
vh = (int)BIGDN(v);
for (j = i + 1; j < xn; j++) {
w = (BDIGIT_DBL)xds[j];
c += (BDIGIT_DBL)zds[i + j] + vl * w;
zds[i + j] = BIGLO(c);
c = BIGDN(c);
if (vh)
c += w;
}
if (c) {
c += (BDIGIT_DBL)zds[i + xn];
zds[i + xn] = BIGLO(c);
c = BIGDN(c);
if (c)
zds[i + xn + 1] += (BDIGIT)c;
}
}
/* i == xn-1 */
v = (BDIGIT_DBL)xds[i];
if (!v)
return;
c = (BDIGIT_DBL)zds[i + i] + v * v;
zds[i + i] = BIGLO(c);
c = BIGDN(c);
if (c) {
zds[i + xn] += BIGLO(c);
}
}
VALUE
rb_big_sq_fast(VALUE x)
{
size_t xn = BIGNUM_LEN(x), zn = 2 * xn;
VALUE z = bignew(zn, 1);
bary_sq_fast(BDIGITS(z), zn, BDIGITS(x), xn);
RB_GC_GUARD(x);
return z;
}
/* balancing multiplication by slicing larger argument */
static void
bary_mul_balance_with_mulfunc(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn, mulfunc_t *mulfunc)
{
VALUE work = 0;
size_t yn0 = yn;
size_t r, n;
assert(xn + yn <= zn);
assert(xn <= yn);
assert(!KARATSUBA_BALANCED(xn, yn) || !TOOM3_BALANCED(xn, yn));
BDIGITS_ZERO(zds, xn);
n = 0;
while (yn > 0) {
BDIGIT *tds;
size_t tn;
r = xn > yn ? yn : xn;
tn = xn + r;
if (2 * (xn + r) <= zn - n) {
tds = zds + n + xn + r;
mulfunc(tds, tn, xds, xn, yds + n, r, wds, wn);
BDIGITS_ZERO(zds + n + xn, r);
bary_add(zds + n, tn,
zds + n, tn,
tds, tn);
}
else {
if (wn < xn) {
wn = xn;
wds = ALLOCV_N(BDIGIT, work, wn);
}
tds = zds + n;
MEMCPY(wds, zds + n, BDIGIT, xn);
mulfunc(tds, tn, xds, xn, yds + n, r, wds+xn, wn-xn);
bary_add(zds + n, tn,
zds + n, tn,
wds, xn);
}
yn -= r;
n += r;
}
BDIGITS_ZERO(zds+xn+yn0, zn - (xn+yn0));
if (work)
ALLOCV_END(work);
}
VALUE
rb_big_mul_balance(VALUE x, VALUE y)
{
size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
bary_mul_balance_with_mulfunc(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn, NULL, 0, bary_mul_toom3_start);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return z;
}
/* multiplication by karatsuba method */
static void
bary_mul_karatsuba(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
{
VALUE work = 0;
size_t n;
int sub_p, borrow, carry1, carry2, carry3;
int odd_y = 0;
int odd_xy = 0;
int sq;
const BDIGIT *xds0, *xds1, *yds0, *yds1;
BDIGIT *zds0, *zds1, *zds2, *zds3;
assert(xn + yn <= zn);
assert(xn <= yn);
assert(yn < 2 * xn);
sq = xds == yds && xn == yn;
if (yn & 1) {
odd_y = 1;
yn--;
if (yn < xn) {
odd_xy = 1;
xn--;
}
}
n = yn / 2;
assert(n < xn);
if (wn < n) {
/* This function itself needs only n BDIGITs for work area.
* However this function calls bary_mul_karatsuba and
* bary_mul_balance recursively.
* 2n BDIGITs are enough to avoid allocations in
* the recursively called functions.
*/
wn = 2*n;
wds = ALLOCV_N(BDIGIT, work, wn);
}
/* Karatsuba algorithm:
*
* x = x0 + r*x1
* y = y0 + r*y1
* z = x*y
* = (x0 + r*x1) * (y0 + r*y1)
* = x0*y0 + r*(x1*y0 + x0*y1) + r*r*x1*y1
* = x0*y0 + r*(x0*y0 + x1*y1 - (x1-x0)*(y1-y0)) + r*r*x1*y1
* = x0*y0 + r*(x0*y0 + x1*y1 - (x0-x1)*(y0-y1)) + r*r*x1*y1
*/
xds0 = xds;
xds1 = xds + n;
yds0 = yds;
yds1 = yds + n;
zds0 = zds;
zds1 = zds + n;
zds2 = zds + 2*n;
zds3 = zds + 3*n;
sub_p = 1;
/* zds0:? zds1:? zds2:? zds3:? wds:? */
if (bary_sub(zds0, n, xds, n, xds+n, xn-n)) {
bary_2comp(zds0, n);
sub_p = !sub_p;
}
/* zds0:|x1-x0| zds1:? zds2:? zds3:? wds:? */
if (sq) {
sub_p = 1;
bary_mul_karatsuba_start(zds1, 2*n, zds0, n, zds0, n, wds, wn);
}
else {
if (bary_sub(wds, n, yds, n, yds+n, n)) {
bary_2comp(wds, n);
sub_p = !sub_p;
}
/* zds0:|x1-x0| zds1:? zds2:? zds3:? wds:|y1-y0| */
bary_mul_karatsuba_start(zds1, 2*n, zds0, n, wds, n, wds+n, wn-n);
}
/* zds0:|x1-x0| zds1,zds2:|x1-x0|*|y1-y0| zds3:? wds:|y1-y0| */
borrow = 0;
if (sub_p) {
borrow = !bary_2comp(zds1, 2*n);
}
/* zds0:|x1-x0| zds1,zds2:-?|x1-x0|*|y1-y0| zds3:? wds:|y1-y0| */
MEMCPY(wds, zds1, BDIGIT, n);
/* zds0:|x1-x0| zds1,zds2:-?|x1-x0|*|y1-y0| zds3:? wds:lo(-?|x1-x0|*|y1-y0|) */
bary_mul_karatsuba_start(zds0, 2*n, xds0, n, yds0, n, wds+n, wn-n);
/* zds0,zds1:x0*y0 zds2:hi(-?|x1-x0|*|y1-y0|) zds3:? wds:lo(-?|x1-x0|*|y1-y0|) */
carry1 = bary_add(wds, n, wds, n, zds0, n);
carry1 = bary_addc(zds2, n, zds2, n, zds1, n, carry1);
/* zds0,zds1:x0*y0 zds2:hi(x0*y0-?|x1-x0|*|y1-y0|) zds3:? wds:lo(x0*y0-?|x1-x0|*|y1-y0|) */
carry2 = bary_add(zds1, n, zds1, n, wds, n);
/* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|) zds2:hi(x0*y0-?|x1-x0|*|y1-y0|) zds3:? wds:lo(x0*y0-?|x1-x0|*|y1-y0|) */
MEMCPY(wds, zds2, BDIGIT, n);
/* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|) zds2:_ zds3:? wds:hi(x0*y0-?|x1-x0|*|y1-y0|) */
bary_mul_karatsuba_start(zds2, zn-2*n, xds1, xn-n, yds1, n, wds+n, wn-n);
/* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|) zds2,zds3:x1*y1 wds:hi(x0*y0-?|x1-x0|*|y1-y0|) */
carry3 = bary_add(zds1, n, zds1, n, zds2, n);
/* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|)+lo(x1*y1) zds2,zds3:x1*y1 wds:hi(x0*y0-?|x1-x0|*|y1-y0|) */
carry3 = bary_addc(zds2, n, zds2, n, zds3, (4*n < zn ? n : zn-3*n), carry3);
/* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|)+lo(x1*y1) zds2,zds3:x1*y1+hi(x1*y1) wds:hi(x0*y0-?|x1-x0|*|y1-y0|) */
bary_add(zds2, zn-2*n, zds2, zn-2*n, wds, n);
/* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|)+lo(x1*y1) zds2,zds3:x1*y1+hi(x1*y1)+hi(x0*y0-?|x1-x0|*|y1-y0|) wds:_ */
if (carry2)
bary_add_one(zds2, zn-2*n);
if (carry1 + carry3 - borrow < 0)
bary_sub_one(zds3, zn-3*n);
else if (carry1 + carry3 - borrow > 0) {
BDIGIT c = carry1 + carry3 - borrow;
bary_add(zds3, zn-3*n, zds3, zn-3*n, &c, 1);
}
/*
if (SIZEOF_BDIGIT * zn <= 16) {
uint128_t z, x, y;
ssize_t i;
for (x = 0, i = xn-1; 0 <= i; i--) { x <<= SIZEOF_BDIGIT*CHAR_BIT; x |= xds[i]; }
for (y = 0, i = yn-1; 0 <= i; i--) { y <<= SIZEOF_BDIGIT*CHAR_BIT; y |= yds[i]; }
for (z = 0, i = zn-1; 0 <= i; i--) { z <<= SIZEOF_BDIGIT*CHAR_BIT; z |= zds[i]; }
assert(z == x * y);
}
*/
if (odd_xy) {
bary_muladd_1xN(zds+yn, zn-yn, yds[yn], xds, xn);
bary_muladd_1xN(zds+xn, zn-xn, xds[xn], yds, yn+1);
}
else if (odd_y) {
bary_muladd_1xN(zds+yn, zn-yn, yds[yn], xds, xn);
}
if (work)
ALLOCV_END(work);
}
VALUE
rb_big_mul_karatsuba(VALUE x, VALUE y)
{
size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
if (!((xn <= yn && yn < 2) || KARATSUBA_BALANCED(xn, yn)))
rb_raise(rb_eArgError, "unexpected bignum length for karatsuba");
bary_mul_karatsuba(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn, NULL, 0);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return z;
}
static void
bary_mul_toom3(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
{
size_t n;
size_t wnc;
VALUE work = 0;
/* "p" stands for "positive". Actually it means "non-negative", though. */
size_t x0n; const BDIGIT *x0ds;
size_t x1n; const BDIGIT *x1ds;
size_t x2n; const BDIGIT *x2ds;
size_t y0n; const BDIGIT *y0ds;
size_t y1n; const BDIGIT *y1ds;
size_t y2n; const BDIGIT *y2ds;
size_t u1n; BDIGIT *u1ds; int u1p;
size_t u2n; BDIGIT *u2ds; int u2p;
size_t u3n; BDIGIT *u3ds; int u3p;
size_t v1n; BDIGIT *v1ds; int v1p;
size_t v2n; BDIGIT *v2ds; int v2p;
size_t v3n; BDIGIT *v3ds; int v3p;
size_t t0n; BDIGIT *t0ds; int t0p;
size_t t1n; BDIGIT *t1ds; int t1p;
size_t t2n; BDIGIT *t2ds; int t2p;
size_t t3n; BDIGIT *t3ds; int t3p;
size_t t4n; BDIGIT *t4ds; int t4p;
size_t z0n; BDIGIT *z0ds;
size_t z1n; BDIGIT *z1ds; int z1p;
size_t z2n; BDIGIT *z2ds; int z2p;
size_t z3n; BDIGIT *z3ds; int z3p;
size_t z4n; BDIGIT *z4ds;
size_t zzn; BDIGIT *zzds;
int sq = xds == yds && xn == yn;
assert(xn <= yn); /* assume y >= x */
assert(xn + yn <= zn);
n = (yn + 2) / 3;
assert(2*n < xn);
wnc = 0;
wnc += (u1n = n+1); /* BITSPERDIG*n+2 bits */
wnc += (u2n = n+1); /* BITSPERDIG*n+1 bits */
wnc += (u3n = n+1); /* BITSPERDIG*n+3 bits */
wnc += (v1n = n+1); /* BITSPERDIG*n+2 bits */
wnc += (v2n = n+1); /* BITSPERDIG*n+1 bits */
wnc += (v3n = n+1); /* BITSPERDIG*n+3 bits */
wnc += (t0n = 2*n); /* BITSPERDIG*2*n bits */
wnc += (t1n = 2*n+2); /* BITSPERDIG*2*n+4 bits but bary_mul needs u1n+v1n */
wnc += (t2n = 2*n+2); /* BITSPERDIG*2*n+2 bits but bary_mul needs u2n+v2n */
wnc += (t3n = 2*n+2); /* BITSPERDIG*2*n+6 bits but bary_mul needs u3n+v3n */
wnc += (t4n = 2*n); /* BITSPERDIG*2*n bits */
wnc += (z1n = 2*n+1); /* BITSPERDIG*2*n+5 bits */
wnc += (z2n = 2*n+1); /* BITSPERDIG*2*n+6 bits */
wnc += (z3n = 2*n+1); /* BITSPERDIG*2*n+8 bits */
if (wn < wnc) {
wn = wnc * 3 / 2; /* Allocate working memory for whole recursion at once. */
wds = ALLOCV_N(BDIGIT, work, wn);
}
u1ds = wds; wds += u1n;
u2ds = wds; wds += u2n;
u3ds = wds; wds += u3n;
v1ds = wds; wds += v1n;
v2ds = wds; wds += v2n;
v3ds = wds; wds += v3n;
t0ds = wds; wds += t0n;
t1ds = wds; wds += t1n;
t2ds = wds; wds += t2n;
t3ds = wds; wds += t3n;
t4ds = wds; wds += t4n;
z1ds = wds; wds += z1n;
z2ds = wds; wds += z2n;
z3ds = wds; wds += z3n;
wn -= wnc;
zzds = u1ds;
zzn = 6*n+1;
x0n = n;
x1n = n;
x2n = xn - 2*n;
x0ds = xds;
x1ds = xds + n;
x2ds = xds + 2*n;
if (sq) {
y0n = x0n;
y1n = x1n;
y2n = x2n;
y0ds = x0ds;
y1ds = x1ds;
y2ds = x2ds;
}
else {
y0n = n;
y1n = n;
y2n = yn - 2*n;
y0ds = yds;
y1ds = yds + n;
y2ds = yds + 2*n;
}
/*
* ref. http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
*
* x(b) = x0 * b^0 + x1 * b^1 + x2 * b^2
* y(b) = y0 * b^0 + y1 * b^1 + y2 * b^2
*
* z(b) = x(b) * y(b)
* z(b) = z0 * b^0 + z1 * b^1 + z2 * b^2 + z3 * b^3 + z4 * b^4
* where:
* z0 = x0 * y0
* z1 = x0 * y1 + x1 * y0
* z2 = x0 * y2 + x1 * y1 + x2 * y0
* z3 = x1 * y2 + x2 * y1
* z4 = x2 * y2
*
* Toom3 method (a.k.a. Toom-Cook method):
* (Step1) calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4),
* where:
* b0 = 0, b1 = 1, b2 = -1, b3 = -2, b4 = inf,
* z(0) = x(0) * y(0) = x0 * y0
* z(1) = x(1) * y(1) = (x0 + x1 + x2) * (y0 + y1 + y2)
* z(-1) = x(-1) * y(-1) = (x0 - x1 + x2) * (y0 - y1 + y2)
* z(-2) = x(-2) * y(-2) = (x0 - 2 * (x1 - 2 * x2)) * (y0 - 2 * (y1 - 2 * y2))
* z(inf) = x(inf) * y(inf) = x2 * y2
*
* (Step2) interpolating z0, z1, z2, z3 and z4.
*
* (Step3) Substituting base value into b of the polynomial z(b),
*/
/*
* [Step1] calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4)
*/
/* u1 <- x0 + x2 */
bary_add(u1ds, u1n, x0ds, x0n, x2ds, x2n);
u1p = 1;
/* x(-1) : u2 <- u1 - x1 = x0 - x1 + x2 */
if (bary_sub(u2ds, u2n, u1ds, u1n, x1ds, x1n)) {
bary_2comp(u2ds, u2n);
u2p = 0;
}
else {
u2p = 1;
}
/* x(1) : u1 <- u1 + x1 = x0 + x1 + x2 */
bary_add(u1ds, u1n, u1ds, u1n, x1ds, x1n);
/* x(-2) : u3 <- 2 * (u2 + x2) - x0 = x0 - 2 * (x1 - 2 * x2) */
u3p = 1;
if (u2p) {
bary_add(u3ds, u3n, u2ds, u2n, x2ds, x2n);
}
else if (bary_sub(u3ds, u3n, x2ds, x2n, u2ds, u2n)) {
bary_2comp(u3ds, u3n);
u3p = 0;
}
bary_small_lshift(u3ds, u3ds, u3n, 1);
if (!u3p) {
bary_add(u3ds, u3n, u3ds, u3n, x0ds, x0n);
}
else if (bary_sub(u3ds, u3n, u3ds, u3n, x0ds, x0n)) {
bary_2comp(u3ds, u3n);
u3p = 0;
}
if (sq) {
v1n = u1n; v1ds = u1ds; v1p = u1p;
v2n = u2n; v2ds = u2ds; v2p = u2p;
v3n = u3n; v3ds = u3ds; v3p = u3p;
}
else {
/* v1 <- y0 + y2 */
bary_add(v1ds, v1n, y0ds, y0n, y2ds, y2n);
v1p = 1;
/* y(-1) : v2 <- v1 - y1 = y0 - y1 + y2 */
v2p = 1;
if (bary_sub(v2ds, v2n, v1ds, v1n, y1ds, y1n)) {
bary_2comp(v2ds, v2n);
v2p = 0;
}
/* y(1) : v1 <- v1 + y1 = y0 + y1 + y2 */
bary_add(v1ds, v1n, v1ds, v1n, y1ds, y1n);
/* y(-2) : v3 <- 2 * (v2 + y2) - y0 = y0 - 2 * (y1 - 2 * y2) */
v3p = 1;
if (v2p) {
bary_add(v3ds, v3n, v2ds, v2n, y2ds, y2n);
}
else if (bary_sub(v3ds, v3n, y2ds, y2n, v2ds, v2n)) {
bary_2comp(v3ds, v3n);
v3p = 0;
}
bary_small_lshift(v3ds, v3ds, v3n, 1);
if (!v3p) {
bary_add(v3ds, v3n, v3ds, v3n, y0ds, y0n);
}
else if (bary_sub(v3ds, v3n, v3ds, v3n, y0ds, y0n)) {
bary_2comp(v3ds, v3n);
v3p = 0;
}
}
/* z(0) : t0 <- x0 * y0 */
bary_mul_toom3_start(t0ds, t0n, x0ds, x0n, y0ds, y0n, wds, wn);
t0p = 1;
/* z(1) : t1 <- u1 * v1 */
bary_mul_toom3_start(t1ds, t1n, u1ds, u1n, v1ds, v1n, wds, wn);
t1p = u1p == v1p;
assert(t1ds[t1n-1] == 0);
t1n--;
/* z(-1) : t2 <- u2 * v2 */
bary_mul_toom3_start(t2ds, t2n, u2ds, u2n, v2ds, v2n, wds, wn);
t2p = u2p == v2p;
assert(t2ds[t2n-1] == 0);
t2n--;
/* z(-2) : t3 <- u3 * v3 */
bary_mul_toom3_start(t3ds, t3n, u3ds, u3n, v3ds, v3n, wds, wn);
t3p = u3p == v3p;
assert(t3ds[t3n-1] == 0);
t3n--;
/* z(inf) : t4 <- x2 * y2 */
bary_mul_toom3_start(t4ds, t4n, x2ds, x2n, y2ds, y2n, wds, wn);
t4p = 1;
/*
* [Step2] interpolating z0, z1, z2, z3 and z4.
