ruby/prelude.rb

135 строки
4.9 KiB
Ruby
Исходник Обычный вид История

class Thread
MUTEX_FOR_THREAD_EXCLUSIVE = Mutex.new # :nodoc:
# call-seq:
# Thread.exclusive { block } => obj
#
# Wraps the block in a single, VM-global Mutex.synchronize, returning the
# value of the block. A thread executing inside the exclusive section will
# only block other threads which also use the Thread.exclusive mechanism.
def self.exclusive
warn "Thread.exclusive is deprecated, use Mutex", caller
MUTEX_FOR_THREAD_EXCLUSIVE.synchronize{
yield
}
end
end
io.c: avoid kwarg parsing in C API * benchmark/bm_io_nonblock_noex2.rb: new benchmark based on bm_io_nonblock_noex.rb * io.c (io_read_nonblock): move documentation to prelude.rb (io_write_nonblock): ditto (Init_io): private, internal methods for prelude.rb use only * prelude.rb (IO#read_nonblock): wrapper + documentation (IO#write_nonblock): ditto [ruby-core:71439] [Feature #11339] rb_scan_args and hash lookups for kwargs in the C API are clumsy and slow. Instead of improving the C API for performance, use Ruby instead :) Implement IO#read_nonblock and IO#write_nonblock in prelude.rb to avoid argument parsing via rb_scan_args and hash lookups. This speeds up IO#write_nonblock and IO#read_nonblock benchmarks in both cases, including the original non-idiomatic case where the `exception: false' hash is pre-allocated to avoid GC pressure. Now, writing the kwargs in natural, idiomatic Ruby is fastest. I've added the noex2 benchmark to show this. 2015-11-12 01:41:12 +0000 target 0: a (ruby 2.3.0dev (2015-11-11 trunk 52540) [x86_64-linux]) target 1: b (ruby 2.3.0dev (2015-11-11 avoid-kwarg-capi 52540) ----------------------------------------------------------- benchmark results: minimum results in each 10 measurements. Execution time (sec) name a b io_nonblock_noex 2.508 2.382 io_nonblock_noex2 2.950 1.882 Speedup ratio: compare with the result of `a' (greater is better) name b io_nonblock_noex 1.053 io_nonblock_noex2 1.567 git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@52541 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-11-12 05:00:41 +03:00
class IO
# call-seq:
# ios.read_nonblock(maxlen [, options]) -> string
# ios.read_nonblock(maxlen, outbuf [, options]) -> outbuf
io.c: avoid kwarg parsing in C API * benchmark/bm_io_nonblock_noex2.rb: new benchmark based on bm_io_nonblock_noex.rb * io.c (io_read_nonblock): move documentation to prelude.rb (io_write_nonblock): ditto (Init_io): private, internal methods for prelude.rb use only * prelude.rb (IO#read_nonblock): wrapper + documentation (IO#write_nonblock): ditto [ruby-core:71439] [Feature #11339] rb_scan_args and hash lookups for kwargs in the C API are clumsy and slow. Instead of improving the C API for performance, use Ruby instead :) Implement IO#read_nonblock and IO#write_nonblock in prelude.rb to avoid argument parsing via rb_scan_args and hash lookups. This speeds up IO#write_nonblock and IO#read_nonblock benchmarks in both cases, including the original non-idiomatic case where the `exception: false' hash is pre-allocated to avoid GC pressure. Now, writing the kwargs in natural, idiomatic Ruby is fastest. I've added the noex2 benchmark to show this. 2015-11-12 01:41:12 +0000 target 0: a (ruby 2.3.0dev (2015-11-11 trunk 52540) [x86_64-linux]) target 1: b (ruby 2.3.0dev (2015-11-11 avoid-kwarg-capi 52540) ----------------------------------------------------------- benchmark results: minimum results in each 10 measurements. Execution time (sec) name a b io_nonblock_noex 2.508 2.382 io_nonblock_noex2 2.950 1.882 Speedup ratio: compare with the result of `a' (greater is better) name b io_nonblock_noex 1.053 io_nonblock_noex2 1.567 git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@52541 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-11-12 05:00:41 +03:00