*/
/* z0 <- z(0) == t0 */
z0n = t0n; z0ds = t0ds;
/* z4 <- z(inf) == t4 */
z4n = t4n; z4ds = t4ds;
/* z3 <- (z(-2) - z(1)) / 3 == (t3 - t1) / 3 */
if (t3p == t1p) {
z3p = t3p;
if (bary_sub(z3ds, z3n, t3ds, t3n, t1ds, t1n)) {
bary_2comp(z3ds, z3n);
z3p = !z3p;
}
}
else {
z3p = t3p;
bary_add(z3ds, z3n, t3ds, t3n, t1ds, t1n);
}
bigdivrem_single(z3ds, z3ds, z3n, 3);
/* z1 <- (z(1) - z(-1)) / 2 == (t1 - t2) / 2 */
if (t1p == t2p) {
z1p = t1p;
if (bary_sub(z1ds, z1n, t1ds, t1n, t2ds, t2n)) {
bary_2comp(z1ds, z1n);
z1p = !z1p;
}
}
else {
z1p = t1p;
bary_add(z1ds, z1n, t1ds, t1n, t2ds, t2n);
}
bary_small_rshift(z1ds, z1ds, z1n, 1, 0);
/* z2 <- z(-1) - z(0) == t2 - t0 */
if (t2p == t0p) {
z2p = t2p;
if (bary_sub(z2ds, z2n, t2ds, t2n, t0ds, t0n)) {
bary_2comp(z2ds, z2n);
z2p = !z2p;
}
}
else {
z2p = t2p;
bary_add(z2ds, z2n, t2ds, t2n, t0ds, t0n);
}
/* z3 <- (z2 - z3) / 2 + 2 * z(inf) == (z2 - z3) / 2 + 2 * t4 */
if (z2p == z3p) {
z3p = z2p;
if (bary_sub(z3ds, z3n, z2ds, z2n, z3ds, z3n)) {
bary_2comp(z3ds, z3n);
z3p = !z3p;
}
}
else {
z3p = z2p;
bary_add(z3ds, z3n, z2ds, z2n, z3ds, z3n);
}
bary_small_rshift(z3ds, z3ds, z3n, 1, 0);
if (z3p == t4p) {
bary_muladd_1xN(z3ds, z3n, 2, t4ds, t4n);
}
else {
if (bary_mulsub_1xN(z3ds, z3n, 2, t4ds, t4n)) {
bary_2comp(z3ds, z3n);
z3p = !z3p;
}
}
/* z2 <- z2 + z1 - z(inf) == z2 + z1 - t4 */
if (z2p == z1p) {
bary_add(z2ds, z2n, z2ds, z2n, z1ds, z1n);
}
else {
if (bary_sub(z2ds, z2n, z2ds, z2n, z1ds, z1n)) {
bary_2comp(z2ds, z2n);
z2p = !z2p;
}
}
if (z2p == t4p) {
if (bary_sub(z2ds, z2n, z2ds, z2n, t4ds, t4n)) {
bary_2comp(z2ds, z2n);
z2p = !z2p;
}
}
else {
bary_add(z2ds, z2n, z2ds, z2n, t4ds, t4n);
}
/* z1 <- z1 - z3 */
if (z1p == z3p) {
if (bary_sub(z1ds, z1n, z1ds, z1n, z3ds, z3n)) {
bary_2comp(z1ds, z1n);
z1p = !z1p;
}
}
else {
bary_add(z1ds, z1n, z1ds, z1n, z3ds, z3n);
}
/*
* [Step3] Substituting base value into b of the polynomial z(b),
*/
MEMCPY(zzds, z0ds, BDIGIT, z0n);
BDIGITS_ZERO(zzds + z0n, 4*n - z0n);
MEMCPY(zzds + 4*n, z4ds, BDIGIT, z4n);
BDIGITS_ZERO(zzds + 4*n + z4n, zzn - (4*n + z4n));
if (z1p)
bary_add(zzds + n, zzn - n, zzds + n, zzn - n, z1ds, z1n);
else
bary_sub(zzds + n, zzn - n, zzds + n, zzn - n, z1ds, z1n);
if (z2p)
bary_add(zzds + 2*n, zzn - 2*n, zzds + 2*n, zzn - 2*n, z2ds, z2n);
else
bary_sub(zzds + 2*n, zzn - 2*n, zzds + 2*n, zzn - 2*n, z2ds, z2n);
if (z3p)
bary_add(zzds + 3*n, zzn - 3*n, zzds + 3*n, zzn - 3*n, z3ds, z3n);
else
bary_sub(zzds + 3*n, zzn - 3*n, zzds + 3*n, zzn - 3*n, z3ds, z3n);
BARY_TRUNC(zzds, zzn);
MEMCPY(zds, zzds, BDIGIT, zzn);
BDIGITS_ZERO(zds + zzn, zn - zzn);
if (work)
ALLOCV_END(work);
}
VALUE
rb_big_mul_toom3(VALUE x, VALUE y)
{
size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
if (xn > yn || yn < 3 || !TOOM3_BALANCED(xn,yn))
rb_raise(rb_eArgError, "unexpected bignum length for toom3");
bary_mul_toom3(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn, NULL, 0);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return z;
}
#ifdef USE_GMP
static void
bary_mul_gmp(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
mpz_t x, y, z;
size_t count;
assert(xn + yn <= zn);
mpz_init(x);
mpz_init(y);
mpz_init(z);
mpz_import(x, xn, -1, sizeof(BDIGIT), 0, nails, xds);
if (xds == yds && xn == yn) {
mpz_mul(z, x, x);
}
else {
mpz_import(y, yn, -1, sizeof(BDIGIT), 0, nails, yds);
mpz_mul(z, x, y);
}
mpz_export(zds, &count, -1, sizeof(BDIGIT), 0, nails, z);
BDIGITS_ZERO(zds+count, zn-count);
mpz_clear(x);
mpz_clear(y);
mpz_clear(z);
}
VALUE
rb_big_mul_gmp(VALUE x, VALUE y)
{
size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
bary_mul_gmp(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return z;
}
#endif
static void
bary_short_mul(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
assert(xn + yn <= zn);
if (xn == 1 && yn == 1) {
bary_mul_single(zds, zn, xds[0], yds[0]);
}
else {
bary_mul_normal(zds, zn, xds, xn, yds, yn);
rb_thread_check_ints();
}
}
/* determine whether a bignum is sparse or not by random sampling */
static inline int
bary_sparse_p(const BDIGIT *ds, size_t n)
{
long c = 0;
if ( ds[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
if (c <= 1 && ds[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
if (c <= 1 && ds[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
return (c <= 1) ? 1 : 0;
}
static int
bary_mul_precheck(BDIGIT **zdsp, size_t *znp, const BDIGIT **xdsp, size_t *xnp, const BDIGIT **ydsp, size_t *ynp)
{
size_t nlsz; /* number of least significant zero BDIGITs */
BDIGIT *zds = *zdsp;
size_t zn = *znp;
const BDIGIT *xds = *xdsp;
size_t xn = *xnp;
const BDIGIT *yds = *ydsp;
size_t yn = *ynp;
assert(xn + yn <= zn);
nlsz = 0;
while (0 < xn) {
if (xds[xn-1] == 0) {
xn--;
}
else {
do {
if (xds[0] != 0)
break;
xds++;
xn--;
nlsz++;
} while (0 < xn);
break;
}
}
while (0 < yn) {
if (yds[yn-1] == 0) {
yn--;
}
else {
do {
if (yds[0] != 0)
break;
yds++;
yn--;
nlsz++;
} while (0 < yn);
break;
}
}
if (nlsz) {
BDIGITS_ZERO(zds, nlsz);
zds += nlsz;
zn -= nlsz;
}
/* make sure that y is longer than x */
if (xn > yn) {
const BDIGIT *tds;
size_t tn;
tds = xds; xds = yds; yds = tds;
tn = xn; xn = yn; yn = tn;
}
assert(xn <= yn);
if (xn <= 1) {
if (xn == 0) {
BDIGITS_ZERO(zds, zn);
return 1;
}
if (xds[0] == 1) {
MEMCPY(zds, yds, BDIGIT, yn);
BDIGITS_ZERO(zds+yn, zn-yn);
return 1;
}
if (POW2_P(xds[0])) {
zds[yn] = bary_small_lshift(zds, yds, yn, bit_length(xds[0])-1);
BDIGITS_ZERO(zds+yn+1, zn-yn-1);
return 1;
}
if (yn == 1 && yds[0] == 1) {
zds[0] = xds[0];
BDIGITS_ZERO(zds+1, zn-1);
return 1;
}
bary_mul_normal(zds, zn, xds, xn, yds, yn);
return 1;
}
*zdsp = zds;
*znp = zn;
*xdsp = xds;
*xnp = xn;
*ydsp = yds;
*ynp = yn;
return 0;
}
static void
bary_mul_karatsuba_branch(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
{
/* normal multiplication when x is small */
if (xn < KARATSUBA_MUL_DIGITS) {
normal:
if (xds == yds && xn == yn)
bary_sq_fast(zds, zn, xds, xn);
else
bary_short_mul(zds, zn, xds, xn, yds, yn);
return;
}
/* normal multiplication when x or y is a sparse bignum */
if (bary_sparse_p(xds, xn)) goto normal;
if (bary_sparse_p(yds, yn)) {
bary_short_mul(zds, zn, yds, yn, xds, xn);
return;
}
/* balance multiplication by slicing y when x is much smaller than y */
if (!KARATSUBA_BALANCED(xn, yn)) {
bary_mul_balance_with_mulfunc(zds, zn, xds, xn, yds, yn, wds, wn, bary_mul_karatsuba_start);
return;
}
/* multiplication by karatsuba method */
bary_mul_karatsuba(zds, zn, xds, xn, yds, yn, wds, wn);
}
static void
bary_mul_karatsuba_start(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
{
if (bary_mul_precheck(&zds, &zn, &xds, &xn, &yds, &yn))
return;
bary_mul_karatsuba_branch(zds, zn, xds, xn, yds, yn, wds, wn);
}
static void
bary_mul_toom3_branch(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
{
if (xn < TOOM3_MUL_DIGITS) {
bary_mul_karatsuba_branch(zds, zn, xds, xn, yds, yn, wds, wn);
return;
}
if (!TOOM3_BALANCED(xn, yn)) {
bary_mul_balance_with_mulfunc(zds, zn, xds, xn, yds, yn, wds, wn, bary_mul_toom3_start);
return;
}
bary_mul_toom3(zds, zn, xds, xn, yds, yn, wds, wn);
}
static void
bary_mul_toom3_start(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
{
if (bary_mul_precheck(&zds, &zn, &xds, &xn, &yds, &yn))
return;
bary_mul_toom3_branch(zds, zn, xds, xn, yds, yn, wds, wn);
}
static void
bary_mul(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
#ifdef USE_GMP
const size_t naive_threshold = GMP_MUL_DIGITS;
#else
const size_t naive_threshold = KARATSUBA_MUL_DIGITS;
#endif
if (xn <= yn) {
if (xn < naive_threshold) {
if (xds == yds && xn == yn)
bary_sq_fast(zds, zn, xds, xn);
else
bary_short_mul(zds, zn, xds, xn, yds, yn);
return;
}
}
else {
if (yn < naive_threshold) {
bary_short_mul(zds, zn, yds, yn, xds, xn);
return;
}
}
#ifdef USE_GMP
bary_mul_gmp(zds, zn, xds, xn, yds, yn);
#else
bary_mul_toom3_start(zds, zn, xds, xn, yds, yn, NULL, 0);
#endif
}
struct big_div_struct {
size_t yn, zn;
BDIGIT *yds, *zds;
volatile VALUE stop;
};
static void *
bigdivrem1(void *ptr)
{
struct big_div_struct *bds = (struct big_div_struct*)ptr;
size_t yn = bds->yn;
size_t zn = bds->zn;
BDIGIT *yds = bds->yds, *zds = bds->zds;
BDIGIT_DBL_SIGNED num;
BDIGIT q;
do {
if (bds->stop) {
bds->zn = zn;
return 0;
}
if (zds[zn-1] == yds[yn-1]) q = BDIGMAX;
else q = (BDIGIT)((BIGUP(zds[zn-1]) + zds[zn-2])/yds[yn-1]);
if (q) {
num = bigdivrem_mulsub(zds+zn-(yn+1), yn+1,
q,
yds, yn);
while (num) { /* "add back" required */
q--;
num = bary_add(zds+zn-(yn+1), yn,
zds+zn-(yn+1), yn,
yds, yn);
num--;
}
}
zn--;
zds[zn] = q;
} while (zn > yn);
return 0;
}
static void
rb_big_stop(void *ptr)
{
struct big_div_struct *bds = ptr;
bds->stop = Qtrue;
}
static BDIGIT
bigdivrem_single1(BDIGIT *qds, const BDIGIT *xds, size_t xn, BDIGIT x_higher_bdigit, BDIGIT y)
{
assert(0 < xn);
assert(x_higher_bdigit < y);
if (POW2_P(y)) {
BDIGIT r;
r = xds[0] & (y-1);
bary_small_rshift(qds, xds, xn, bit_length(y)-1, x_higher_bdigit);
return r;
}
else {
size_t i;
BDIGIT_DBL t2;
t2 = x_higher_bdigit;
i = xn;
while (i--) {
t2 = BIGUP(t2) + xds[i];
qds[i] = (BDIGIT)(t2 / y);
t2 %= y;
}
return (BDIGIT)t2;
}
}
static BDIGIT
bigdivrem_single(BDIGIT *qds, const BDIGIT *xds, size_t xn, BDIGIT y)
{
return bigdivrem_single1(qds, xds, xn, 0, y);
}
static void
bigdivrem_restoring(BDIGIT *zds, size_t zn, BDIGIT *yds, size_t yn)
{
struct big_div_struct bds;
size_t ynzero;
assert(yn < zn);
assert(BDIGIT_MSB(yds[yn-1]));
assert(zds[zn-1] < yds[yn-1]);
for (ynzero = 0; !yds[ynzero]; ynzero++);
if (ynzero+1 == yn) {
BDIGIT r;
r = bigdivrem_single1(zds+yn, zds+ynzero, zn-yn, zds[zn-1], yds[ynzero]);
zds[ynzero] = r;
return;
}
bds.yn = yn - ynzero;
bds.zds = zds + ynzero;
bds.yds = yds + ynzero;
bds.stop = Qfalse;
bds.zn = zn - ynzero;
if (bds.zn > 10000 || bds.yn > 10000) {
retry:
bds.stop = Qfalse;
rb_thread_call_without_gvl(bigdivrem1, &bds, rb_big_stop, &bds);
if (bds.stop == Qtrue) {
/* execute trap handler, but exception was not raised. */
goto retry;
}
}
else {
bigdivrem1(&bds);
}
}
static void
bary_divmod_normal(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
int shift;
BDIGIT *zds, *yyds;
size_t zn;
VALUE tmpyz = 0;
assert(yn < xn || (xn == yn && yds[yn - 1] <= xds[xn - 1]));
assert(qds ? (xn - yn + 1) <= qn : 1);
assert(rds ? yn <= rn : 1);
zn = xn + BIGDIVREM_EXTRA_WORDS;
shift = nlz(yds[yn-1]);
if (shift) {
int alloc_y = !rds;
int alloc_z = !qds || qn < zn;
if (alloc_y && alloc_z) {
yyds = ALLOCV_N(BDIGIT, tmpyz, yn+zn);
zds = yyds + yn;
}
else {
yyds = alloc_y ? ALLOCV_N(BDIGIT, tmpyz, yn) : rds;
zds = alloc_z ? ALLOCV_N(BDIGIT, tmpyz, zn) : qds;
}
zds[xn] = bary_small_lshift(zds, xds, xn, shift);
bary_small_lshift(yyds, yds, yn, shift);
}
else {
if (qds && zn <= qn)
zds = qds;
else
zds = ALLOCV_N(BDIGIT, tmpyz, zn);
MEMCPY(zds, xds, BDIGIT, xn);
zds[xn] = 0;
/* bigdivrem_restoring will not modify y.
* So use yds directly. */
yyds = (BDIGIT *)yds;
}
bigdivrem_restoring(zds, zn, yyds, yn);
if (rds) {
if (shift)
bary_small_rshift(rds, zds, yn, shift, 0);
else
MEMCPY(rds, zds, BDIGIT, yn);
BDIGITS_ZERO(rds+yn, rn-yn);
}
if (qds) {
size_t j = zn - yn;
MEMMOVE(qds, zds+yn, BDIGIT, j);
BDIGITS_ZERO(qds+j, qn-j);
}
if (tmpyz)
ALLOCV_END(tmpyz);
}
VALUE
rb_big_divrem_normal(VALUE x, VALUE y)
{
size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), qn, rn;
BDIGIT *xds = BDIGITS(x), *yds = BDIGITS(y), *qds, *rds;
VALUE q, r;
BARY_TRUNC(yds, yn);
if (yn == 0)
rb_num_zerodiv();
BARY_TRUNC(xds, xn);
if (xn < yn || (xn == yn && xds[xn - 1] < yds[yn - 1]))
return rb_assoc_new(LONG2FIX(0), x);
qn = xn + BIGDIVREM_EXTRA_WORDS;
q = bignew(qn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
qds = BDIGITS(q);
rn = yn;
r = bignew(rn, BIGNUM_SIGN(x));
rds = BDIGITS(r);
bary_divmod_normal(qds, qn, rds, rn, xds, xn, yds, yn);
bigtrunc(q);
bigtrunc(r);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return rb_assoc_new(q, r);
}
#ifdef USE_GMP
static void
bary_divmod_gmp(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
mpz_t x, y, q, r;
size_t count;
assert(yn < xn || (xn == yn && yds[yn - 1] <= xds[xn - 1]));
assert(qds ? (xn - yn + 1) <= qn : 1);
assert(rds ? yn <= rn : 1);
assert(qds || rds);
mpz_init(x);
mpz_init(y);
if (qds) mpz_init(q);
if (rds) mpz_init(r);
mpz_import(x, xn, -1, sizeof(BDIGIT), 0, nails, xds);
mpz_import(y, yn, -1, sizeof(BDIGIT), 0, nails, yds);
if (!rds) {
mpz_fdiv_q(q, x, y);
}
else if (!qds) {
mpz_fdiv_r(r, x, y);
}
else {
mpz_fdiv_qr(q, r, x, y);
}
mpz_clear(x);
mpz_clear(y);
if (qds) {
mpz_export(qds, &count, -1, sizeof(BDIGIT), 0, nails, q);
BDIGITS_ZERO(qds+count, qn-count);
mpz_clear(q);
}
if (rds) {
mpz_export(rds, &count, -1, sizeof(BDIGIT), 0, nails, r);
BDIGITS_ZERO(rds+count, rn-count);
mpz_clear(r);
}
}
VALUE
rb_big_divrem_gmp(VALUE x, VALUE y)
{
size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), qn, rn;
BDIGIT *xds = BDIGITS(x), *yds = BDIGITS(y), *qds, *rds;
VALUE q, r;
BARY_TRUNC(yds, yn);
if (yn == 0)
rb_num_zerodiv();
BARY_TRUNC(xds, xn);
if (xn < yn || (xn == yn && xds[xn - 1] < yds[yn - 1]))
return rb_assoc_new(LONG2FIX(0), x);
qn = xn - yn + 1;
q = bignew(qn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
qds = BDIGITS(q);
rn = yn;
r = bignew(rn, BIGNUM_SIGN(x));
rds = BDIGITS(r);
bary_divmod_gmp(qds, qn, rds, rn, xds, xn, yds, yn);
bigtrunc(q);
bigtrunc(r);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return rb_assoc_new(q, r);
}
#endif
static void
bary_divmod_branch(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
#ifdef USE_GMP
if (GMP_DIV_DIGITS < xn) {
bary_divmod_gmp(qds, qn, rds, rn, xds, xn, yds, yn);
return;
}
#endif
bary_divmod_normal(qds, qn, rds, rn, xds, xn, yds, yn);
}
static void
bary_divmod(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
{
assert(xn <= qn);
assert(yn <= rn);
BARY_TRUNC(yds, yn);
if (yn == 0)
rb_num_zerodiv();
BARY_TRUNC(xds, xn);
if (xn == 0) {
BDIGITS_ZERO(qds, qn);
BDIGITS_ZERO(rds, rn);
return;
}
if (xn < yn || (xn == yn && xds[xn - 1] < yds[yn - 1])) {
MEMCPY(rds, xds, BDIGIT, xn);
BDIGITS_ZERO(rds+xn, rn-xn);
BDIGITS_ZERO(qds, qn);
}
else if (yn == 1) {
MEMCPY(qds, xds, BDIGIT, xn);
BDIGITS_ZERO(qds+xn, qn-xn);
rds[0] = bigdivrem_single(qds, xds, xn, yds[0]);
BDIGITS_ZERO(rds+1, rn-1);
}
else if (xn == 2 && yn == 2) {
BDIGIT_DBL x = bary2bdigitdbl(xds, 2);
BDIGIT_DBL y = bary2bdigitdbl(yds, 2);
BDIGIT_DBL q = x / y;
BDIGIT_DBL r = x % y;
qds[0] = BIGLO(q);
qds[1] = BIGLO(BIGDN(q));
BDIGITS_ZERO(qds+2, qn-2);
rds[0] = BIGLO(r);
rds[1] = BIGLO(BIGDN(r));
BDIGITS_ZERO(rds+2, rn-2);
}
else {
bary_divmod_branch(qds, qn, rds, rn, xds, xn, yds, yn);
}
}
#define BIGNUM_DEBUG 0
#if BIGNUM_DEBUG
#define ON_DEBUG(x) do { x; } while (0)
static void
dump_bignum(VALUE x)
{
long i;
printf("%c0x0", BIGNUM_SIGN(x) ? '+' : '-');
for (i = BIGNUM_LEN(x); i--; ) {
printf("_%0*"PRIxBDIGIT, SIZEOF_BDIGIT*2, BDIGITS(x)[i]);
}
printf(", len=%"PRIuSIZE, BIGNUM_LEN(x));
puts("");
}
static VALUE
rb_big_dump(VALUE x)
{
dump_bignum(x);
return x;
}
#else
#define ON_DEBUG(x)
#endif
static int
bigzero_p(VALUE x)
{
return bary_zero_p(BDIGITS(x), BIGNUM_LEN(x));
}
int
rb_bigzero_p(VALUE x)
{
return BIGZEROP(x);
}
int
rb_cmpint(VALUE val, VALUE a, VALUE b)
{
if (NIL_P(val)) {
rb_cmperr(a, b);
}
if (FIXNUM_P(val)) {
long l = FIX2LONG(val);
if (l > 0) return 1;
if (l < 0) return -1;
return 0;
}
if (RB_BIGNUM_TYPE_P(val)) {
if (BIGZEROP(val)) return 0;
if (BIGNUM_SIGN(val)) return 1;
return -1;
}
if (RTEST(rb_funcall(val, '>', 1, INT2FIX(0)))) return 1;
if (RTEST(rb_funcall(val, '<', 1, INT2FIX(0)))) return -1;
return 0;
}
#define BIGNUM_SET_LEN(b,l) \
((RBASIC(b)->flags & BIGNUM_EMBED_FLAG) ? \
(void)(RBASIC(b)->flags = \
(RBASIC(b)->flags & ~BIGNUM_EMBED_LEN_MASK) | \
((l) << BIGNUM_EMBED_LEN_SHIFT)) : \
(void)(RBIGNUM(b)->as.heap.len = (l)))
static void
rb_big_realloc(VALUE big, size_t len)
{
BDIGIT *ds;
if (RBASIC(big)->flags & BIGNUM_EMBED_FLAG) {
if (BIGNUM_EMBED_LEN_MAX < len) {
ds = ALLOC_N(BDIGIT, len);
MEMCPY(ds, RBIGNUM(big)->as.ary, BDIGIT, BIGNUM_EMBED_LEN_MAX);
RBIGNUM(big)->as.heap.len = BIGNUM_LEN(big);
RBIGNUM(big)->as.heap.digits = ds;
RBASIC(big)->flags &= ~BIGNUM_EMBED_FLAG;
}
}
else {
if (len <= BIGNUM_EMBED_LEN_MAX) {
ds = RBIGNUM(big)->as.heap.digits;
RBASIC(big)->flags |= BIGNUM_EMBED_FLAG;
BIGNUM_SET_LEN(big, len);
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)RBIGNUM(big)->as.ary, sizeof(RBIGNUM(big)->as.ary));
if (ds) {
MEMCPY(RBIGNUM(big)->as.ary, ds, BDIGIT, len);
xfree(ds);
}
}
else {
if (BIGNUM_LEN(big) == 0) {
RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len);
}
else {
REALLOC_N(RBIGNUM(big)->as.heap.digits, BDIGIT, len);
}
}
}
}
void
rb_big_resize(VALUE big, size_t len)
{
rb_big_realloc(big, len);
BIGNUM_SET_LEN(big, len);
}
static VALUE
bignew_1(VALUE klass, size_t len, int sign)
{
NEWOBJ_OF(big, struct RBignum, klass, T_BIGNUM | (RGENGC_WB_PROTECTED_BIGNUM ? FL_WB_PROTECTED : 0));
BIGNUM_SET_SIGN(big, sign?1:0);
if (len <= BIGNUM_EMBED_LEN_MAX) {
RBASIC(big)->flags |= BIGNUM_EMBED_FLAG;
BIGNUM_SET_LEN(big, len);
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)RBIGNUM(big)->as.ary, sizeof(RBIGNUM(big)->as.ary));
}
else {
RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len);
RBIGNUM(big)->as.heap.len = len;
}
OBJ_FREEZE(big);
return (VALUE)big;
}
VALUE
rb_big_new(size_t len, int sign)
{
return bignew(len, sign != 0);
}
VALUE
rb_big_clone(VALUE x)
{
size_t len = BIGNUM_LEN(x);
VALUE z = bignew_1(CLASS_OF(x), len, BIGNUM_SIGN(x));
MEMCPY(BDIGITS(z), BDIGITS(x), BDIGIT, len);
return z;
}
static void
big_extend_carry(VALUE x)
{
rb_big_resize(x, BIGNUM_LEN(x)+1);
BDIGITS(x)[BIGNUM_LEN(x)-1] = 1;
}
/* modify a bignum by 2's complement */
static void
get2comp(VALUE x)
{
long i = BIGNUM_LEN(x);
BDIGIT *ds = BDIGITS(x);
if (bary_2comp(ds, i)) {
big_extend_carry(x);
}
}
void
rb_big_2comp(VALUE x) /* get 2's complement */
{
get2comp(x);
}
static BDIGIT
abs2twocomp(VALUE *xp, long *n_ret)
{
VALUE x = *xp;
long n = BIGNUM_LEN(x);
BDIGIT *ds = BDIGITS(x);
BDIGIT hibits = 0;
BARY_TRUNC(ds, n);
if (n != 0 && BIGNUM_NEGATIVE_P(x)) {
VALUE z = bignew_1(CLASS_OF(x), n, 0);
MEMCPY(BDIGITS(z), ds, BDIGIT, n);
bary_2comp(BDIGITS(z), n);
hibits = BDIGMAX;
*xp = z;
}
*n_ret = n;
return hibits;
}
static void
twocomp2abs_bang(VALUE x, int hibits)
{
BIGNUM_SET_SIGN(x, !hibits);
if (hibits) {
get2comp(x);
}
}
static inline VALUE
bigtrunc(VALUE x)
{
size_t len = BIGNUM_LEN(x);
BDIGIT *ds = BDIGITS(x);
if (len == 0) return x;
while (--len && !ds[len]);
if (BIGNUM_LEN(x) > len+1) {
rb_big_resize(x, len+1);
}
return x;
}
static inline VALUE
bigfixize(VALUE x)
{
size_t n = BIGNUM_LEN(x);
BDIGIT *ds = BDIGITS(x);
#if SIZEOF_BDIGIT < SIZEOF_LONG
unsigned long u;
#else
BDIGIT u;
#endif
BARY_TRUNC(ds, n);
if (n == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT < SIZEOF_LONG
if (sizeof(long)/SIZEOF_BDIGIT < n)
goto return_big;
else {
int i = (int)n;
u = 0;
while (i--) {
u = (unsigned long)(BIGUP(u) + ds[i]);
}
}
#else /* SIZEOF_BDIGIT >= SIZEOF_LONG */
if (1 < n)
goto return_big;
else
u = ds[0];
#endif
if (BIGNUM_POSITIVE_P(x)) {
if (POSFIXABLE(u)) return LONG2FIX((long)u);
}
else {
if (u <= -FIXNUM_MIN) return LONG2FIX(-(long)u);
}
return_big:
rb_big_resize(x, n);
return x;
}
static VALUE
bignorm(VALUE x)
{
if (RB_BIGNUM_TYPE_P(x)) {
x = bigfixize(x);
}
return x;
}
VALUE
rb_big_norm(VALUE x)
{
return bignorm(x);
}
VALUE
rb_uint2big(VALUE n)
{
long i;
VALUE big = bignew(bdigit_roomof(SIZEOF_VALUE), 1);
BDIGIT *digits = BDIGITS(big);
#if SIZEOF_BDIGIT >= SIZEOF_VALUE
digits[0] = n;
#else
for (i = 0; i < bdigit_roomof(SIZEOF_VALUE); i++) {
digits[i] = BIGLO(n);
n = BIGDN(n);
}
#endif
i = bdigit_roomof(SIZEOF_VALUE);
while (--i && !digits[i]) ;
BIGNUM_SET_LEN(big, i+1);
return big;
}
VALUE
rb_int2big(SIGNED_VALUE n)
{
long neg = 0;
VALUE u;
VALUE big;
if (n < 0) {
u = 1 + (VALUE)(-(n + 1)); /* u = -n avoiding overflow */
neg = 1;
}
else {
u = n;
}
big = rb_uint2big(u);
if (neg) {
BIGNUM_SET_SIGN(big, 0);
}
return big;
}
VALUE
rb_uint2inum(VALUE n)
{
if (POSFIXABLE(n)) return LONG2FIX(n);
return rb_uint2big(n);
}
VALUE
rb_int2inum(SIGNED_VALUE n)
{
if (FIXABLE(n)) return LONG2FIX(n);
return rb_int2big(n);
}
void
rb_big_pack(VALUE val, unsigned long *buf, long num_longs)
{
rb_integer_pack(val, buf, num_longs, sizeof(long), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER|
INTEGER_PACK_2COMP);
}
VALUE
rb_big_unpack(unsigned long *buf, long num_longs)
{
return rb_integer_unpack(buf, num_longs, sizeof(long), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER|
INTEGER_PACK_2COMP);
}
/*
* Calculate the number of bytes to be required to represent
* the absolute value of the integer given as _val_.
*
* [val] an integer.
* [nlz_bits_ret] number of leading zero bits in the most significant byte is returned if not NULL.
*
* This function returns ((val_numbits * CHAR_BIT + CHAR_BIT - 1) / CHAR_BIT)
* where val_numbits is the number of bits of abs(val).
* This function should not overflow.
*
* If nlz_bits_ret is not NULL,
* (return_value * CHAR_BIT - val_numbits) is stored in *nlz_bits_ret.
* In this case, 0 <= *nlz_bits_ret < CHAR_BIT.
*
*/
size_t
rb_absint_size(VALUE val, int *nlz_bits_ret)
{
BDIGIT *dp;
BDIGIT *de;
BDIGIT fixbuf[bdigit_roomof(sizeof(long))];
int num_leading_zeros;
val = rb_to_int(val);
if (FIXNUM_P(val)) {
long v = FIX2LONG(val);
if (v < 0) {
v = -v;
}
#if SIZEOF_BDIGIT >= SIZEOF_LONG
fixbuf[0] = v;
#else
{
int i;
for (i = 0; i < numberof(fixbuf); i++) {
fixbuf[i] = BIGLO(v);
v = BIGDN(v);
}
}
#endif
dp = fixbuf;
de = fixbuf + numberof(fixbuf);
}
else {
dp = BDIGITS(val);
de = dp + BIGNUM_LEN(val);
}
while (dp < de && de[-1] == 0)
de--;
if (dp == de) {
if (nlz_bits_ret)
*nlz_bits_ret = 0;
return 0;
}
num_leading_zeros = nlz(de[-1]);
if (nlz_bits_ret)
*nlz_bits_ret = num_leading_zeros % CHAR_BIT;
return (de - dp) * SIZEOF_BDIGIT - num_leading_zeros / CHAR_BIT;
}
static size_t
absint_numwords_small(size_t numbytes, int nlz_bits_in_msbyte, size_t word_numbits, size_t *nlz_bits_ret)
{
size_t val_numbits = numbytes * CHAR_BIT - nlz_bits_in_msbyte;
size_t div = val_numbits / word_numbits;
size_t mod = val_numbits % word_numbits;
size_t numwords;
size_t nlz_bits;
numwords = mod == 0 ? div : div + 1;
nlz_bits = mod == 0 ? 0 : word_numbits - mod;
*nlz_bits_ret = nlz_bits;
return numwords;
}
static size_t
absint_numwords_generic(size_t numbytes, int nlz_bits_in_msbyte, size_t word_numbits, size_t *nlz_bits_ret)
{
static const BDIGIT char_bit[1] = { CHAR_BIT };
BDIGIT numbytes_bary[bdigit_roomof(sizeof(numbytes))];
BDIGIT val_numbits_bary[bdigit_roomof(sizeof(numbytes) + 1)];
BDIGIT nlz_bits_in_msbyte_bary[1];
BDIGIT word_numbits_bary[bdigit_roomof(sizeof(word_numbits))];
BDIGIT div_bary[numberof(val_numbits_bary) + BIGDIVREM_EXTRA_WORDS];
BDIGIT mod_bary[numberof(word_numbits_bary)];
BDIGIT one[1] = { 1 };
size_t nlz_bits;
size_t mod;
int sign;
size_t numwords;
nlz_bits_in_msbyte_bary[0] = nlz_bits_in_msbyte;
/*
* val_numbits = numbytes * CHAR_BIT - nlz_bits_in_msbyte
* div, mod = val_numbits.divmod(word_numbits)
* numwords = mod == 0 ? div : div + 1
* nlz_bits = mod == 0 ? 0 : word_numbits - mod
*/
bary_unpack(BARY_ARGS(numbytes_bary), &numbytes, 1, sizeof(numbytes), 0,
INTEGER_PACK_NATIVE_BYTE_ORDER);
BARY_SHORT_MUL(val_numbits_bary, numbytes_bary, char_bit);
if (nlz_bits_in_msbyte)
BARY_SUB(val_numbits_bary, val_numbits_bary, nlz_bits_in_msbyte_bary);
bary_unpack(BARY_ARGS(word_numbits_bary), &word_numbits, 1, sizeof(word_numbits), 0,
INTEGER_PACK_NATIVE_BYTE_ORDER);
BARY_DIVMOD(div_bary, mod_bary, val_numbits_bary, word_numbits_bary);
if (BARY_ZERO_P(mod_bary)) {
nlz_bits = 0;
}
else {
BARY_ADD(div_bary, div_bary, one);
bary_pack(+1, BARY_ARGS(mod_bary), &mod, 1, sizeof(mod), 0,
INTEGER_PACK_NATIVE_BYTE_ORDER);
nlz_bits = word_numbits - mod;
}
sign = bary_pack(+1, BARY_ARGS(div_bary), &numwords, 1, sizeof(numwords), 0,
INTEGER_PACK_NATIVE_BYTE_ORDER);
if (sign == 2) {
#if defined __GNUC__ && (__GNUC__ == 4 && __GNUC_MINOR__ == 4)
*nlz_bits_ret = 0;
#endif
return (size_t)-1;
}
*nlz_bits_ret = nlz_bits;
return numwords;
}
/*
* Calculate the number of words to be required to represent
* the absolute value of the integer given as _val_.
*
* [val] an integer.
* [word_numbits] number of bits in a word.
* [nlz_bits_ret] number of leading zero bits in the most significant word is returned if not NULL.
*
* This function returns ((val_numbits * CHAR_BIT + word_numbits - 1) / word_numbits)
* where val_numbits is the number of bits of abs(val).
*
* This function can overflow.
* When overflow occur, (size_t)-1 is returned.
*
* If nlz_bits_ret is not NULL and overflow is not occur,
* (return_value * word_numbits - val_numbits) is stored in *nlz_bits_ret.
* In this case, 0 <= *nlz_bits_ret < word_numbits.
*
*/
size_t
rb_absint_numwords(VALUE val, size_t word_numbits, size_t *nlz_bits_ret)
{
size_t numbytes;
int nlz_bits_in_msbyte;
size_t numwords;
size_t nlz_bits;
if (word_numbits == 0)
return (size_t)-1;
numbytes = rb_absint_size(val, &nlz_bits_in_msbyte);
if (numbytes <= SIZE_MAX / CHAR_BIT) {
numwords = absint_numwords_small(numbytes, nlz_bits_in_msbyte, word_numbits, &nlz_bits);
#ifdef DEBUG_INTEGER_PACK
{
size_t numwords0, nlz_bits0;
numwords0 = absint_numwords_generic(numbytes, nlz_bits_in_msbyte, word_numbits, &nlz_bits0);
assert(numwords0 == numwords);
assert(nlz_bits0 == nlz_bits);
}
#endif
}
else {
numwords = absint_numwords_generic(numbytes, nlz_bits_in_msbyte, word_numbits, &nlz_bits);
}
if (numwords == (size_t)-1)
return numwords;
if (nlz_bits_ret)
*nlz_bits_ret = nlz_bits;
return numwords;
}
/* Test abs(val) consists only a bit or not.
*
* Returns 1 if abs(val) == 1 << n for some n >= 0.
* Returns 0 otherwise.
*
* rb_absint_singlebit_p can be used to determine required buffer size
* for rb_integer_pack used with INTEGER_PACK_2COMP (two's complement).
*
* Following example calculates number of bits required to
* represent val in two's complement number, without sign bit.
*
* size_t size;
* int neg = FIXNUM_P(val) ? FIX2LONG(val) < 0 : BIGNUM_NEGATIVE_P(val);
* size = rb_absint_numwords(val, 1, NULL)
* if (size == (size_t)-1) ...overflow...
* if (neg && rb_absint_singlebit_p(val))
* size--;
*
* Following example calculates number of bytes required to
* represent val in two's complement number, with sign bit.
*
* size_t size;
* int neg = FIXNUM_P(val) ? FIX2LONG(val) < 0 : BIGNUM_NEGATIVE_P(val);
* int nlz_bits;
* size = rb_absint_size(val, &nlz_bits);
* if (nlz_bits == 0 && !(neg && rb_absint_singlebit_p(val)))
* size++;
*/
int
rb_absint_singlebit_p(VALUE val)
{
BDIGIT *dp;
BDIGIT *de;
BDIGIT fixbuf[bdigit_roomof(sizeof(long))];
BDIGIT d;
val = rb_to_int(val);
if (FIXNUM_P(val)) {
long v = FIX2LONG(val);
if (v < 0) {
v = -v;
}
#if SIZEOF_BDIGIT >= SIZEOF_LONG
fixbuf[0] = v;
#else
{
int i;
for (i = 0; i < numberof(fixbuf); i++) {
fixbuf[i] = BIGLO(v);
v = BIGDN(v);
}
}
#endif
dp = fixbuf;
de = fixbuf + numberof(fixbuf);
}
else {
dp = BDIGITS(val);
de = dp + BIGNUM_LEN(val);
}
while (dp < de && de[-1] == 0)
de--;
while (dp < de && dp[0] == 0)
dp++;
if (dp == de) /* no bit set. */
return 0;
if (dp != de-1) /* two non-zero words. two bits set, at least. */
return 0;
d = *dp;
return POW2_P(d);
}
/*
* Export an integer into a buffer.
*
* This function fills the buffer specified by _words_ and _numwords_ as
* val in the format specified by _wordsize_, _nails_ and _flags_.
*
* [val] Fixnum, Bignum or another integer like object which has to_int method.
* [words] buffer to export abs(val).
* [numwords] the size of given buffer as number of words.
* [wordsize] the size of word as number of bytes.
* [nails] number of padding bits in a word.
* Most significant nails bits of each word are filled by zero.
* [flags] bitwise or of constants which name starts "INTEGER_PACK_".
*
* flags:
* [INTEGER_PACK_MSWORD_FIRST] Store the most significant word as the first word.
* [INTEGER_PACK_LSWORD_FIRST] Store the least significant word as the first word.
* [INTEGER_PACK_MSBYTE_FIRST] Store the most significant byte in a word as the first byte in the word.
* [INTEGER_PACK_LSBYTE_FIRST] Store the least significant byte in a word as the first byte in the word.
* [INTEGER_PACK_NATIVE_BYTE_ORDER] INTEGER_PACK_MSBYTE_FIRST or INTEGER_PACK_LSBYTE_FIRST corresponding to the host's endian.
* [INTEGER_PACK_2COMP] Use 2's complement representation.
* [INTEGER_PACK_LITTLE_ENDIAN] Same as INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_LSBYTE_FIRST
* [INTEGER_PACK_BIG_ENDIAN] Same as INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_MSBYTE_FIRST
* [INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION] Use generic implementation (for test and debug).
*
* This function fills the buffer specified by _words_
* as abs(val) if INTEGER_PACK_2COMP is not specified in _flags_.
* If INTEGER_PACK_2COMP is specified, 2's complement representation of val is
* filled in the buffer.
*
* This function returns the signedness and overflow condition.
* The overflow condition depends on INTEGER_PACK_2COMP.
*
* INTEGER_PACK_2COMP is not specified:
* -2 : negative overflow. val <= -2**(numwords*(wordsize*CHAR_BIT-nails))
* -1 : negative without overflow. -2**(numwords*(wordsize*CHAR_BIT-nails)) < val < 0
* 0 : zero. val == 0
* 1 : positive without overflow. 0 < val < 2**(numwords*(wordsize*CHAR_BIT-nails))
* 2 : positive overflow. 2**(numwords*(wordsize*CHAR_BIT-nails)) <= val
*
* INTEGER_PACK_2COMP is specified:
* -2 : negative overflow. val < -2**(numwords*(wordsize*CHAR_BIT-nails))
* -1 : negative without overflow. -2**(numwords*(wordsize*CHAR_BIT-nails)) <= val < 0
* 0 : zero. val == 0
* 1 : positive without overflow. 0 < val < 2**(numwords*(wordsize*CHAR_BIT-nails))
* 2 : positive overflow. 2**(numwords*(wordsize*CHAR_BIT-nails)) <= val
*
* The value, -2**(numwords*(wordsize*CHAR_BIT-nails)), is representable
* in 2's complement representation but not representable in absolute value.
* So -1 is returned for the value if INTEGER_PACK_2COMP is specified
* but returns -2 if INTEGER_PACK_2COMP is not specified.
*
* The least significant words are filled in the buffer when overflow occur.