#
# Reads at most <i>maxlen</i> bytes from <em>ios</em> using
# the read(2) system call after O_NONBLOCK is set for
# the underlying file descriptor.
#
# If the optional <i>outbuf</i> argument is present,
# it must reference a String, which will receive the data.
# The <i>outbuf</i> will contain only the received data after the method call
# even if it is not empty at the beginning.
#
# read_nonblock just calls the read(2) system call.
# It causes all errors the read(2) system call causes: Errno::EWOULDBLOCK, Errno::EINTR, etc.
# The caller should care such errors.
#
# If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN,
# it is extended by IO::WaitReadable.
# So IO::WaitReadable can be used to rescue the exceptions for retrying
# read_nonblock.
#
# read_nonblock causes EOFError on EOF.
#
# If the read byte buffer is not empty,
# read_nonblock reads from the buffer like readpartial.
# In this case, the read(2) system call is not called.
#
# When read_nonblock raises an exception kind of IO::WaitReadable,
# read_nonblock should not be called
# until io is readable for avoiding busy loop.
# This can be done as follows.
#
# # emulates blocking read (readpartial).
# begin
# result = io.read_nonblock(maxlen)
# rescue IO::WaitReadable
# IO.select([io])
# retry
# end
#
# Although IO#read_nonblock doesn't raise IO::WaitWritable.
# OpenSSL::Buffering#read_nonblock can raise IO::WaitWritable.
# If IO and SSL should be used polymorphically,
# IO::WaitWritable should be rescued too.
# See the document of OpenSSL::Buffering#read_nonblock for sample code.
#
# Note that this method is identical to readpartial
# except the non-blocking flag is set.
#
# By specifying `exception: false`, the options hash allows you to indicate
# that read_nonblock should not raise an IO::WaitReadable exception, but
# return the symbol :wait_readable instead.
io.c: avoid kwarg parsing in C API * benchmark/bm_io_nonblock_noex2.rb: new benchmark based on bm_io_nonblock_noex.rb * io.c (io_read_nonblock): move documentation to prelude.rb (io_write_nonblock): ditto (Init_io): private, internal methods for prelude.rb use only * prelude.rb (IO#read_nonblock): wrapper + documentation (IO#write_nonblock): ditto [ruby-core:71439] [Feature #11339] rb_scan_args and hash lookups for kwargs in the C API are clumsy and slow. Instead of improving the C API for performance, use Ruby instead :) Implement IO#read_nonblock and IO#write_nonblock in prelude.rb to avoid argument parsing via rb_scan_args and hash lookups. This speeds up IO#write_nonblock and IO#read_nonblock benchmarks in both cases, including the original non-idiomatic case where the `exception: false' hash is pre-allocated to avoid GC pressure. Now, writing the kwargs in natural, idiomatic Ruby is fastest. I've added the noex2 benchmark to show this. 2015-11-12 01:41:12 +0000 target 0: a (ruby 2.3.0dev (2015-11-11 trunk 52540) [x86_64-linux]) target 1: b (ruby 2.3.0dev (2015-11-11 avoid-kwarg-capi 52540) ----------------------------------------------------------- benchmark results: minimum results in each 10 measurements. Execution time (sec) name a b io_nonblock_noex 2.508 2.382 io_nonblock_noex2 2.950 1.882 Speedup ratio: compare with the result of `a' (greater is better) name b io_nonblock_noex 1.053 io_nonblock_noex2 1.567 git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@52541 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-11-12 05:00:41 +03:00
def read_nonblock(len, buf = nil, exception: true)
__read_nonblock(len, buf, exception)
end
# call-seq:
# ios.write_nonblock(string) -> integer
# ios.write_nonblock(string [, options]) -> integer
#
# Writes the given string to <em>ios</em> using
# the write(2) system call after O_NONBLOCK is set for
# the underlying file descriptor.
#
# It returns the number of bytes written.
#
# write_nonblock just calls the write(2) system call.
# It causes all errors the write(2) system call causes: Errno::EWOULDBLOCK, Errno::EINTR, etc.
# The result may also be smaller than string.length (partial write).
# The caller should care such errors and partial write.
#
# If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN,
# it is extended by IO::WaitWritable.
# So IO::WaitWritable can be used to rescue the exceptions for retrying write_nonblock.
#
# # Creates a pipe.
# r, w = IO.pipe
#
# # write_nonblock writes only 65536 bytes and return 65536.
# # (The pipe size is 65536 bytes on this environment.)
# s = "a" #100000
# p w.write_nonblock(s) #=> 65536
#
# # write_nonblock cannot write a byte and raise EWOULDBLOCK (EAGAIN).
# p w.write_nonblock("b") # Resource temporarily unavailable (Errno::EAGAIN)
#
# If the write buffer is not empty, it is flushed at first.
#
# When write_nonblock raises an exception kind of IO::WaitWritable,
# write_nonblock should not be called
# until io is writable for avoiding busy loop.
# This can be done as follows.
#
# begin
# result = io.write_nonblock(string)
# rescue IO::WaitWritable, Errno::EINTR
# IO.select(nil, [io])
# retry
# end
#
# Note that this doesn't guarantee to write all data in string.
# The length written is reported as result and it should be checked later.
#
# On some platforms such as Windows, write_nonblock is not supported
# according to the kind of the IO object.
# In such cases, write_nonblock raises <code>Errno::EBADF</code>.
#
# By specifying `exception: false`, the options hash allows you to indicate
# that write_nonblock should not raise an IO::WaitWritable exception, but
# return the symbol :wait_writable instead.
def write_nonblock(buf, exception: true)
__write_nonblock(buf, exception)
end
end