*/
int
rb_integer_pack(VALUE val, void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
{
int sign;
BDIGIT *ds;
size_t num_bdigits;
BDIGIT fixbuf[bdigit_roomof(sizeof(long))];
RB_GC_GUARD(val) = rb_to_int(val);
if (FIXNUM_P(val)) {
long v = FIX2LONG(val);
if (v < 0) {
sign = -1;
v = -v;
}
else {
sign = 1;
}
#if SIZEOF_BDIGIT >= SIZEOF_LONG
fixbuf[0] = v;
#else
{
int i;
for (i = 0; i < numberof(fixbuf); i++) {
fixbuf[i] = BIGLO(v);
v = BIGDN(v);
}
}
#endif
ds = fixbuf;
num_bdigits = numberof(fixbuf);
}
else {
sign = BIGNUM_POSITIVE_P(val) ? 1 : -1;
ds = BDIGITS(val);
num_bdigits = BIGNUM_LEN(val);
}
return bary_pack(sign, ds, num_bdigits, words, numwords, wordsize, nails, flags);
}
/*
* Import an integer into a buffer.
*
* [words] buffer to import.
* [numwords] the size of given buffer as number of words.
* [wordsize] the size of word as number of bytes.
* [nails] number of padding bits in a word.
* Most significant nails bits of each word are ignored.
* [flags] bitwise or of constants which name starts "INTEGER_PACK_".
*
* flags:
* [INTEGER_PACK_MSWORD_FIRST] Interpret the first word as the most significant word.
* [INTEGER_PACK_LSWORD_FIRST] Interpret the first word as the least significant word.
* [INTEGER_PACK_MSBYTE_FIRST] Interpret the first byte in a word as the most significant byte in the word.
* [INTEGER_PACK_LSBYTE_FIRST] Interpret the first byte in a word as the least significant byte in the word.
* [INTEGER_PACK_NATIVE_BYTE_ORDER] INTEGER_PACK_MSBYTE_FIRST or INTEGER_PACK_LSBYTE_FIRST corresponding to the host's endian.
* [INTEGER_PACK_2COMP] Use 2's complement representation.
* [INTEGER_PACK_LITTLE_ENDIAN] Same as INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_LSBYTE_FIRST
* [INTEGER_PACK_BIG_ENDIAN] Same as INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_MSBYTE_FIRST
* [INTEGER_PACK_FORCE_BIGNUM] the result will be a Bignum
* even if it is representable as a Fixnum.
* [INTEGER_PACK_NEGATIVE] Returns non-positive value.
* (Returns non-negative value if not specified.)
* [INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION] Use generic implementation (for test and debug).
*
* This function returns the imported integer as Fixnum or Bignum.
*
* The range of the result value depends on INTEGER_PACK_2COMP and INTEGER_PACK_NEGATIVE.
*
* INTEGER_PACK_2COMP is not set:
* 0 <= val < 2**(numwords*(wordsize*CHAR_BIT-nails)) if !INTEGER_PACK_NEGATIVE
* -2**(numwords*(wordsize*CHAR_BIT-nails)) < val <= 0 if INTEGER_PACK_NEGATIVE
*
* INTEGER_PACK_2COMP is set:
* -2**(numwords*(wordsize*CHAR_BIT-nails)-1) <= val <= 2**(numwords*(wordsize*CHAR_BIT-nails)-1)-1 if !INTEGER_PACK_NEGATIVE
* -2**(numwords*(wordsize*CHAR_BIT-nails)) <= val <= -1 if INTEGER_PACK_NEGATIVE
*
* INTEGER_PACK_2COMP without INTEGER_PACK_NEGATIVE means sign extension.
* INTEGER_PACK_2COMP with INTEGER_PACK_NEGATIVE mean assuming the higher bits are 1.
*
* Note that this function returns 0 when numwords is zero and
* INTEGER_PACK_2COMP is set but INTEGER_PACK_NEGATIVE is not set.
*/
VALUE
rb_integer_unpack(const void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
{
VALUE val;
size_t num_bdigits;
int sign;
int nlp_bits;
BDIGIT *ds;
BDIGIT fixbuf[2] = { 0, 0 };
validate_integer_pack_format(numwords, wordsize, nails, flags,
INTEGER_PACK_MSWORD_FIRST|
INTEGER_PACK_LSWORD_FIRST|
INTEGER_PACK_MSBYTE_FIRST|
INTEGER_PACK_LSBYTE_FIRST|
INTEGER_PACK_NATIVE_BYTE_ORDER|
INTEGER_PACK_2COMP|
INTEGER_PACK_FORCE_BIGNUM|
INTEGER_PACK_NEGATIVE|
INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION);
num_bdigits = integer_unpack_num_bdigits(numwords, wordsize, nails, &nlp_bits);
if (LONG_MAX-1 < num_bdigits)
rb_raise(rb_eArgError, "too big to unpack as an integer");
if (num_bdigits <= numberof(fixbuf) && !(flags & INTEGER_PACK_FORCE_BIGNUM)) {
val = Qfalse;
ds = fixbuf;
}
else {
val = bignew((long)num_bdigits, 0);
ds = BDIGITS(val);
}
sign = bary_unpack_internal(ds, num_bdigits, words, numwords, wordsize, nails, flags, nlp_bits);
if (sign == -2) {
if (val) {
big_extend_carry(val);
}
else if (num_bdigits == numberof(fixbuf)) {
val = bignew((long)num_bdigits+1, 0);
MEMCPY(BDIGITS(val), fixbuf, BDIGIT, num_bdigits);
BDIGITS(val)[num_bdigits++] = 1;
}
else {
ds[num_bdigits++] = 1;
}
}
if (!val) {
BDIGIT_DBL u = fixbuf[0] + BIGUP(fixbuf[1]);
if (u == 0)
return LONG2FIX(0);
if (0 < sign && POSFIXABLE(u))
return LONG2FIX(u);
if (sign < 0 && BDIGIT_MSB(fixbuf[1]) == 0 &&
NEGFIXABLE(-(BDIGIT_DBL_SIGNED)u))
return LONG2FIX(-(BDIGIT_DBL_SIGNED)u);
val = bignew((long)num_bdigits, 0 <= sign);
MEMCPY(BDIGITS(val), fixbuf, BDIGIT, num_bdigits);
}
if ((flags & INTEGER_PACK_FORCE_BIGNUM) && sign != 0 &&
bary_zero_p(BDIGITS(val), BIGNUM_LEN(val)))
sign = 0;
BIGNUM_SET_SIGN(val, 0 <= sign);
if (flags & INTEGER_PACK_FORCE_BIGNUM)
return bigtrunc(val);
return bignorm(val);
}
#define conv_digit(c) (ruby_digit36_to_number_table[(unsigned char)(c)])
static void
str2big_scan_digits(const char *s, const char *str, int base, int badcheck, size_t *num_digits_p, size_t *len_p)
{
char nondigit = 0;
size_t num_digits = 0;
const char *digits_start = str;
const char *digits_end = str;
int c;
if (badcheck && *str == '_') goto bad;
while ((c = *str++) != 0) {
if (c == '_') {
if (nondigit) {
if (badcheck) goto bad;
break;
}
nondigit = (char) c;
continue;
}
else if ((c = conv_digit(c)) < 0) {
break;
}
if (c >= base) break;
nondigit = 0;
num_digits++;
digits_end = str;
}
if (badcheck) {
str--;
if (s+1 < str && str[-1] == '_') goto bad;
while (*str && ISSPACE(*str)) str++;
if (*str) {
bad:
rb_invalid_str(s, "Integer()");
}
}
*num_digits_p = num_digits;
*len_p = digits_end - digits_start;
}
static VALUE
str2big_poweroftwo(
int sign,
const char *digits_start,
const char *digits_end,
size_t num_digits,
int bits_per_digit)
{
BDIGIT *dp;
BDIGIT_DBL dd;
int numbits;
size_t num_bdigits;
const char *p;
int c;
VALUE z;
num_bdigits = (num_digits / BITSPERDIG) * bits_per_digit + roomof((num_digits % BITSPERDIG) * bits_per_digit, BITSPERDIG);
z = bignew(num_bdigits, sign);
dp = BDIGITS(z);
dd = 0;
numbits = 0;
for (p = digits_end; digits_start < p; p--) {
if ((c = conv_digit(p[-1])) < 0)
continue;
dd |= (BDIGIT_DBL)c << numbits;
numbits += bits_per_digit;
if (BITSPERDIG <= numbits) {
*dp++ = BIGLO(dd);
dd = BIGDN(dd);
numbits -= BITSPERDIG;
}
}
if (numbits) {
*dp++ = BIGLO(dd);
}
assert((size_t)(dp - BDIGITS(z)) == num_bdigits);
return z;
}
static VALUE
str2big_normal(
int sign,
const char *digits_start,
const char *digits_end,
size_t num_bdigits,
int base)
{
size_t blen = 1;
BDIGIT *zds;
BDIGIT_DBL num;
size_t i;
const char *p;
int c;
VALUE z;
z = bignew(num_bdigits, sign);
zds = BDIGITS(z);
BDIGITS_ZERO(zds, num_bdigits);
for (p = digits_start; p < digits_end; p++) {
if ((c = conv_digit(*p)) < 0)
continue;
num = c;
i = 0;
for (;;) {
while (i<blen) {
num += (BDIGIT_DBL)zds[i]*base;
zds[i++] = BIGLO(num);
num = BIGDN(num);
}
if (num) {
blen++;
continue;
}
break;
}
assert(blen <= num_bdigits);
}
return z;
}
static VALUE
str2big_karatsuba(
int sign,
const char *digits_start,
const char *digits_end,
size_t num_digits,
size_t num_bdigits,
int digits_per_bdigits_dbl,
int base)
{
VALUE powerv;
size_t unit;
VALUE tmpuv = 0;
BDIGIT *uds, *vds, *tds;
BDIGIT_DBL dd;
BDIGIT_DBL current_base;
int m;
int power_level = 0;
size_t i;
const char *p;
int c;
VALUE z;
uds = ALLOCV_N(BDIGIT, tmpuv, 2*num_bdigits);
vds = uds + num_bdigits;
powerv = power_cache_get_power(base, power_level, NULL);
i = 0;
dd = 0;
current_base = 1;
m = digits_per_bdigits_dbl;
if (num_digits < (size_t)m)
m = (int)num_digits;
for (p = digits_end; digits_start < p; p--) {
if ((c = conv_digit(p[-1])) < 0)
continue;
dd = dd + c * current_base;
current_base *= base;
num_digits--;
m--;
if (m == 0) {
uds[i++] = BIGLO(dd);
uds[i++] = (BDIGIT)BIGDN(dd);
dd = 0;
m = digits_per_bdigits_dbl;
if (num_digits < (size_t)m)
m = (int)num_digits;
current_base = 1;
}
}
assert(i == num_bdigits);
for (unit = 2; unit < num_bdigits; unit *= 2) {
for (i = 0; i < num_bdigits; i += unit*2) {
if (2*unit <= num_bdigits - i) {
bary_mul(vds+i, unit*2, BDIGITS(powerv), BIGNUM_LEN(powerv), uds+i+unit, unit);
bary_add(vds+i, unit*2, vds+i, unit*2, uds+i, unit);
}
else if (unit <= num_bdigits - i) {
bary_mul(vds+i, num_bdigits-i, BDIGITS(powerv), BIGNUM_LEN(powerv), uds+i+unit, num_bdigits-(i+unit));
bary_add(vds+i, num_bdigits-i, vds+i, num_bdigits-i, uds+i, unit);
}
else {
MEMCPY(vds+i, uds+i, BDIGIT, num_bdigits-i);
}
}
power_level++;
powerv = power_cache_get_power(base, power_level, NULL);
tds = vds;
vds = uds;
uds = tds;
}
BARY_TRUNC(uds, num_bdigits);
z = bignew(num_bdigits, sign);
MEMCPY(BDIGITS(z), uds, BDIGIT, num_bdigits);
if (tmpuv)
ALLOCV_END(tmpuv);
return z;
}
#ifdef USE_GMP
static VALUE
str2big_gmp(
int sign,
const char *digits_start,
const char *digits_end,
size_t num_digits,
size_t num_bdigits,
int base)
{
const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
char *buf, *p;
const char *q;
VALUE tmps;
mpz_t mz;
VALUE z;
BDIGIT *zds;
size_t zn, count;
buf = ALLOCV_N(char, tmps, num_digits+1);
p = buf;
for (q = digits_start; q < digits_end; q++) {
if (conv_digit(*q) < 0)
continue;
*p++ = *q;
}
*p = '\0';
mpz_init(mz);
mpz_set_str(mz, buf, base);
zn = num_bdigits;
z = bignew(zn, sign);
zds = BDIGITS(z);
mpz_export(BDIGITS(z), &count, -1, sizeof(BDIGIT), 0, nails, mz);
BDIGITS_ZERO(zds+count, zn-count);
mpz_clear(mz);
if (tmps)
ALLOCV_END(tmps);
return z;
}
#endif
/*
* Parse +str+ as Ruby Integer, i.e., underscores, 0d and 0b prefixes.
*
* str: pointer to the string to be parsed.
* should be NUL-terminated.
* base: base of conversion, must be 2..36, or -36..0.
* if +base+ > 0, the conversion is done according to the +base+
* and unmatched prefix is parsed as a part of the result if
* present.
* if +base+ <= 0, the conversion is done according to the
* prefix if present, in base <code>-base</code> if +base+ < -1,
* or in base 10.
* badcheck: if non-zero, +ArgumentError+ is raised when +str+ is not
* valid as an Integer. if zero, Fixnum 0 is returned in
* that case.
*/
VALUE
rb_cstr_to_inum(const char *str, int base, int badcheck)
{
const char *s = str;
char sign = 1;
int c;
VALUE z;
int bits_per_digit;
const char *digits_start, *digits_end;
size_t num_digits;
size_t num_bdigits;
size_t len;
if (!str) {
if (badcheck) {
bad:
rb_invalid_str(s, "Integer()");
}
return INT2FIX(0);
}
while (ISSPACE(*str)) str++;
if (str[0] == '+') {
str++;
}
else if (str[0] == '-') {
str++;
sign = 0;
}
if (str[0] == '+' || str[0] == '-') {
if (badcheck) goto bad;
return INT2FIX(0);
}
if (base <= 0) {
if (str[0] == '0') {
switch (str[1]) {
case 'x': case 'X':
base = 16;
str += 2;
break;
case 'b': case 'B':
base = 2;
str += 2;
break;
case 'o': case 'O':
base = 8;
str += 2;
break;
case 'd': case 'D':
base = 10;
str += 2;
break;
default:
base = 8;
}
}
else if (base < -1) {
base = -base;
}
else {
base = 10;
}
}
else if (base == 2) {
if (str[0] == '0' && (str[1] == 'b'||str[1] == 'B')) {
str += 2;
}
}
else if (base == 8) {
if (str[0] == '0' && (str[1] == 'o'||str[1] == 'O')) {
str += 2;
}
}
else if (base == 10) {
if (str[0] == '0' && (str[1] == 'd'||str[1] == 'D')) {
str += 2;
}
}
else if (base == 16) {
if (str[0] == '0' && (str[1] == 'x'||str[1] == 'X')) {
str += 2;
}
}
if (base < 2 || 36 < base) {
rb_raise(rb_eArgError, "invalid radix %d", base);
}
if (*str == '0') { /* squeeze preceding 0s */
int us = 0;
while ((c = *++str) == '0' || c == '_') {
if (c == '_') {
if (++us >= 2)
break;
}
else {
us = 0;
}
}
if (!(c = *str) || ISSPACE(c)) --str;
}
c = *str;
c = conv_digit(c);
if (c < 0 || c >= base) {
if (badcheck) goto bad;
return INT2FIX(0);
}
bits_per_digit = bit_length(base-1);
if (bits_per_digit * strlen(str) <= sizeof(long) * CHAR_BIT) {
char *end;
unsigned long val = STRTOUL(str, &end, base);
if (str < end && *end == '_') goto bigparse;
if (badcheck) {
if (end == str) goto bad; /* no number */
while (*end && ISSPACE(*end)) end++;
if (*end) goto bad; /* trailing garbage */
}
if (POSFIXABLE(val)) {
if (sign) return LONG2FIX(val);
else {
long result = -(long)val;
return LONG2FIX(result);
}
}
else {
VALUE big = rb_uint2big(val);
BIGNUM_SET_SIGN(big, sign);
return bignorm(big);
}
}
bigparse:
digits_start = str;
str2big_scan_digits(s, str, base, badcheck, &num_digits, &len);
digits_end = digits_start + len;
if (POW2_P(base)) {
z = str2big_poweroftwo(sign, digits_start, digits_end, num_digits,
bits_per_digit);
}
else {
int digits_per_bdigits_dbl;
maxpow_in_bdigit_dbl(base, &digits_per_bdigits_dbl);
num_bdigits = roomof(num_digits, digits_per_bdigits_dbl)*2;
#ifdef USE_GMP
if (GMP_STR2BIG_DIGITS < num_bdigits) {
z = str2big_gmp(sign, digits_start, digits_end, num_digits,
num_bdigits, base);
}
else
#endif
if (num_bdigits < KARATSUBA_MUL_DIGITS) {
z = str2big_normal(sign, digits_start, digits_end,
num_bdigits, base);
}
else {
z = str2big_karatsuba(sign, digits_start, digits_end, num_digits,
num_bdigits, digits_per_bdigits_dbl, base);
}
}
return bignorm(z);
}
VALUE
rb_str_to_inum(VALUE str, int base, int badcheck)
{
char *s;
long len;
VALUE v = 0;
VALUE ret;
StringValue(str);
rb_must_asciicompat(str);
if (badcheck) {
s = StringValueCStr(str);
}
else {
s = RSTRING_PTR(str);
}
if (s) {
len = RSTRING_LEN(str);
if (s[len]) { /* no sentinel somehow */
char *p = ALLOCV(v, len+1);
MEMCPY(p, s, char, len);
p[len] = '\0';
s = p;
}
}
ret = rb_cstr_to_inum(s, base, badcheck);
if (v)
ALLOCV_END(v);
return ret;
}
VALUE
rb_str2big_poweroftwo(VALUE arg, int base, int badcheck)
{
int positive_p = 1;
const char *s, *str;
const char *digits_start, *digits_end;
size_t num_digits;
size_t len;
VALUE z;
if (base < 2 || 36 < base || !POW2_P(base)) {
rb_raise(rb_eArgError, "invalid radix %d", base);
}
rb_must_asciicompat(arg);
s = str = StringValueCStr(arg);
if (*str == '-') {
str++;
positive_p = 0;
}
digits_start = str;
str2big_scan_digits(s, str, base, badcheck, &num_digits, &len);
digits_end = digits_start + len;
z = str2big_poweroftwo(positive_p, digits_start, digits_end, num_digits,
bit_length(base-1));
RB_GC_GUARD(arg);
return bignorm(z);
}
VALUE
rb_str2big_normal(VALUE arg, int base, int badcheck)
{
int positive_p = 1;
const char *s, *str;
const char *digits_start, *digits_end;
size_t num_digits;
size_t len;
VALUE z;
int digits_per_bdigits_dbl;
size_t num_bdigits;
if (base < 2 || 36 < base) {
rb_raise(rb_eArgError, "invalid radix %d", base);
}
rb_must_asciicompat(arg);
s = str = StringValueCStr(arg);
if (*str == '-') {
str++;
positive_p = 0;
}
digits_start = str;
str2big_scan_digits(s, str, base, badcheck, &num_digits, &len);
digits_end = digits_start + len;
maxpow_in_bdigit_dbl(base, &digits_per_bdigits_dbl);
num_bdigits = roomof(num_digits, digits_per_bdigits_dbl)*2;
z = str2big_normal(positive_p, digits_start, digits_end,
num_bdigits, base);
RB_GC_GUARD(arg);
return bignorm(z);
}
VALUE
rb_str2big_karatsuba(VALUE arg, int base, int badcheck)
{
int positive_p = 1;
const char *s, *str;
const char *digits_start, *digits_end;
size_t num_digits;
size_t len;
VALUE z;
int digits_per_bdigits_dbl;
size_t num_bdigits;
if (base < 2 || 36 < base) {
rb_raise(rb_eArgError, "invalid radix %d", base);
}
rb_must_asciicompat(arg);
s = str = StringValueCStr(arg);
if (*str == '-') {
str++;
positive_p = 0;
}
digits_start = str;
str2big_scan_digits(s, str, base, badcheck, &num_digits, &len);
digits_end = digits_start + len;
maxpow_in_bdigit_dbl(base, &digits_per_bdigits_dbl);
num_bdigits = roomof(num_digits, digits_per_bdigits_dbl)*2;
z = str2big_karatsuba(positive_p, digits_start, digits_end, num_digits,
num_bdigits, digits_per_bdigits_dbl, base);
RB_GC_GUARD(arg);
return bignorm(z);
}
#ifdef USE_GMP
VALUE
rb_str2big_gmp(VALUE arg, int base, int badcheck)
{
int positive_p = 1;
const char *s, *str;
const char *digits_start, *digits_end;
size_t num_digits;
size_t len;
VALUE z;
int digits_per_bdigits_dbl;
size_t num_bdigits;
if (base < 2 || 36 < base) {
rb_raise(rb_eArgError, "invalid radix %d", base);
}
rb_must_asciicompat(arg);
s = str = StringValueCStr(arg);
if (*str == '-') {
str++;
positive_p = 0;
}
digits_start = str;
str2big_scan_digits(s, str, base, badcheck, &num_digits, &len);
digits_end = digits_start + len;
maxpow_in_bdigit_dbl(base, &digits_per_bdigits_dbl);
num_bdigits = roomof(num_digits, digits_per_bdigits_dbl)*2;
z = str2big_gmp(positive_p, digits_start, digits_end, num_digits, num_bdigits, base);
RB_GC_GUARD(arg);
return bignorm(z);
}
#endif
#if HAVE_LONG_LONG
static VALUE
rb_ull2big(unsigned LONG_LONG n)
{
long i;
VALUE big = bignew(bdigit_roomof(SIZEOF_LONG_LONG), 1);
BDIGIT *digits = BDIGITS(big);
#if SIZEOF_BDIGIT >= SIZEOF_LONG_LONG
digits[0] = n;
#else
for (i = 0; i < bdigit_roomof(SIZEOF_LONG_LONG); i++) {
digits[i] = BIGLO(n);
n = BIGDN(n);
}
#endif
i = bdigit_roomof(SIZEOF_LONG_LONG);
while (i-- && !digits[i]) ;
BIGNUM_SET_LEN(big, i+1);
return big;
}
static VALUE
rb_ll2big(LONG_LONG n)
{
long neg = 0;
unsigned LONG_LONG u;
VALUE big;
if (n < 0) {
u = 1 + (unsigned LONG_LONG)(-(n + 1)); /* u = -n avoiding overflow */
neg = 1;
}
else {
u = n;
}
big = rb_ull2big(u);
if (neg) {
BIGNUM_SET_SIGN(big, 0);
}
return big;
}
VALUE
rb_ull2inum(unsigned LONG_LONG n)
{
if (POSFIXABLE(n)) return LONG2FIX(n);
return rb_ull2big(n);
}
VALUE
rb_ll2inum(LONG_LONG n)
{
if (FIXABLE(n)) return LONG2FIX(n);
return rb_ll2big(n);
}
#endif /* HAVE_LONG_LONG */
VALUE
rb_cstr2inum(const char *str, int base)
{
return rb_cstr_to_inum(str, base, base==0);
}
VALUE
rb_str2inum(VALUE str, int base)
{
return rb_str_to_inum(str, base, base==0);
}
static VALUE
big_shift3(VALUE x, int lshift_p, size_t shift_numdigits, int shift_numbits)
{
BDIGIT *xds, *zds;
long s1;
int s2;
VALUE z;
long xn;
if (lshift_p) {
if (LONG_MAX < shift_numdigits) {
rb_raise(rb_eArgError, "too big number");
}
s1 = shift_numdigits;
s2 = shift_numbits;
xn = BIGNUM_LEN(x);
z = bignew(xn+s1+1, BIGNUM_SIGN(x));
zds = BDIGITS(z);
BDIGITS_ZERO(zds, s1);
xds = BDIGITS(x);
zds[xn+s1] = bary_small_lshift(zds+s1, xds, xn, s2);
}
else {
long zn;
BDIGIT hibitsx;
if (LONG_MAX < shift_numdigits || (size_t)BIGNUM_LEN(x) <= shift_numdigits) {
if (BIGNUM_POSITIVE_P(x) ||
bary_zero_p(BDIGITS(x), BIGNUM_LEN(x)))
return INT2FIX(0);
else
return INT2FIX(-1);
}
s1 = shift_numdigits;
s2 = shift_numbits;
hibitsx = abs2twocomp(&x, &xn);
xds = BDIGITS(x);
if (xn <= s1) {
return hibitsx ? INT2FIX(-1) : INT2FIX(0);
}
zn = xn - s1;
z = bignew(zn, 0);
zds = BDIGITS(z);
bary_small_rshift(zds, xds+s1, zn, s2, hibitsx != 0 ? BDIGMAX : 0);
twocomp2abs_bang(z, hibitsx != 0);
}
RB_GC_GUARD(x);
return z;
}
static VALUE
big_shift2(VALUE x, int lshift_p, VALUE y)
{
int sign;
size_t lens[2];
size_t shift_numdigits;
int shift_numbits;
assert(POW2_P(CHAR_BIT));
assert(POW2_P(BITSPERDIG));
if (BIGZEROP(x))
return INT2FIX(0);
sign = rb_integer_pack(y, lens, numberof(lens), sizeof(size_t), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
if (sign < 0) {
lshift_p = !lshift_p;
sign = -sign;
}
if (lshift_p) {
if (1 < sign || CHAR_BIT <= lens[1])
rb_raise(rb_eRangeError, "shift width too big");
}
else {
if (1 < sign || CHAR_BIT <= lens[1])
return BIGNUM_POSITIVE_P(x) ? INT2FIX(0) : INT2FIX(-1);
}
shift_numbits = (int)(lens[0] & (BITSPERDIG-1));
shift_numdigits = (lens[0] >> bit_length(BITSPERDIG-1)) |
(lens[1] << (CHAR_BIT*SIZEOF_SIZE_T - bit_length(BITSPERDIG-1)));
return big_shift3(x, lshift_p, shift_numdigits, shift_numbits);
}
static VALUE
big_lshift(VALUE x, unsigned long shift)
{
long s1 = shift/BITSPERDIG;
int s2 = (int)(shift%BITSPERDIG);
return big_shift3(x, 1, s1, s2);
}
static VALUE
big_rshift(VALUE x, unsigned long shift)
{
long s1 = shift/BITSPERDIG;
int s2 = (int)(shift%BITSPERDIG);
return big_shift3(x, 0, s1, s2);
}
#define MAX_BASE36_POWER_TABLE_ENTRIES (SIZEOF_SIZE_T * CHAR_BIT + 1)
static VALUE base36_power_cache[35][MAX_BASE36_POWER_TABLE_ENTRIES];
static size_t base36_numdigits_cache[35][MAX_BASE36_POWER_TABLE_ENTRIES];
static void
power_cache_init(void)
{
int i, j;
for (i = 0; i < 35; ++i) {
for (j = 0; j < MAX_BASE36_POWER_TABLE_ENTRIES; ++j) {
base36_power_cache[i][j] = Qnil;
}
}
}
static inline VALUE
power_cache_get_power(int base, int power_level, size_t *numdigits_ret)
{
/*
* MAX_BASE36_POWER_TABLE_ENTRIES is big enough to that
* base36_power_cache[base][MAX_BASE36_POWER_TABLE_ENTRIES-1] fills whole memory.
* So MAX_BASE36_POWER_TABLE_ENTRIES <= power_level is not possible to calculate.
*
* number-of-bytes =
* log256(base36_power_cache[base][MAX_BASE36_POWER_TABLE_ENTRIES-1]) =
* log256(maxpow_in_bdigit_dbl(base)**(2**(MAX_BASE36_POWER_TABLE_ENTRIES-1))) =
* log256(maxpow_in_bdigit_dbl(base)**(2**(SIZEOF_SIZE_T*CHAR_BIT))) =
* (2**(SIZEOF_SIZE_T*CHAR_BIT))*log256(maxpow_in_bdigit_dbl(base)) =
* (256**SIZEOF_SIZE_T)*log256(maxpow_in_bdigit_dbl(base)) >
* (256**SIZEOF_SIZE_T)*(sizeof(BDIGIT_DBL)-1) >
* 256**SIZEOF_SIZE_T
*/
if (MAX_BASE36_POWER_TABLE_ENTRIES <= power_level)
rb_bug("too big power number requested: maxpow_in_bdigit_dbl(%d)**(2**%d)", base, power_level);
if (NIL_P(base36_power_cache[base - 2][power_level])) {
VALUE power;
size_t numdigits;
if (power_level == 0) {
int numdigits0;
BDIGIT_DBL dd = maxpow_in_bdigit_dbl(base, &numdigits0);
power = bignew(2, 1);
bdigitdbl2bary(BDIGITS(power), 2, dd);
numdigits = numdigits0;
}
else {
power = bigtrunc(bigsq(power_cache_get_power(base, power_level - 1, &numdigits)));
numdigits *= 2;
}
rb_obj_hide(power);
base36_power_cache[base - 2][power_level] = power;
base36_numdigits_cache[base - 2][power_level] = numdigits;
rb_gc_register_mark_object(power);
}
if (numdigits_ret)
*numdigits_ret = base36_numdigits_cache[base - 2][power_level];
return base36_power_cache[base - 2][power_level];
}
struct big2str_struct {
int negative;
int base;
BDIGIT_DBL hbase2;
int hbase2_numdigits;
VALUE result;
char *ptr;
};
static void
big2str_alloc(struct big2str_struct *b2s, size_t len)
{
if (LONG_MAX-1 < len)
rb_raise(rb_eArgError, "too big number");
b2s->result = rb_usascii_str_new(0, (long)(len + 1)); /* plus one for sign */
b2s->ptr = RSTRING_PTR(b2s->result);
if (b2s->negative)
*b2s->ptr++ = '-';
}
static void
big2str_2bdigits(struct big2str_struct *b2s, BDIGIT *xds, size_t xn, size_t taillen)
{
size_t j;
BDIGIT_DBL num;
char buf[SIZEOF_BDIGIT_DBL*CHAR_BIT], *p;
int beginning = !b2s->ptr;
size_t len = 0;
assert(xn <= 2);
num = bary2bdigitdbl(xds, xn);
if (beginning) {
if (num == 0)
return;
p = buf;
j = sizeof(buf);
do {
p[--j] = ruby_digitmap[num % b2s->base];
num /= b2s->base;
} while (num);
len = sizeof(buf) - j;
big2str_alloc(b2s, len + taillen);
MEMCPY(b2s->ptr, buf + j, char, len);
}
else {
p = b2s->ptr;
j = b2s->hbase2_numdigits;
do {
p[--j] = ruby_digitmap[num % b2s->base];
num /= b2s->base;
} while (j);
len = b2s->hbase2_numdigits;
}
b2s->ptr += len;
}
static void
big2str_karatsuba(struct big2str_struct *b2s, BDIGIT *xds, size_t xn, size_t wn,
int power_level, size_t taillen)
{
VALUE b;
size_t half_numdigits, lower_numdigits;
int lower_power_level;
size_t bn;
const BDIGIT *bds;
size_t len;
/*
* Precondition:
* abs(x) < maxpow**(2**power_level)
* where
* maxpow = maxpow_in_bdigit_dbl(base, &numdigits)
*
* This function generates sequence of zeros, and then stringized abs(x) into b2s->ptr.
*
* b2s->ptr can be NULL.
* It is allocated when the first character is generated via big2str_alloc.
*
* The prefix zeros should be generated if and only if b2s->ptr is not NULL.
* When the zeros are generated, the zeros and abs(x) consists
* numdigits*(2**power_level) characters at total.
*
* Note:
* power_cache_get_power(base, power_level, &len) may not be cached yet. It should not be called.
* power_cache_get_power(base, power_level-1, &len) should be cached already if 0 <= power_level-1.
*/
if (xn == 0 || bary_zero_p(xds, xn)) {
if (b2s->ptr) {
/* When x is zero, power_cache_get_power(base, power_level) should be cached already. */
power_cache_get_power(b2s->base, power_level, &len);
memset(b2s->ptr, '0', len);
b2s->ptr += len;
}
return;
}
if (power_level == 0) {
big2str_2bdigits(b2s, xds, xn, taillen);
return;
}
lower_power_level = power_level-1;
b = power_cache_get_power(b2s->base, lower_power_level, &lower_numdigits);
bn = BIGNUM_LEN(b);
bds = BDIGITS(b);
half_numdigits = lower_numdigits;
while (0 < lower_power_level &&
(xn < bn ||
(xn == bn && bary_cmp(xds, xn, bds, bn) < 0))) {
lower_power_level--;
b = power_cache_get_power(b2s->base, lower_power_level, &lower_numdigits);
bn = BIGNUM_LEN(b);
bds = BDIGITS(b);
}
if (lower_power_level == 0 &&
(xn < bn ||
(xn == bn && bary_cmp(xds, xn, bds, bn) < 0))) {
if (b2s->ptr) {
len = half_numdigits * 2 - lower_numdigits;
memset(b2s->ptr, '0', len);
b2s->ptr += len;
}
big2str_2bdigits(b2s, xds, xn, taillen);
}
else {
BDIGIT *qds, *rds;
size_t qn, rn;
BDIGIT *tds;
int shift;
if (lower_power_level != power_level-1 && b2s->ptr) {
len = (half_numdigits - lower_numdigits) * 2;
memset(b2s->ptr, '0', len);
b2s->ptr += len;
}
shift = nlz(bds[bn-1]);
qn = xn + BIGDIVREM_EXTRA_WORDS;
if (shift == 0) {
/* bigdivrem_restoring will not modify y.
* So use bds directly. */
tds = (BDIGIT *)bds;
xds[xn] = 0;
}
else {
/* bigdivrem_restoring will modify y.
* So use temporary buffer. */
tds = xds + qn;
assert(qn + bn <= xn + wn);
bary_small_lshift(tds, bds, bn, shift);
xds[xn] = bary_small_lshift(xds, xds, xn, shift);
}
bigdivrem_restoring(xds, qn, tds, bn);
rds = xds;
rn = bn;
qds = xds + bn;
qn = qn - bn;
if (shift) {
bary_small_rshift(rds, rds, rn, shift, 0);
}
BARY_TRUNC(qds, qn);
assert(qn <= bn);
big2str_karatsuba(b2s, qds, qn, xn+wn - (rn+qn), lower_power_level, lower_numdigits+taillen);
BARY_TRUNC(rds, rn);
big2str_karatsuba(b2s, rds, rn, xn+wn - rn, lower_power_level, taillen);
}
}
static VALUE
big2str_base_poweroftwo(VALUE x, int base)
{
int word_numbits = ffs(base) - 1;
size_t numwords;
VALUE result;
char *ptr;
numwords = rb_absint_numwords(x, word_numbits, NULL);
if (BIGNUM_NEGATIVE_P(x)) {
if (LONG_MAX-1 < numwords)
rb_raise(rb_eArgError, "too big number");
result = rb_usascii_str_new(0, 1+numwords);
ptr = RSTRING_PTR(result);
*ptr++ = BIGNUM_POSITIVE_P(x) ? '+' : '-';
}
else {
if (LONG_MAX < numwords)
rb_raise(rb_eArgError, "too big number");
result = rb_usascii_str_new(0, numwords);
ptr = RSTRING_PTR(result);
}
rb_integer_pack(x, ptr, numwords, 1, CHAR_BIT-word_numbits,
INTEGER_PACK_BIG_ENDIAN);
while (0 < numwords) {
*ptr = ruby_digitmap[*(unsigned char *)ptr];
ptr++;
numwords--;
}
return result;
}
VALUE
rb_big2str_poweroftwo(VALUE x, int base)
{
return big2str_base_poweroftwo(x, base);
}
static VALUE
big2str_generic(VALUE x, int base)
{
BDIGIT *xds;
size_t xn;
struct big2str_struct b2s_data;
int power_level;
VALUE power;
xds = BDIGITS(x);
xn = BIGNUM_LEN(x);
BARY_TRUNC(xds, xn);
if (xn == 0) {
return rb_usascii_str_new2("0");
}
if (base < 2 || 36 < base)
rb_raise(rb_eArgError, "invalid radix %d", base);
if (xn >= LONG_MAX/BITSPERDIG) {
rb_raise(rb_eRangeError, "bignum too big to convert into `string'");
}
power_level = 0;
power = power_cache_get_power(base, power_level, NULL);
while (power_level < MAX_BASE36_POWER_TABLE_ENTRIES &&
(size_t)BIGNUM_LEN(power) <= (xn+1)/2) {
power_level++;
power = power_cache_get_power(base, power_level, NULL);
}
assert(power_level != MAX_BASE36_POWER_TABLE_ENTRIES);
if ((size_t)BIGNUM_LEN(power) <= xn) {
/*
* This increment guarantees x < power_cache_get_power(base, power_level)
* without invoking it actually.
* (power_cache_get_power(base, power_level) can be slow and not used
* in big2str_karatsuba.)
*
* Although it is possible that x < power_cache_get_power(base, power_level-1),
* it is no problem because big2str_karatsuba checks it and
* doesn't affect the result when b2s_data.ptr is NULL.
*/
power_level++;
}
b2s_data.negative = BIGNUM_NEGATIVE_P(x);
b2s_data.base = base;
b2s_data.hbase2 = maxpow_in_bdigit_dbl(base, &b2s_data.hbase2_numdigits);
b2s_data.result = Qnil;
b2s_data.ptr = NULL;
if (power_level == 0) {
big2str_2bdigits(&b2s_data, xds, xn, 0);
}
else {
VALUE tmpw = 0;
BDIGIT *wds;
size_t wn;
wn = power_level * BIGDIVREM_EXTRA_WORDS + BIGNUM_LEN(power);
wds = ALLOCV_N(BDIGIT, tmpw, xn + wn);
MEMCPY(wds, xds, BDIGIT, xn);
big2str_karatsuba(&b2s_data, wds, xn, wn, power_level, 0);
if (tmpw)
ALLOCV_END(tmpw);
}
RB_GC_GUARD(x);
*b2s_data.ptr = '\0';
rb_str_resize(b2s_data.result, (long)(b2s_data.ptr - RSTRING_PTR(b2s_data.result)));
RB_GC_GUARD(x);
return b2s_data.result;
}
VALUE
rb_big2str_generic(VALUE x, int base)
{
return big2str_generic(x, base);
}
#ifdef USE_GMP
VALUE
big2str_gmp(VALUE x, int base)
{
const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
mpz_t mx;
size_t size;
VALUE str;
BDIGIT *xds = BDIGITS(x);
size_t xn = BIGNUM_LEN(x);
mpz_init(mx);
mpz_import(mx, xn, -1, sizeof(BDIGIT), 0, nails, xds);
size = mpz_sizeinbase(mx, base);
if (BIGNUM_NEGATIVE_P(x)) {
mpz_neg(mx, mx);
str = rb_usascii_str_new(0, size+1);
}
else {
str = rb_usascii_str_new(0, size);
}
mpz_get_str(RSTRING_PTR(str), base, mx);
mpz_clear(mx);
if (RSTRING_PTR(str)[RSTRING_LEN(str)-1] == '\0') {
rb_str_set_len(str, RSTRING_LEN(str)-1);
}
RB_GC_GUARD(x);
return str;
}
VALUE
rb_big2str_gmp(VALUE x, int base)
{
return big2str_gmp(x, base);
}
#endif
static VALUE
rb_big2str1(VALUE x, int base)
{
BDIGIT *xds;
size_t xn;
if (FIXNUM_P(x)) {
return rb_fix2str(x, base);
}
bigtrunc(x);
xds = BDIGITS(x);
xn = BIGNUM_LEN(x);
BARY_TRUNC(xds, xn);
if (xn == 0) {
return rb_usascii_str_new2("0");
}
if (base < 2 || 36 < base)
rb_raise(rb_eArgError, "invalid radix %d", base);
if (xn >= LONG_MAX/BITSPERDIG) {
rb_raise(rb_eRangeError, "bignum too big to convert into `string'");
}
if (POW2_P(base)) {
/* base == 2 || base == 4 || base == 8 || base == 16 || base == 32 */
return big2str_base_poweroftwo(x, base);
}
#ifdef USE_GMP
if (GMP_BIG2STR_DIGITS < xn) {
return big2str_gmp(x, base);
}
#endif
return big2str_generic(x, base);
}
VALUE
rb_big2str(VALUE x, int base)
{
return rb_big2str1(x, base);
}
/*
* call-seq:
* big.to_s(base=10) -> string
*
* Returns a string containing the representation of <i>big</i> radix
* <i>base</i> (2 through 36).
*
* 12345654321.to_s #=> "12345654321"
* 12345654321.to_s(2) #=> "1011011111110110111011110000110001"
* 12345654321.to_s(8) #=> "133766736061"
* 12345654321.to_s(16) #=> "2dfdbbc31"
* 78546939656932.to_s(36) #=> "rubyrules"
*/
static VALUE
rb_big_to_s(int argc, VALUE *argv, VALUE x)
{
int base;
if (argc == 0) base = 10;
else {
VALUE b;
rb_scan_args(argc, argv, "01", &b);
base = NUM2INT(b);
}
return rb_big2str(x, base);
}
static unsigned long
big2ulong(VALUE x, const char *type)
{
size_t len = BIGNUM_LEN(x);
unsigned long num;
BDIGIT *ds;
if (len == 0)
return 0;
if (BIGSIZE(x) > sizeof(long)) {
rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
}
ds = BDIGITS(x);
#if SIZEOF_LONG <= SIZEOF_BDIGIT
num = (unsigned long)ds[0];
#else
num = 0;
while (len--) {
num <<= BITSPERDIG;
num += (unsigned long)ds[len]; /* overflow is already checked */
}
#endif
return num;
}
unsigned long
rb_big2ulong(VALUE x)
{
unsigned long num = big2ulong(x, "unsigned long");
if (BIGNUM_POSITIVE_P(x)) {
return num;
}
else {
if (num <= LONG_MAX)
return -(long)num;
if (num == 1+(unsigned long)(-(LONG_MIN+1)))
return LONG_MIN;
}
rb_raise(rb_eRangeError, "bignum out of range of unsigned long");
}
long
rb_big2long(VALUE x)
{
unsigned long num = big2ulong(x, "long");
if (BIGNUM_POSITIVE_P(x)) {
if (num <= LONG_MAX)
return num;
}
else {
if (num <= LONG_MAX)
return -(long)num;
if (num == 1+(unsigned long)(-(LONG_MIN+1)))
return LONG_MIN;
}
rb_raise(rb_eRangeError, "bignum too big to convert into `long'");
}
#if HAVE_LONG_LONG
static unsigned LONG_LONG
big2ull(VALUE x, const char *type)
{
size_t len = BIGNUM_LEN(x);
unsigned LONG_LONG num;
BDIGIT *ds = BDIGITS(x);
if (len == 0)
return 0;
if (BIGSIZE(x) > SIZEOF_LONG_LONG)
rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
#if SIZEOF_LONG_LONG <= SIZEOF_BDIGIT
num = (unsigned LONG_LONG)ds[0];
#else
num = 0;
while (len--) {
num = BIGUP(num);
num += ds[len];
}
#endif
return num;
}
unsigned LONG_LONG
rb_big2ull(VALUE x)
{
unsigned LONG_LONG num = big2ull(x, "unsigned long long");
if (BIGNUM_POSITIVE_P(x)) {
return num;
}
else {
if (num <= LLONG_MAX)
return -(LONG_LONG)num;
if (num == 1+(unsigned LONG_LONG)(-(LLONG_MIN+1)))
return LLONG_MIN;
}
rb_raise(rb_eRangeError, "bignum out of range of unsigned long long");
}
LONG_LONG
rb_big2ll(VALUE x)
{
unsigned LONG_LONG num = big2ull(x, "long long");
if (BIGNUM_POSITIVE_P(x)) {
if (num <= LLONG_MAX)
return num;
}
else {
if (num <= LLONG_MAX)
return -(LONG_LONG)num;
if (num == 1+(unsigned LONG_LONG)(-(LLONG_MIN+1)))
return LLONG_MIN;
}
rb_raise(rb_eRangeError, "bignum too big to convert into `long long'");
}
#endif /* HAVE_LONG_LONG */
static VALUE
dbl2big(double d)
{
long i = 0;
BDIGIT c;
BDIGIT *digits;
VALUE z;
double u = (d < 0)?-d:d;
if (isinf(d)) {
rb_raise(rb_eFloatDomainError, d < 0 ? "-Infinity" : "Infinity");
}
if (isnan(d)) {
rb_raise(rb_eFloatDomainError, "NaN");
}
while (1.0 <= u) {
u /= (double)(BIGRAD);
i++;
}
z = bignew(i, d>=0);
digits = BDIGITS(z);
while (i--) {
u *= BIGRAD;
c = (BDIGIT)u;
u -= c;
digits[i] = c;
}
return z;
}
VALUE
rb_dbl2big(double d)
{
return bignorm(dbl2big(d));
}
static double
big2dbl(VALUE x)
{
double d = 0.0;
long i = (bigtrunc(x), BIGNUM_LEN(x)), lo = 0, bits;
BDIGIT *ds = BDIGITS(x), dl;
if (i) {
bits = i * BITSPERDIG - nlz(ds[i-1]);
if (bits > DBL_MANT_DIG+DBL_MAX_EXP) {
d = HUGE_VAL;
}
else {
if (bits > DBL_MANT_DIG+1)
lo = (bits -= DBL_MANT_DIG+1) / BITSPERDIG;
else
bits = 0;
while (--i > lo) {
d = ds[i] + BIGRAD*d;
}
dl = ds[i];
if (bits && (dl & ((BDIGIT)1 << (bits %= BITSPERDIG)))) {
int carry = (dl & ~(BDIGMAX << bits)) != 0;
if (!carry) {
while (i-- > 0) {
carry = ds[i] != 0;
if (carry) break;
}
}
if (carry) {
dl &= BDIGMAX << bits;
dl = BIGLO(dl + ((BDIGIT)1 << bits));
if (!dl) d += 1;
}
}
d = dl + BIGRAD*d;
if (lo) {
if (lo > INT_MAX / BITSPERDIG)
d = HUGE_VAL;
else if (lo < INT_MIN / BITSPERDIG)
d = 0.0;
else
d = ldexp(d, (int)(lo * BITSPERDIG));
}
}
}
if (!BIGNUM_SIGN(x)) d = -d;
return d;
}
double
rb_big2dbl(VALUE x)
{
double d = big2dbl(x);
if (isinf(d)) {
rb_warning("Bignum out of Float range");
if (d < 0.0)
d = -HUGE_VAL;
else
d = HUGE_VAL;
}
return d;
}
/*
* call-seq:
* big.to_f -> float
*
* Converts <i>big</i> to a <code>Float</code>. If <i>big</i> doesn't
* fit in a <code>Float</code>, the result is infinity.
*
*/
static VALUE
rb_big_to_f(VALUE x)
{
return DBL2NUM(rb_big2dbl(x));
}
VALUE
rb_integer_float_cmp(VALUE x, VALUE y)
{
double yd = RFLOAT_VALUE(y);
double yi, yf;
VALUE rel;
if (isnan(yd))
return Qnil;
if (isinf(yd)) {
if (yd > 0.0) return INT2FIX(-1);
else return INT2FIX(1);
}
yf = modf(yd, &yi);
if (FIXNUM_P(x)) {
#if SIZEOF_LONG * CHAR_BIT < DBL_MANT_DIG /* assume FLT_RADIX == 2 */
double xd = (double)FIX2LONG(x);
if (xd < yd)
return INT2FIX(-1);
if (xd > yd)
return INT2FIX(1);
return INT2FIX(0);
#else
long xn, yn;
if (yi < FIXNUM_MIN)
return INT2FIX(1);
if (FIXNUM_MAX+1 <= yi)
return INT2FIX(-1);
xn = FIX2LONG(x);
yn = (long)yi;
if (xn < yn)
return INT2FIX(-1);
if (xn > yn)
return INT2FIX(1);
if (yf < 0.0)
return INT2FIX(1);
if (0.0 < yf)
return INT2FIX(-1);
return INT2FIX(0);
#endif
}
y = rb_dbl2big(yi);
rel = rb_big_cmp(x, y);
if (yf == 0.0 || rel != INT2FIX(0))
return rel;
if (yf < 0.0)
return INT2FIX(1);
return INT2FIX(-1);
}
VALUE
rb_integer_float_eq(VALUE x, VALUE y)
{
double yd = RFLOAT_VALUE(y);
double yi, yf;
if (isnan(yd) || isinf(yd))
return Qfalse;
yf = modf(yd, &yi);
if (yf != 0)
return Qfalse;
if (FIXNUM_P(x)) {
#if SIZEOF_LONG * CHAR_BIT < DBL_MANT_DIG /* assume FLT_RADIX == 2 */
double xd = (double)FIX2LONG(x);
if (xd != yd)
return Qfalse;
return Qtrue;
#else
long xn, yn;
if (yi < LONG_MIN || LONG_MAX < yi)
return Qfalse;
xn = FIX2LONG(x);
yn = (long)yi;
if (xn != yn)
return Qfalse;
return Qtrue;
#endif
}
y = rb_dbl2big(yi);
return rb_big_eq(x, y);
}
/*
* call-seq:
* big <=> numeric -> -1, 0, +1 or nil
*
* Comparison---Returns -1, 0, or +1 depending on whether +big+ is
* less than, equal to, or greater than +numeric+. This is the
* basis for the tests in Comparable.
*
* +nil+ is returned if the two values are incomparable.
*
*/
VALUE
rb_big_cmp(VALUE x, VALUE y)
{
int cmp;
if (FIXNUM_P(y)) {
x = bignorm(x);
if (FIXNUM_P(x)) {
if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
if (FIX2LONG(x) < FIX2LONG(y)) return INT2FIX(-1);
return INT2FIX(0);
}
else {
if (BIGNUM_NEGATIVE_P(x)) return INT2FIX(-1);
return INT2FIX(1);
}
}
else if (RB_BIGNUM_TYPE_P(y)) {
}
else if (RB_FLOAT_TYPE_P(y)) {
return rb_integer_float_cmp(x, y);
}
else {
return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
}
if (BIGNUM_SIGN(x) > BIGNUM_SIGN(y)) return INT2FIX(1);
if (BIGNUM_SIGN(x) < BIGNUM_SIGN(y)) return INT2FIX(-1);
cmp = bary_cmp(BDIGITS(x), BIGNUM_LEN(x), BDIGITS(y), BIGNUM_LEN(y));
if (BIGNUM_SIGN(x))
return INT2FIX(cmp);
else
return INT2FIX(-cmp);
}
enum big_op_t {
big_op_gt,
big_op_ge,
big_op_lt,
big_op_le
};
static VALUE
big_op(VALUE x, VALUE y, enum big_op_t op)
{
VALUE rel;
int n;
if (FIXNUM_P(y) || RB_BIGNUM_TYPE_P(y)) {
rel = rb_big_cmp(x, y);
}
else if (RB_FLOAT_TYPE_P(y)) {
rel = rb_integer_float_cmp(x, y);
}
else {
ID id = 0;
switch (op) {
case big_op_gt: id = '>'; break;
case big_op_ge: id = rb_intern(">="); break;
case big_op_lt: id = '<'; break;
case big_op_le: id = rb_intern("<="); break;
}
return rb_num_coerce_relop(x, y, id);
}
if (NIL_P(rel)) return Qfalse;
n = FIX2INT(rel);
switch (op) {
case big_op_gt: return n > 0 ? Qtrue : Qfalse;
case big_op_ge: return n >= 0 ? Qtrue : Qfalse;
case big_op_lt: return n < 0 ? Qtrue : Qfalse;
case big_op_le: return n <= 0 ? Qtrue : Qfalse;
}
return Qundef;
}
/*
* call-seq:
* big > real -> true or false
*
* Returns <code>true</code> if the value of <code>big</code> is
* greater than that of <code>real</code>.
*/
static VALUE
big_gt(VALUE x, VALUE y)
{
return big_op(x, y, big_op_gt);
}
/*
* call-seq:
* big >= real -> true or false
*
* Returns <code>true</code> if the value of <code>big</code> is
* greater than or equal to that of <code>real</code>.
*/
static VALUE
big_ge(VALUE x, VALUE y)
{
return big_op(x, y, big_op_ge);
}
/*
* call-seq:
* big < real -> true or false
*
* Returns <code>true</code> if the value of <code>big</code> is
* less than that of <code>real</code>.
*/
static VALUE
big_lt(VALUE x, VALUE y)
{
return big_op(x, y, big_op_lt);
}
/*
* call-seq:
* big <= real -> true or false
*
* Returns <code>true</code> if the value of <code>big</code> is
* less than or equal to that of <code>real</code>.
*/
static VALUE
big_le(VALUE x, VALUE y)
{
return big_op(x, y, big_op_le);
}
/*
* call-seq:
* big == obj -> true or false
*
* Returns <code>true</code> only if <i>obj</i> has the same value
* as <i>big</i>. Contrast this with <code>Bignum#eql?</code>, which
* requires <i>obj</i> to be a <code>Bignum</code>.
*
* 68719476736 == 68719476736.0 #=> true
*/
VALUE
rb_big_eq(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
if (bignorm(x) == y) return Qtrue;
y = rb_int2big(FIX2LONG(y));
}
else if (RB_BIGNUM_TYPE_P(y)) {
}
else if (RB_FLOAT_TYPE_P(y)) {
return rb_integer_float_eq(x, y);
}
else {
return rb_equal(y, x);
}
if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
return Qtrue;
}
/*
* call-seq:
* big.eql?(obj) -> true or false
*
* Returns <code>true</code> only if <i>obj</i> is a
* <code>Bignum</code> with the same value as <i>big</i>. Contrast this
* with <code>Bignum#==</code>, which performs type conversions.
*
* 68719476736.eql?(68719476736.0) #=> false
*/
VALUE
rb_big_eql(VALUE x, VALUE y)
{
if (!RB_BIGNUM_TYPE_P(y)) return Qfalse;
if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
return Qtrue;
}
/*
* call-seq:
* -big -> integer
*
* Unary minus (returns an integer whose value is 0-big)
*/
VALUE
rb_big_uminus(VALUE x)
{
VALUE z = rb_big_clone(x);
BIGNUM_SET_SIGN(z, !BIGNUM_SIGN(x));
return bignorm(z);
}
/*
* call-seq:
* ~big -> integer
*
* Inverts the bits in big. As Bignums are conceptually infinite
* length, the result acts as if it had an infinite number of one
* bits to the left. In hex representations, this is displayed
* as two periods to the left of the digits.
*
* sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
*/
static VALUE
rb_big_neg(VALUE x)
{
VALUE z = rb_big_clone(x);
BDIGIT *ds = BDIGITS(z);
long n = BIGNUM_LEN(z);
if (!n) return INT2FIX(-1);
if (BIGNUM_POSITIVE_P(z)) {
if (bary_add_one(ds, n)) {
big_extend_carry(z);
}
BIGNUM_SET_NEGATIVE_SIGN(z);
}
else {
bary_neg(ds, n);
if (bary_add_one(ds, n))
return INT2FIX(-1);
bary_neg(ds, n);
BIGNUM_SET_POSITIVE_SIGN(z);
}
return bignorm(z);
}
static VALUE
bigsub(VALUE x, VALUE y)
{
VALUE z;
BDIGIT *xds, *yds, *zds;
long xn, yn, zn;
xn = BIGNUM_LEN(x);
yn = BIGNUM_LEN(y);
zn = xn < yn ? yn : xn;
z = bignew(zn, 1);
xds = BDIGITS(x);
yds = BDIGITS(y);
zds = BDIGITS(z);
if (bary_sub(zds, zn, xds, xn, yds, yn)) {
bary_2comp(zds, zn);
BIGNUM_SET_NEGATIVE_SIGN(z);
}
return z;
}
static VALUE bigadd_int(VALUE x, long y);
static VALUE
bigsub_int(VALUE x, long y0)
{
VALUE z;
BDIGIT *xds, *zds;
long xn, zn;
BDIGIT_DBL_SIGNED num;
long i, y;
y = y0;
xds = BDIGITS(x);
xn = BIGNUM_LEN(x);
if (xn == 0)
return LONG2NUM(-y0);
zn = xn;
#if SIZEOF_BDIGIT < SIZEOF_LONG
if (zn < bdigit_roomof(SIZEOF_LONG))
zn = bdigit_roomof(SIZEOF_LONG);
#endif
z = bignew(zn, BIGNUM_SIGN(x));
zds = BDIGITS(z);
#if SIZEOF_BDIGIT >= SIZEOF_LONG
assert(xn == zn);
num = (BDIGIT_DBL_SIGNED)xds[0] - y;
if (xn == 1 && num < 0) {
BIGNUM_SET_SIGN(z, !BIGNUM_SIGN(x));
zds[0] = (BDIGIT)-num;
RB_GC_GUARD(x);
return bignorm(z);
}
zds[0] = BIGLO(num);
num = BIGDN(num);
i = 1;
if (i < xn)
goto y_is_zero_x;
goto finish;
#else
num = 0;
for (i=0; i < xn; i++) {
if (y == 0) goto y_is_zero_x;
num += (BDIGIT_DBL_SIGNED)xds[i] - BIGLO(y);
zds[i] = BIGLO(num);
num = BIGDN(num);
y = BIGDN(y);
}
for (; i < zn; i++) {
if (y == 0) goto y_is_zero_z;
num -= BIGLO(y);
zds[i] = BIGLO(num);
num = BIGDN(num);
y = BIGDN(y);
}
goto finish;
#endif
for (; i < xn; i++) {
y_is_zero_x:
if (num == 0) goto num_is_zero_x;
num += xds[i];
zds[i] = BIGLO(num);
num = BIGDN(num);
}
#if SIZEOF_BDIGIT < SIZEOF_LONG
for (; i < zn; i++) {
y_is_zero_z:
if (num == 0) goto num_is_zero_z;
zds[i] = BIGLO(num);
num = BIGDN(num);
}
#endif
goto finish;
for (; i < xn; i++) {
num_is_zero_x:
zds[i] = xds[i];
}
#if SIZEOF_BDIGIT < SIZEOF_LONG
for (; i < zn; i++) {
num_is_zero_z:
zds[i] = 0;
}
#endif
goto finish;
finish:
assert(num == 0 || num == -1);
if (num < 0) {
get2comp(z);
BIGNUM_SET_SIGN(z, !BIGNUM_SIGN(x));
}
RB_GC_GUARD(x);
return bignorm(z);
}
static VALUE
bigadd_int(VALUE x, long y)
{
VALUE z;
BDIGIT *xds, *zds;
long xn, zn;
BDIGIT_DBL num;
long i;
xds = BDIGITS(x);
xn = BIGNUM_LEN(x);
if (xn == 0)
return LONG2NUM(y);
zn = xn;
#if SIZEOF_BDIGIT < SIZEOF_LONG
if (zn < bdigit_roomof(SIZEOF_LONG))
zn = bdigit_roomof(SIZEOF_LONG);
#endif
zn++;
z = bignew(zn, BIGNUM_SIGN(x));
zds = BDIGITS(z);
#if SIZEOF_BDIGIT >= SIZEOF_LONG
num = (BDIGIT_DBL)xds[0] + y;
zds[0] = BIGLO(num);
num = BIGDN(num);
i = 1;
if (i < xn)
goto y_is_zero_x;
goto y_is_zero_z;
#else
num = 0;
for (i=0; i < xn; i++) {
if (y == 0) goto y_is_zero_x;
num += (BDIGIT_DBL)xds[i] + BIGLO(y);
zds[i] = BIGLO(num);
num = BIGDN(num);
y = BIGDN(y);
}
for (; i < zn; i++) {
if (y == 0) goto y_is_zero_z;
num += BIGLO(y);
zds[i] = BIGLO(num);
num = BIGDN(num);
y = BIGDN(y);
}
goto finish;
#endif
for (;i < xn; i++) {
y_is_zero_x:
if (num == 0) goto num_is_zero_x;
num += (BDIGIT_DBL)xds[i];
zds[i] = BIGLO(num);
num = BIGDN(num);
}
for (; i < zn; i++) {
y_is_zero_z:
if (num == 0) goto num_is_zero_z;
zds[i] = BIGLO(num);
num = BIGDN(num);
}
goto finish;
for (;i < xn; i++) {
num_is_zero_x:
zds[i] = xds[i];
}
for (; i < zn; i++) {
num_is_zero_z:
zds[i] = 0;
}
goto finish;
finish:
RB_GC_GUARD(x);
return bignorm(z);
}
static VALUE
bigadd(VALUE x, VALUE y, int sign)
{
VALUE z;
size_t len;
sign = (sign == BIGNUM_SIGN(y));
if (BIGNUM_SIGN(x) != sign) {
if (sign) return bigsub(y, x);
return bigsub(x, y);
}
if (BIGNUM_LEN(x) > BIGNUM_LEN(y)) {
len = BIGNUM_LEN(x) + 1;
}
else {
len = BIGNUM_LEN(y) + 1;
}
z = bignew(len, sign);
bary_add(BDIGITS(z), BIGNUM_LEN(z),
BDIGITS(x), BIGNUM_LEN(x),
BDIGITS(y), BIGNUM_LEN(y));
return z;
}
/*
* call-seq:
* big + other -> Numeric
*
* Adds big and other, returning the result.
*/
VALUE
rb_big_plus(VALUE x, VALUE y)
{
long n;
if (FIXNUM_P(y)) {
n = FIX2LONG(y);
if ((n > 0) != BIGNUM_SIGN(x)) {
if (n < 0) {
n = -n;
}
return bigsub_int(x, n);
}
if (n < 0) {
n = -n;
}
return bigadd_int(x, n);
}
else if (RB_BIGNUM_TYPE_P(y)) {
return bignorm(bigadd(x, y, 1));
}
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '+');
}
}
/*
* call-seq:
* big - other -> Numeric
*
* Subtracts other from big, returning the result.
*/
VALUE
rb_big_minus(VALUE x, VALUE y)
{
long n;
if (FIXNUM_P(y)) {
n = FIX2LONG(y);
if ((n > 0) != BIGNUM_SIGN(x)) {
if (n < 0) {
n = -n;
}
return bigadd_int(x, n);
}
if (n < 0) {
n = -n;
}
return bigsub_int(x, n);
}
else if (RB_BIGNUM_TYPE_P(y)) {
return bignorm(bigadd(x, y, 0));
}
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '-');
}
}
static VALUE
bigsq(VALUE x)
{
long xn, zn;
VALUE z;
BDIGIT *xds, *zds;
xn = BIGNUM_LEN(x);
zn = 2 * xn;
z = bignew(zn, 1);
xds = BDIGITS(x);
zds = BDIGITS(z);
#ifdef USE_GMP
if (xn < GMP_MUL_DIGITS)
bary_sq_fast(zds, zn, xds, xn);
else
bary_mul(zds, zn, xds, xn, xds, xn);
#else
if (xn < KARATSUBA_MUL_DIGITS)
bary_sq_fast(zds, zn, xds, xn);
else
bary_mul(zds, zn, xds, xn, xds, xn);
#endif
RB_GC_GUARD(x);
return z;
}
static VALUE
bigmul0(VALUE x, VALUE y)
{
long xn, yn, zn;
VALUE z;
BDIGIT *xds, *yds, *zds;
if (x == y)
return bigsq(x);
xn = BIGNUM_LEN(x);
yn = BIGNUM_LEN(y);
zn = xn + yn;
z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
xds = BDIGITS(x);
yds = BDIGITS(y);
zds = BDIGITS(z);
bary_mul(zds, zn, xds, xn, yds, yn);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return z;
}
/*
* call-seq:
* big * other -> Numeric
*
* Multiplies big and other, returning the result.
*/
VALUE
rb_big_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
y = rb_int2big(FIX2LONG(y));
}
else if (RB_BIGNUM_TYPE_P(y)) {
}
else if (RB_FLOAT_TYPE_P(y)) {
return DBL2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '*');
}
return bignorm(bigmul0(x, y));
}
static VALUE
bigdivrem(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp)
{
long xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y);
VALUE z;
BDIGIT *xds, *yds, *zds;
BDIGIT dd;
VALUE q = Qnil, r = Qnil;
BDIGIT *qds, *rds;
long qn, rn;
yds = BDIGITS(y);
BARY_TRUNC(yds, yn);
if (yn == 0)
rb_num_zerodiv();
xds = BDIGITS(x);
BARY_TRUNC(xds, xn);
if (xn < yn || (xn == yn && xds[xn - 1] < yds[yn - 1])) {
if (divp) *divp = rb_int2big(0);
if (modp) *modp = x;
return Qnil;
}
if (yn == 1) {
dd = yds[0];
z = bignew(xn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
zds = BDIGITS(z);
dd = bigdivrem_single(zds, xds, xn, dd);
if (modp) {
*modp = rb_uint2big((VALUE)dd);
BIGNUM_SET_SIGN(*modp, BIGNUM_SIGN(x));
}
if (divp) *divp = z;
return Qnil;
}
if (xn == 2 && yn == 2) {
BDIGIT_DBL x0 = bary2bdigitdbl(xds, 2);
BDIGIT_DBL y0 = bary2bdigitdbl(yds, 2);
BDIGIT_DBL q0 = x0 / y0;
BDIGIT_DBL r0 = x0 % y0;
if (divp) {
z = bignew(bdigit_roomof(sizeof(BDIGIT_DBL)), BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
zds = BDIGITS(z);
zds[0] = BIGLO(q0);
zds[1] = BIGLO(BIGDN(q0));
*divp = z;
}
if (modp) {
z = bignew(bdigit_roomof(sizeof(BDIGIT_DBL)), BIGNUM_SIGN(x));
zds = BDIGITS(z);
zds[0] = BIGLO(r0);
zds[1] = BIGLO(BIGDN(r0));
*modp = z;
}
return Qnil;
}
if (divp) {
qn = xn + BIGDIVREM_EXTRA_WORDS;
q = bignew(qn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
qds = BDIGITS(q);
}
else {
qn = 0;
qds = NULL;
}
if (modp) {
rn = yn;
r = bignew(rn, BIGNUM_SIGN(x));
rds = BDIGITS(r);
}
else {
rn = 0;
rds = NULL;
}
bary_divmod_branch(qds, qn, rds, rn, xds, xn, yds, yn);
if (divp) {
bigtrunc(q);
*divp = q;
}
if (modp) {
bigtrunc(r);
*modp = r;
}
return Qnil;
}
static void
bigdivmod(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp)
{
VALUE mod;
bigdivrem(x, y, divp, &mod);
if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y) && !BIGZEROP(mod)) {
if (divp) *divp = bigadd(*divp, rb_int2big(1), 0);
if (modp) *modp = bigadd(mod, y, 1);
}
else if (modp) {
*modp = mod;
}
}
static VALUE
rb_big_divide(VALUE x, VALUE y, ID op)
{
VALUE z;
if (FIXNUM_P(y)) {
y = rb_int2big(FIX2LONG(y));
}
else if (RB_BIGNUM_TYPE_P(y)) {
}
else if (RB_FLOAT_TYPE_P(y)) {
if (op == '/') {
return DBL2NUM(rb_big2dbl(x) / RFLOAT_VALUE(y));
}
else {
double dy = RFLOAT_VALUE(y);
if (dy == 0.0) rb_num_zerodiv();
return rb_dbl2big(rb_big2dbl(x) / dy);
}
}
else {
return rb_num_coerce_bin(x, y, op);
}
bigdivmod(x, y, &z, 0);
return bignorm(z);
}
/*
* call-seq:
* big / other -> Numeric
*
* Performs division: the class of the resulting object depends on
* the class of <code>numeric</code> and on the magnitude of the
* result.
*/
VALUE
rb_big_div(VALUE x, VALUE y)
{
return rb_big_divide(x, y, '/');
}
/*
* call-seq:
* big.div(other) -> integer
*
* Performs integer division: returns integer value.
*/
VALUE
rb_big_idiv(VALUE x, VALUE y)
{
return rb_big_divide(x, y, rb_intern("div"));
}
/*
* call-seq:
* big % other -> Numeric
* big.modulo(other) -> Numeric
*
* Returns big modulo other. See Numeric.divmod for more
* information.
*/
VALUE
rb_big_modulo(VALUE x, VALUE y)
{
VALUE z;
if (FIXNUM_P(y)) {
y = rb_int2big(FIX2LONG(y));
}
else if (!RB_BIGNUM_TYPE_P(y)) {
return rb_num_coerce_bin(x, y, '%');
}
bigdivmod(x, y, 0, &z);
return bignorm(z);
}
/*
* call-seq:
* big.remainder(numeric) -> number
*
* Returns the remainder after dividing <i>big</i> by <i>numeric</i>.
*
* -1234567890987654321.remainder(13731) #=> -6966
* -1234567890987654321.remainder(13731.24) #=> -9906.22531493148
*/
static VALUE
rb_big_remainder(VALUE x, VALUE y)
{
VALUE z;
if (FIXNUM_P(y)) {
y = rb_int2big(FIX2LONG(y));
}
else if (!RB_BIGNUM_TYPE_P(y)) {
return rb_num_coerce_bin(x, y, rb_intern("remainder"));
}
bigdivrem(x, y, 0, &z);
return bignorm(z);
}
/*
* call-seq:
* big.divmod(numeric) -> array
*
* See <code>Numeric#divmod</code>.
*
*/
VALUE
rb_big_divmod(VALUE x, VALUE y)
{
VALUE div, mod;
if (FIXNUM_P(y)) {
y = rb_int2big(FIX2LONG(y));
}
else if (!RB_BIGNUM_TYPE_P(y)) {
return rb_num_coerce_bin(x, y, rb_intern("divmod"));
}
bigdivmod(x, y, &div, &mod);
return rb_assoc_new(bignorm(div), bignorm(mod));
}
static VALUE
big_shift(VALUE x, long n)
{
if (n < 0)
return big_lshift(x, 1+(unsigned long)(-(n+1)));
else if (n > 0)
return big_rshift(x, (unsigned long)n);
return x;
}
static VALUE
big_fdiv(VALUE x, VALUE y, long ey)
{
#define DBL_BIGDIG ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG)
VALUE z;
long l, ex;
bigtrunc(x);
l = BIGNUM_LEN(x);
ex = l * BITSPERDIG - nlz(BDIGITS(x)[l-1]);
ex -= 2 * DBL_BIGDIG * BITSPERDIG;
if (ex) x = big_shift(x, ex);
bigdivrem(x, y, &z, 0);
l = ex - ey;
#if SIZEOF_LONG > SIZEOF_INT
{
/* Visual C++ can't be here */
if (l > INT_MAX) return DBL2NUM(INFINITY);
if (l < INT_MIN) return DBL2NUM(0.0);
}
#endif
return DBL2NUM(ldexp(big2dbl(z), (int)l));
}
static VALUE
big_fdiv_int(VALUE x, VALUE y)
{
long l, ey;
bigtrunc(y);
l = BIGNUM_LEN(y);
ey = l * BITSPERDIG - nlz(BDIGITS(y)[l-1]);
ey -= DBL_BIGDIG * BITSPERDIG;
if (ey) y = big_shift(y, ey);
return big_fdiv(x, y, ey);
}
static VALUE
big_fdiv_float(VALUE x, VALUE y)
{
int i;
y = dbl2big(ldexp(frexp(RFLOAT_VALUE(y), &i), DBL_MANT_DIG));
return big_fdiv(x, y, i - DBL_MANT_DIG);
}
/*
* call-seq:
* big.fdiv(numeric) -> float
*
* Returns the floating point result of dividing <i>big</i> by
* <i>numeric</i>.
*
* -1234567890987654321.fdiv(13731) #=> -89910996357705.5
* -1234567890987654321.fdiv(13731.24) #=> -89909424858035.7
*
*/
VALUE
rb_big_fdiv(VALUE x, VALUE y)
{
double dx, dy;
dx = big2dbl(x);
if (FIXNUM_P(y)) {
dy = (double)FIX2LONG(y);
if (isinf(dx))
return big_fdiv_int(x, rb_int2big(FIX2LONG(y)));
}
else if (RB_BIGNUM_TYPE_P(y)) {
dy = rb_big2dbl(y);
if (isinf(dx) || isinf(dy))
return big_fdiv_int(x, y);
}
else if (RB_FLOAT_TYPE_P(y)) {
dy = RFLOAT_VALUE(y);
if (isnan(dy))
return y;
if (isinf(dx))
return big_fdiv_float(x, y);
}
else {
return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
}
return DBL2NUM(dx / dy);
}
/*
* call-seq:
* big ** exponent -> numeric
*
* Raises _big_ to the _exponent_ power (which may be an integer, float,
* or anything that will coerce to a number). The result may be
* a Fixnum, Bignum, or Float
*
* 123456789 ** 2 #=> 15241578750190521
* 123456789 ** 1.2 #=> 5126464716.09932
* 123456789 ** -2 #=> 6.5610001194102e-17
*/
VALUE
rb_big_pow(VALUE x, VALUE y)
{
double d;
SIGNED_VALUE yy;
again:
if (y == INT2FIX(0)) return INT2FIX(1);
if (RB_FLOAT_TYPE_P(y)) {
d = RFLOAT_VALUE(y);
if ((!BIGNUM_SIGN(x) && !BIGZEROP(x)) && d != round(d))
return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
}
else if (RB_BIGNUM_TYPE_P(y)) {
y = bignorm(y);
if (FIXNUM_P(y))
goto again;
rb_warn("in a**b, b may be too big");
d = rb_big2dbl(y);
}
else if (FIXNUM_P(y)) {
yy = FIX2LONG(y);
if (yy < 0)
return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
else {
VALUE z = 0;
SIGNED_VALUE mask;
const size_t xbits = rb_absint_numwords(x, 1, NULL);
const size_t BIGLEN_LIMIT = 32*1024*1024;
if (xbits == (size_t)-1 ||
(xbits > BIGLEN_LIMIT) ||
(xbits * yy > BIGLEN_LIMIT)) {
* sprintf.c (rb_str_format): allow %c to print one character string (e.g. ?x). * lib/tempfile.rb (Tempfile::make_tmpname): put dot between basename and pid. [ruby-talk:196272] * parse.y (do_block): remove -> style block. * parse.y (parser_yylex): remove tLAMBDA_ARG. * eval.c (rb_call0): binding for the return event hook should have consistent scope. [ruby-core:07928] * eval.c (proc_invoke): return behavior should depend whether it is surrounded by a lambda or a mere block. * eval.c (formal_assign): handles post splat arguments. * eval.c (rb_call0): ditto. * st.c (strhash): use FNV-1a hash. * parse.y (parser_yylex): removed experimental ';;' terminator. * eval.c (rb_node_arity): should be aware of post splat arguments. * eval.c (rb_proc_arity): ditto. * parse.y (f_args): syntax rule enhanced to support arguments after the splat. * parse.y (block_param): ditto for block parameters. * parse.y (f_post_arg): mandatory formal arguments after the splat argument. * parse.y (new_args_gen): generate nodes for mandatory formal arguments after the splat argument. * eval.c (rb_eval): dispatch mandatory formal arguments after the splat argument. * parse.y (args): allow more than one splat in the argument list. * parse.y (method_call): allow aref [] to accept all kind of method argument, including assocs, splat, and block argument. * eval.c (SETUP_ARGS0): prepare block argument as well. * lib/mathn.rb (Integer): remove Integer#gcd2. [ruby-core:07931] * eval.c (error_line): print receivers true/false/nil specially. * eval.c (rb_proc_yield): handles parameters in yield semantics. * eval.c (nil_yield): gives LocalJumpError to denote no block error. * io.c (rb_io_getc): now takes one-character string. * string.c (rb_str_hash): use FNV-1a hash from Fowler/Noll/Vo hashing algorithm. * string.c (rb_str_aref): str[0] now returns 1 character string, instead of a fixnum. [Ruby2] * parse.y (parser_yylex): ?c now returns 1 character string, instead of a fixnum. [Ruby2] * string.c (rb_str_aset): no longer support fixnum insertion. * eval.c (umethod_bind): should not update original class. [ruby-dev:28636] * eval.c (ev_const_get): should support constant access from within instance_eval(). [ruby-dev:28327] * time.c (time_timeval): should round for usec floating number. [ruby-core:07896] * time.c (time_add): ditto. * dir.c (sys_warning): should not call a vararg function rb_sys_warning() indirectly. [ruby-core:07886] * numeric.c (flo_divmod): the first element of Float#divmod should be an integer. [ruby-dev:28589] * test/ruby/test_float.rb: add tests for divmod, div, modulo and remainder. * re.c (rb_reg_initialize): should not allow modifying literal regexps. frozen check moved from rb_reg_initialize_m as well. * re.c (rb_reg_initialize): should not modify untainted objects in safe levels higher than 3. * re.c (rb_memcmp): type change from char* to const void*. * dir.c (dir_close): should not close untainted dir stream. * dir.c (GetDIR): add tainted/frozen check for each dir operation. * lib/rdoc/parsers/parse_rb.rb (RDoc::RubyParser::parse_symbol_arg): typo fixed. a patch from Florian Gross <florg at florg.net>. * eval.c (EXEC_EVENT_HOOK): trace_func may remove itself from event_hooks. no guarantee for arbitrary hook deletion. [ruby-dev:28632] * util.c (ruby_strtod): differ addition to minimize error. [ruby-dev:28619] * util.c (ruby_strtod): should not raise ERANGE when the input string does not have any digits. [ruby-dev:28629] * eval.c (proc_invoke): should restore old ruby_frame->block. thanks to ts <decoux at moulon.inra.fr>. [ruby-core:07833] also fix [ruby-dev:28614] as well. * signal.c (trap): sig should be less then NSIG. Coverity found this bug. a patch from Kevin Tew <tewk at tewk.com>. [ruby-core:07823] * math.c (math_log2): add new method inspired by [ruby-talk:191237]. * math.c (math_log): add optional base argument to Math::log(). [ruby-talk:191308] * ext/syck/emitter.c (syck_scan_scalar): avoid accessing uninitialized array element. a patch from Pat Eyler <rubypate at gmail.com>. [ruby-core:07809] * array.c (rb_ary_fill): initialize local variables first. a patch from Pat Eyler <rubypate at gmail.com>. [ruby-core:07810] * ext/syck/yaml2byte.c (syck_yaml2byte_handler): need to free type_tag. a patch from Pat Eyler <rubypate at gmail.com>. [ruby-core:07808] * ext/socket/socket.c (make_hostent_internal): accept ai_family check from Sam Roberts <sroberts at uniserve.com>. [ruby-core:07691] * util.c (ruby_strtod): should not cut off 18 digits for no reason. [ruby-core:07796] * array.c (rb_ary_fill): internalize local variable "beg" to pacify Coverity. [ruby-core:07770] * pack.c (pack_unpack): now supports CRLF newlines. a patch from <tommy at tmtm.org>. [ruby-dev:28601] * applied code clean-up patch from Stefan Huehner <stefan at huehner.org>. [ruby-core:07764] * lib/jcode.rb (String::tr_s): should have translated non squeezing character sequence (i.e. a character) as well. thanks to Hiroshi Ichikawa <gimite at gimite.ddo.jp> [ruby-list:42090] * ext/socket/socket.c: document update patch from Sam Roberts <sroberts at uniserve.com>. [ruby-core:07701] * lib/mathn.rb (Integer): need not to remove gcd2. a patch from NARUSE, Yui <naruse at airemix.com>. [ruby-dev:28570] * parse.y (arg): too much NEW_LIST() * eval.c (SETUP_ARGS0): remove unnecessary access to nd_alen. * eval.c (rb_eval): use ARGSCAT for NODE_OP_ASGN1. [ruby-dev:28585] * parse.y (arg): use NODE_ARGSCAT for placeholder. * lib/getoptlong.rb (GetoptLong::get): RDoc update patch from mathew <meta at pobox.com>. [ruby-core:07738] * variable.c (rb_const_set): raise error when no target klass is supplied. [ruby-dev:28582] * prec.c (prec_prec_f): documentation patch from <gerardo.santana at gmail.com>. [ruby-core:07689] * bignum.c (rb_big_pow): second operand may be too big even if it's a Fixnum. [ruby-talk:187984] * README.EXT: update symbol description. [ruby-talk:188104] * COPYING: explicitly note GPLv2. [ruby-talk:187922] * parse.y: remove some obsolete syntax rules (unparenthesized method calls in argument list). * eval.c (rb_call0): insecure calling should be checked for non NODE_SCOPE method invocations too. * eval.c (rb_alias): should preserve the current safe level as well as method definition. * process.c (rb_f_sleep): remove RDoc description about SIGALRM which is not valid on the current implementation. [ruby-dev:28464] Thu Mar 23 21:40:47 2006 K.Kosako <sndgk393 AT ybb.ne.jp> * eval.c (method_missing): should support argument splat in super. a bug in combination of super, splat and method_missing. [ruby-talk:185438] * configure.in: Solaris SunPro compiler -rapth patch from <kuwa at labs.fujitsu.com>. [ruby-dev:28443] * configure.in: remove enable_rpath=no for Solaris. [ruby-dev:28440] * ext/win32ole/win32ole.c (ole_val2olevariantdata): change behavior of converting OLE Variant object with VT_ARRAY|VT_UI1 and Ruby String object. * ruby.1: a clarification patch from David Lutterkort <dlutter at redhat.com>. [ruby-core:7508] * lib/rdoc/ri/ri_paths.rb (RI::Paths): adding paths from rubygems directories. a patch from Eric Hodel <drbrain at segment7.net>. [ruby-core:07423] * eval.c (rb_clear_cache_by_class): clearing wrong cache. * ext/extmk.rb: use :remove_destination to install extension libraries to avoid SEGV. [ruby-dev:28417] * eval.c (rb_thread_fd_writable): should not re-schedule output from KILLED thread (must be error printing). * array.c (rb_ary_flatten_bang): allow specifying recursion level. [ruby-talk:182170] * array.c (rb_ary_flatten): ditto. * gc.c (add_heap): a heap_slots may overflow. a patch from Stefan Weil <weil at mail.berlios.de>. * eval.c (rb_call): use separate cache for fcall/vcall invocation. * eval.c (rb_eval): NODE_FCALL, NODE_VCALL can call local functions. * eval.c (rb_mod_local): a new method to specify newly added visibility "local". * eval.c (search_method): search for local methods which are visible only from the current class. * class.c (rb_class_local_methods): a method to list local methods. * object.c (Init_Object): add BasicObject class as a top level BlankSlate class. * ruby.h (SYM2ID): should not cast to signed long. [ruby-core:07414] * class.c (rb_include_module): allow module duplication. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@10235 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2006-06-10 01:20:17 +04:00
rb_warn("in a**b, b may be too big");
d = (double)yy;
}
else {
for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
if (z) z = bigsq(z);
if (yy & mask) {
z = z ? bigtrunc(bigmul0(z, x)) : x;
}
}
return bignorm(z);
}
}
}
else {
return rb_num_coerce_bin(x, y, rb_intern("**"));
}
return DBL2NUM(pow(rb_big2dbl(x), d));
}
static VALUE
bigand_int(VALUE x, long xn, BDIGIT hibitsx, long y)
{
VALUE z;
BDIGIT *xds, *zds;
long zn;
long i;
BDIGIT hibitsy;
if (y == 0) return INT2FIX(0);
if (xn == 0) return hibitsx ? LONG2NUM(y) : 0;
hibitsy = 0 <= y ? 0 : BDIGMAX;
xds = BDIGITS(x);
#if SIZEOF_BDIGIT >= SIZEOF_LONG
if (!hibitsy) {
y &= xds[0];
return LONG2NUM(y);
}
#endif
zn = xn;
#if SIZEOF_BDIGIT < SIZEOF_LONG
if (hibitsx && zn < bdigit_roomof(SIZEOF_LONG))
zn = bdigit_roomof(SIZEOF_LONG);
#endif
z = bignew(zn, 0);
zds = BDIGITS(z);
#if SIZEOF_BDIGIT >= SIZEOF_LONG
i = 1;
zds[0] = xds[0] & BIGLO(y);
#else
for (i=0; i < xn; i++) {
if (y == 0 || y == -1) break;
zds[i] = xds[i] & BIGLO(y);
y = BIGDN(y);
}
for (; i < zn; i++) {
if (y == 0 || y == -1) break;
zds[i] = hibitsx & BIGLO(y);
y = BIGDN(y);
}
#endif
for (;i < xn; i++) {
zds[i] = xds[i] & hibitsy;
}
for (;i < zn; i++) {
zds[i] = hibitsx & hibitsy;
}
twocomp2abs_bang(z, hibitsx && hibitsy);
RB_GC_GUARD(x);
return bignorm(z);
}
/*
* call-seq:
* big & numeric -> integer
*
* Performs bitwise +and+ between _big_ and _numeric_.
*/
VALUE
rb_big_and(VALUE x, VALUE y)
{
VALUE z;
BDIGIT *ds1, *ds2, *zds;
long i, xn, yn, n1, n2;
BDIGIT hibitsx, hibitsy;
BDIGIT hibits1, hibits2;
VALUE tmpv;
BDIGIT tmph;
long tmpn;
if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
return rb_num_coerce_bit(x, y, '&');
}
hibitsx = abs2twocomp(&x, &xn);
if (FIXNUM_P(y)) {
return bigand_int(x, xn, hibitsx, FIX2LONG(y));
}
hibitsy = abs2twocomp(&y, &yn);
if (xn > yn) {
tmpv = x; x = y; y = tmpv;
tmpn = xn; xn = yn; yn = tmpn;
tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
}
n1 = xn;
n2 = yn;
ds1 = BDIGITS(x);
ds2 = BDIGITS(y);
hibits1 = hibitsx;
hibits2 = hibitsy;
if (!hibits1)
n2 = n1;
z = bignew(n2, 0);
zds = BDIGITS(z);
for (i=0; i<n1; i++) {
zds[i] = ds1[i] & ds2[i];
}
for (; i<n2; i++) {
zds[i] = hibits1 & ds2[i];
}
twocomp2abs_bang(z, hibits1 && hibits2);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return bignorm(z);
}
static VALUE
bigor_int(VALUE x, long xn, BDIGIT hibitsx, long y)
{
VALUE z;
BDIGIT *xds, *zds;
long zn;
long i;
BDIGIT hibitsy;
if (y == -1) return INT2FIX(-1);
if (xn == 0) return hibitsx ? INT2FIX(-1) : LONG2FIX(y);
hibitsy = 0 <= y ? 0 : BDIGMAX;
xds = BDIGITS(x);
zn = BIGNUM_LEN(x);
#if SIZEOF_BDIGIT < SIZEOF_LONG
if (zn < bdigit_roomof(SIZEOF_LONG))
zn = bdigit_roomof(SIZEOF_LONG);
#endif
z = bignew(zn, 0);
zds = BDIGITS(z);
#if SIZEOF_BDIGIT >= SIZEOF_LONG
i = 1;
zds[0] = xds[0] | BIGLO(y);
if (i < zn)
goto y_is_fixed_point;
goto finish;
#else
for (i=0; i < xn; i++) {
if (y == 0 || y == -1) goto y_is_fixed_point;
zds[i] = xds[i] | BIGLO(y);
y = BIGDN(y);
}
if (hibitsx)
goto fill_hibits;
for (; i < zn; i++) {
if (y == 0 || y == -1) goto y_is_fixed_point;
zds[i] = BIGLO(y);
y = BIGDN(y);
}
goto finish;
#endif
y_is_fixed_point:
if (hibitsy)
goto fill_hibits;
for (; i < xn; i++) {
zds[i] = xds[i];
}
if (hibitsx)
goto fill_hibits;
for (; i < zn; i++) {
zds[i] = 0;
}
goto finish;
fill_hibits:
for (; i < zn; i++) {
zds[i] = BDIGMAX;
}
finish:
twocomp2abs_bang(z, hibitsx || hibitsy);
RB_GC_GUARD(x);
return bignorm(z);
}
/*
* call-seq:
* big | numeric -> integer
*
* Performs bitwise +or+ between _big_ and _numeric_.
*/
VALUE
rb_big_or(VALUE x, VALUE y)
{
VALUE z;
BDIGIT *ds1, *ds2, *zds;
long i, xn, yn, n1, n2;
BDIGIT hibitsx, hibitsy;
BDIGIT hibits1, hibits2;
VALUE tmpv;
BDIGIT tmph;
long tmpn;
if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
return rb_num_coerce_bit(x, y, '|');
}
hibitsx = abs2twocomp(&x, &xn);
if (FIXNUM_P(y)) {
return bigor_int(x, xn, hibitsx, FIX2LONG(y));
}
hibitsy = abs2twocomp(&y, &yn);
if (xn > yn) {
tmpv = x; x = y; y = tmpv;
tmpn = xn; xn = yn; yn = tmpn;
tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
}
n1 = xn;
n2 = yn;
ds1 = BDIGITS(x);
ds2 = BDIGITS(y);
hibits1 = hibitsx;
hibits2 = hibitsy;
if (hibits1)
n2 = n1;
z = bignew(n2, 0);
zds = BDIGITS(z);
for (i=0; i<n1; i++) {
zds[i] = ds1[i] | ds2[i];
}
for (; i<n2; i++) {
zds[i] = hibits1 | ds2[i];
}
twocomp2abs_bang(z, hibits1 || hibits2);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return bignorm(z);
}
static VALUE
bigxor_int(VALUE x, long xn, BDIGIT hibitsx, long y)
{
VALUE z;
BDIGIT *xds, *zds;
long zn;
long i;
BDIGIT hibitsy;
hibitsy = 0 <= y ? 0 : BDIGMAX;
xds = BDIGITS(x);
zn = BIGNUM_LEN(x);
#if SIZEOF_BDIGIT < SIZEOF_LONG
if (zn < bdigit_roomof(SIZEOF_LONG))
zn = bdigit_roomof(SIZEOF_LONG);
#endif
z = bignew(zn, 0);
zds = BDIGITS(z);
#if SIZEOF_BDIGIT >= SIZEOF_LONG
i = 1;
zds[0] = xds[0] ^ BIGLO(y);
#else
for (i = 0; i < xn; i++) {
zds[i] = xds[i] ^ BIGLO(y);
y = BIGDN(y);
}
for (; i < zn; i++) {
zds[i] = hibitsx ^ BIGLO(y);
y = BIGDN(y);
}
#endif
for (; i < xn; i++) {
zds[i] = xds[i] ^ hibitsy;
}
for (; i < zn; i++) {
zds[i] = hibitsx ^ hibitsy;
}
twocomp2abs_bang(z, (hibitsx ^ hibitsy) != 0);
RB_GC_GUARD(x);
return bignorm(z);
}
/*
* call-seq:
* big ^ numeric -> integer
*
* Performs bitwise +exclusive or+ between _big_ and _numeric_.
*/
VALUE
rb_big_xor(VALUE x, VALUE y)
{
VALUE z;
BDIGIT *ds1, *ds2, *zds;
long i, xn, yn, n1, n2;
BDIGIT hibitsx, hibitsy;
BDIGIT hibits1, hibits2;
VALUE tmpv;
BDIGIT tmph;
long tmpn;
if (!FIXNUM_P(y) && !RB_BIGNUM_TYPE_P(y)) {
return rb_num_coerce_bit(x, y, '^');
}
hibitsx = abs2twocomp(&x, &xn);
if (FIXNUM_P(y)) {
return bigxor_int(x, xn, hibitsx, FIX2LONG(y));
}
hibitsy = abs2twocomp(&y, &yn);
if (xn > yn) {
tmpv = x; x = y; y = tmpv;
tmpn = xn; xn = yn; yn = tmpn;
tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
}
n1 = xn;
n2 = yn;
ds1 = BDIGITS(x);
ds2 = BDIGITS(y);
hibits1 = hibitsx;
hibits2 = hibitsy;
z = bignew(n2, 0);
zds = BDIGITS(z);
for (i=0; i<n1; i++) {
zds[i] = ds1[i] ^ ds2[i];
}
for (; i<n2; i++) {
zds[i] = hibitsx ^ ds2[i];
}
twocomp2abs_bang(z, (hibits1 ^ hibits2) != 0);
RB_GC_GUARD(x);
RB_GC_GUARD(y);
return bignorm(z);
}
/*
* call-seq:
* big << numeric -> integer
*
* Shifts big left _numeric_ positions (right if _numeric_ is negative).
*/
VALUE
rb_big_lshift(VALUE x, VALUE y)
{
int lshift_p;
size_t shift_numdigits;
int shift_numbits;
for (;;) {
if (FIXNUM_P(y)) {
long l = FIX2LONG(y);
unsigned long shift;
if (0 <= l) {
lshift_p = 1;
shift = l;
}
else {
lshift_p = 0;
shift = 1+(unsigned long)(-(l+1));
}
shift_numbits = (int)(shift & (BITSPERDIG-1));
shift_numdigits = shift >> bit_length(BITSPERDIG-1);
return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
}
else if (RB_BIGNUM_TYPE_P(y)) {
return bignorm(big_shift2(x, 1, y));
}
y = rb_to_int(y);
}
}
/*
* call-seq:
* big >> numeric -> integer
*
* Shifts big right _numeric_ positions (left if _numeric_ is negative).
*/
VALUE
rb_big_rshift(VALUE x, VALUE y)
{
int lshift_p;
size_t shift_numdigits;
int shift_numbits;
for (;;) {
if (FIXNUM_P(y)) {
long l = FIX2LONG(y);
unsigned long shift;
if (0 <= l) {
lshift_p = 0;
shift = l;
}
else {
lshift_p = 1;
shift = 1+(unsigned long)(-(l+1));
}
shift_numbits = (int)(shift & (BITSPERDIG-1));
shift_numdigits = shift >> bit_length(BITSPERDIG-1);
return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
}
else if (RB_BIGNUM_TYPE_P(y)) {
return bignorm(big_shift2(x, 0, y));
}
y = rb_to_int(y);
}
}
/*
* call-seq:
* big[n] -> 0, 1
*
* Bit Reference---Returns the <em>n</em>th bit in the (assumed) binary
* representation of <i>big</i>, where <i>big</i>[0] is the least
* significant bit.
*
* a = 9**15
* 50.downto(0) do |n|
* print a[n]
* end
*
* <em>produces:</em>
*
* 000101110110100000111000011110010100111100010111001
*
*/
static VALUE
rb_big_aref(VALUE x, VALUE y)
{
BDIGIT *xds;
size_t shift;
size_t i, s1, s2;
long l;
BDIGIT bit;
if (RB_BIGNUM_TYPE_P(y)) {
if (!BIGNUM_SIGN(y))
return INT2FIX(0);
bigtrunc(y);
if (BIGSIZE(y) > sizeof(size_t)) {
out_of_range:
return BIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1);
}
#if SIZEOF_SIZE_T <= SIZEOF_LONG
shift = big2ulong(y, "long");
#else
shift = big2ull(y, "long long");
#endif
}
else {
l = NUM2LONG(y);
if (l < 0) return INT2FIX(0);
shift = (size_t)l;
}
s1 = shift/BITSPERDIG;
s2 = shift%BITSPERDIG;
bit = (BDIGIT)1 << s2;
if (s1 >= BIGNUM_LEN(x)) goto out_of_range;
xds = BDIGITS(x);
if (BIGNUM_POSITIVE_P(x))
return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
if (xds[s1] & (bit-1))
return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
for (i = 0; i < s1; i++)
if (xds[i])
return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
}
/*
* call-seq:
* big.hash -> fixnum
*
* Compute a hash based on the value of _big_.
*
* See also Object#hash.
*/
static VALUE
rb_big_hash(VALUE x)
{
st_index_t hash;
hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*BIGNUM_LEN(x)) ^ BIGNUM_SIGN(x);
return INT2FIX(hash);
}
/*
* call-seq:
* big.coerce(numeric) -> array
*
* Returns an array with both a +numeric+ and a +big+ represented as Bignum
* objects.
*
* This is achieved by converting +numeric+ to a Bignum.
*
* A TypeError is raised if the +numeric+ is not a Fixnum or Bignum type.
*
* (0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
*/
static VALUE
rb_big_coerce(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
y = rb_int2big(FIX2LONG(y));
}
else if (!RB_BIGNUM_TYPE_P(y)) {
rb_raise(rb_eTypeError, "can't coerce %"PRIsVALUE" to Bignum",
rb_obj_class(y));
}
return rb_assoc_new(y, x);
}
/*
* call-seq:
* big.abs -> aBignum
* big.magnitude -> aBignum
*
* Returns the absolute value of <i>big</i>.
*
* -1234567890987654321.abs #=> 1234567890987654321
*/
static VALUE
rb_big_abs(VALUE x)
{
if (!BIGNUM_SIGN(x)) {
x = rb_big_clone(x);
BIGNUM_SET_SIGN(x, 1);
}
return x;
}
/*
* call-seq:
* big.size -> integer
*
* Returns the number of bytes in the machine representation of
* <i>big</i>.
*
* (256**10 - 1).size #=> 12
* (256**20 - 1).size #=> 20
* (256**40 - 1).size #=> 40
*/
static VALUE
rb_big_size(VALUE big)
{
return SIZET2NUM(BIGSIZE(big));
}
/*
* call-seq:
* int.bit_length -> integer
*
* Returns the number of bits of the value of <i>int</i>.
*
* "the number of bits" means that
* the bit position of the highest bit which is different to the sign bit.
* (The bit position of the bit 2**n is n+1.)
* If there is no such bit (zero or minus one), zero is returned.
*
* I.e. This method returns ceil(log2(int < 0 ? -int : int+1)).
*
* (-2**10000-1).bit_length #=> 10001
* (-2**10000).bit_length #=> 10000
* (-2**10000+1).bit_length #=> 10000
*
* (-2**1000-1).bit_length #=> 1001
* (-2**1000).bit_length #=> 1000
* (-2**1000+1).bit_length #=> 1000
*
* (2**1000-1).bit_length #=> 1000
* (2**1000).bit_length #=> 1001
* (2**1000+1).bit_length #=> 1001
*
* (2**10000-1).bit_length #=> 10000
* (2**10000).bit_length #=> 10001
* (2**10000+1).bit_length #=> 10001
*
* This method can be used to detect overflow in Array#pack as follows.
*
* if n.bit_length < 32
* [n].pack("l") # no overflow
* else
* raise "overflow"
* end
*/
static VALUE
rb_big_bit_length(VALUE big)
{
int nlz_bits;
size_t numbytes;
static const BDIGIT char_bit[1] = { CHAR_BIT };
BDIGIT numbytes_bary[bdigit_roomof(sizeof(size_t))];
BDIGIT nlz_bary[1];
BDIGIT result_bary[bdigit_roomof(sizeof(size_t)+1)];
numbytes = rb_absint_size(big, &nlz_bits);
if (numbytes == 0)
return LONG2FIX(0);
if (BIGNUM_NEGATIVE_P(big) && rb_absint_singlebit_p(big)) {
if (nlz_bits != CHAR_BIT-1) {
nlz_bits++;
}
else {
nlz_bits = 0;
numbytes--;
}
}
if (numbytes <= SIZE_MAX / CHAR_BIT) {
return SIZET2NUM(numbytes * CHAR_BIT - nlz_bits);
}
nlz_bary[0] = nlz_bits;
bary_unpack(BARY_ARGS(numbytes_bary), &numbytes, 1, sizeof(numbytes), 0,
INTEGER_PACK_NATIVE_BYTE_ORDER);
BARY_SHORT_MUL(result_bary, numbytes_bary, char_bit);
BARY_SUB(result_bary, result_bary, nlz_bary);
return rb_integer_unpack(result_bary, numberof(result_bary), sizeof(BDIGIT), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
}
/*
* call-seq:
* big.odd? -> true or false
*
* Returns <code>true</code> if <i>big</i> is an odd number.
*/
static VALUE
rb_big_odd_p(VALUE num)
{
if (BIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
return Qtrue;
}
return Qfalse;
}
/*
* call-seq:
* big.even? -> true or false
*
* Returns <code>true</code> if <i>big</i> is an even number.
*/
static VALUE
rb_big_even_p(VALUE num)
{
if (BIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
return Qfalse;
}
return Qtrue;
}
/*
* Bignum objects hold integers outside the range of
* Fixnum. Bignum objects are created
* automatically when integer calculations would otherwise overflow a
* Fixnum. When a calculation involving
* Bignum objects returns a result that will fit in a
* Fixnum, the result is automatically converted.
*
* For the purposes of the bitwise operations and <code>[]</code>, a
* Bignum is treated as if it were an infinite-length
* bitstring with 2's complement representation.
*
* While Fixnum values are immediate, Bignum
* objects are not---assignment and parameter passing work with
* references to objects, not the objects themselves.
*
*/
void
Init_Bignum(void)
{
rb_cBignum = rb_define_class("Bignum", rb_cInteger);
rb_define_method(rb_cBignum, "to_s", rb_big_to_s, -1);
rb_define_alias(rb_cBignum, "inspect", "to_s");
rb_define_method(rb_cBignum, "coerce", rb_big_coerce, 1);
rb_define_method(rb_cBignum, "-@", rb_big_uminus, 0);
rb_define_method(rb_cBignum, "+", rb_big_plus, 1);
rb_define_method(rb_cBignum, "-", rb_big_minus, 1);
rb_define_method(rb_cBignum, "*", rb_big_mul, 1);
rb_define_method(rb_cBignum, "/", rb_big_div, 1);
rb_define_method(rb_cBignum, "%", rb_big_modulo, 1);
rb_define_method(rb_cBignum, "div", rb_big_idiv, 1);
rb_define_method(rb_cBignum, "divmod", rb_big_divmod, 1);
rb_define_method(rb_cBignum, "modulo", rb_big_modulo, 1);
rb_define_method(rb_cBignum, "remainder", rb_big_remainder, 1);
rb_define_method(rb_cBignum, "fdiv", rb_big_fdiv, 1);
rb_define_method(rb_cBignum, "**", rb_big_pow, 1);
rb_define_method(rb_cBignum, "&", rb_big_and, 1);
rb_define_method(rb_cBignum, "|", rb_big_or, 1);
rb_define_method(rb_cBignum, "^", rb_big_xor, 1);
rb_define_method(rb_cBignum, "~", rb_big_neg, 0);
rb_define_method(rb_cBignum, "<<", rb_big_lshift, 1);
rb_define_method(rb_cBignum, ">>", rb_big_rshift, 1);
rb_define_method(rb_cBignum, "[]", rb_big_aref, 1);
rb_define_method(rb_cBignum, "<=>", rb_big_cmp, 1);
rb_define_method(rb_cBignum, "==", rb_big_eq, 1);
rb_define_method(rb_cBignum, ">", big_gt, 1);
rb_define_method(rb_cBignum, ">=", big_ge, 1);
rb_define_method(rb_cBignum, "<", big_lt, 1);
rb_define_method(rb_cBignum, "<=", big_le, 1);
rb_define_method(rb_cBignum, "===", rb_big_eq, 1);
rb_define_method(rb_cBignum, "eql?", rb_big_eql, 1);
rb_define_method(rb_cBignum, "hash", rb_big_hash, 0);
rb_define_method(rb_cBignum, "to_f", rb_big_to_f, 0);
rb_define_method(rb_cBignum, "abs", rb_big_abs, 0);
rb_define_method(rb_cBignum, "magnitude", rb_big_abs, 0);
rb_define_method(rb_cBignum, "size", rb_big_size, 0);
rb_define_method(rb_cBignum, "bit_length", rb_big_bit_length, 0);
rb_define_method(rb_cBignum, "odd?", rb_big_odd_p, 0);
rb_define_method(rb_cBignum, "even?", rb_big_even_p, 0);
#ifdef USE_GMP
/* The version of loaded GMP. */
rb_define_const(rb_cBignum, "GMP_VERSION", rb_sprintf("GMP %s", gmp_version));
#endif
power_cache_init();
}