ruby/internal/sanitizers.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

281 строка
9.9 KiB
C
Исходник Обычный вид История

#ifndef INTERNAL_SANITIZERS_H /*-*-C-*-vi:se ft=c:*/
#define INTERNAL_SANITIZERS_H
/**
* @author Ruby developers <ruby-core@ruby-lang.org>
* @copyright This file is a part of the programming language Ruby.
* Permission is hereby granted, to either redistribute and/or
* modify this file, provided that the conditions mentioned in the
* file COPYING are met. Consult the file for details.
* @brief Internal header for ASAN / MSAN / etc.
*/
#include "ruby/internal/config.h"
#include "internal/compilers.h" /* for __has_feature */
#ifdef HAVE_VALGRIND_MEMCHECK_H
# include <valgrind/memcheck.h>
#endif
#ifdef HAVE_SANITIZER_ASAN_INTERFACE_H
# if __has_feature(address_sanitizer)
# define RUBY_ASAN_ENABLED
# include <sanitizer/asan_interface.h>
# endif
#endif
#ifdef HAVE_SANITIZER_MSAN_INTERFACE_H
# if __has_feature(memory_sanitizer)
# define RUBY_MSAN_ENABLED
# include <sanitizer/msan_interface.h>
# endif
#endif
#include "ruby/internal/stdbool.h" /* for bool */
#include "ruby/ruby.h" /* for VALUE */
#if 0
#elif defined(RUBY_ASAN_ENABLED) && defined(RUBY_MSAN_ENABLED)
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \
__attribute__((__no_sanitize__("memory, address"), __noinline__)) x
#elif defined(RUBY_ASAN_ENABLED)
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \
2019-12-29 02:19:43 +03:00
__attribute__((__no_sanitize__("address"), __noinline__)) x
#elif defined(NO_SANITIZE_ADDRESS)
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \
NO_SANITIZE_ADDRESS(NOINLINE(x))
#elif defined(NO_ADDRESS_SAFETY_ANALYSIS)
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) \
NO_ADDRESS_SAFETY_ANALYSIS(NOINLINE(x))
#else
# define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(x) x
#endif
#if defined(NO_SANITIZE) && RBIMPL_COMPILER_IS(GCC)
/* GCC warns about unknown sanitizer, which is annoying. */
# include "internal/warnings.h"
# undef NO_SANITIZE
# define NO_SANITIZE(x, y) \
COMPILER_WARNING_PUSH; \
COMPILER_WARNING_IGNORED(-Wattributes); \
__attribute__((__no_sanitize__(x))) y; \
COMPILER_WARNING_POP
#endif
#ifndef NO_SANITIZE
# define NO_SANITIZE(x, y) y
#endif
#ifndef RUBY_ASAN_ENABLED
# define __asan_poison_memory_region(x, y)
# define __asan_unpoison_memory_region(x, y)
# define __asan_region_is_poisoned(x, y) 0
# define __asan_get_current_fake_stack() NULL
# define __asan_addr_is_in_fake_stack(fake_stack, slot, start, end) NULL
#endif
#ifndef RUBY_MSAN_ENABLED
# define __msan_allocated_memory(x, y) ((void)(x), (void)(y))
# define __msan_poison(x, y) ((void)(x), (void)(y))
# define __msan_unpoison(x, y) ((void)(x), (void)(y))
# define __msan_unpoison_string(x) ((void)(x))
#endif
#ifdef VALGRIND_MAKE_READABLE
# define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE((p), (n))
#endif
#ifdef VALGRIND_MAKE_WRITABLE
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE((p), (n))
#endif
#ifndef VALGRIND_MAKE_MEM_DEFINED
# define VALGRIND_MAKE_MEM_DEFINED(p, n) 0
#endif
#ifndef VALGRIND_MAKE_MEM_UNDEFINED
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) 0
#endif
/*!
* This function asserts that a (continuous) memory region from ptr to size
* being "poisoned". Both read / write access to such memory region are
* prohibited until properly unpoisoned. The region must be previously
* allocated (do not pass a freed pointer here), but not necessarily be an
* entire object that the malloc returns. You can punch hole a part of a
* gigantic heap arena. This is handy when you do not free an allocated memory
* region to reuse later: poison when you keep it unused, and unpoison when you
* reuse.
*
* \param[in] ptr pointer to the beginning of the memory region to poison.
* \param[in] size the length of the memory region to poison.
*/
static inline void
asan_poison_memory_region(const volatile void *ptr, size_t size)
{
__msan_poison(ptr, size);
__asan_poison_memory_region(ptr, size);
}
/*!
* This is a variant of asan_poison_memory_region that takes a VALUE.
*
* \param[in] obj target object.
*/
static inline void
asan_poison_object(VALUE obj)
{
MAYBE_UNUSED(struct RVALUE *) ptr = (void *)obj;
asan_poison_memory_region(ptr, SIZEOF_VALUE);
}
#ifdef RUBY_ASAN_ENABLED
#define asan_poison_object_if(ptr, obj) do { \
if (ptr) asan_poison_object(obj); \
} while (0)
#else
#define asan_poison_object_if(ptr, obj) ((void)(ptr), (void)(obj))
#endif
/*!
* This function predicates if the given object is fully addressable or not.
*
* \param[in] obj target object.
* \retval 0 the given object is fully addressable.
* \retval otherwise pointer to first such byte who is poisoned.
*/
static inline void *
asan_poisoned_object_p(VALUE obj)
{
MAYBE_UNUSED(struct RVALUE *) ptr = (void *)obj;
return __asan_region_is_poisoned(ptr, SIZEOF_VALUE);
}
/*!
* This function asserts that a (formally poisoned) memory region from ptr to
* size is now addressable. Write access to such memory region gets allowed.
* However read access might or might not be possible depending on situations,
* because the region can have contents of previous usages. That information
* should be passed by the malloc_p flag. If that is true, the contents of the
* region is _not_ fully defined (like the return value of malloc behaves).
* Reading from there is NG; write something first. If malloc_p is false on
* the other hand, that memory region is fully defined and can be read
* immediately.
*
* \param[in] ptr pointer to the beginning of the memory region to unpoison.
* \param[in] size the length of the memory region.
* \param[in] malloc_p if the memory region is like a malloc's return value or not.
*/
static inline void
asan_unpoison_memory_region(const volatile void *ptr, size_t size, bool malloc_p)
{
__asan_unpoison_memory_region(ptr, size);
if (malloc_p) {
__msan_allocated_memory(ptr, size);
}
else {
__msan_unpoison(ptr, size);
}
}
/*!
* This is a variant of asan_unpoison_memory_region that takes a VALUE.
*
* \param[in] obj target object.
* \param[in] malloc_p if the memory region is like a malloc's return value or not.
*/
static inline void
asan_unpoison_object(VALUE obj, bool newobj_p)
{
MAYBE_UNUSED(struct RVALUE *) ptr = (void *)obj;
asan_unpoison_memory_region(ptr, SIZEOF_VALUE, newobj_p);
}
/*!
* Checks if the given pointer is on an ASAN fake stack. If so, it returns the
* address this variable has on the real frame; if not, it returns the origin
* address unmodified.
*
* n.b. - _dereferencing_ the returned address is meaningless and should not
* be done; even though ASAN reserves space for the variable in both the real and
* fake stacks, the _value_ of that variable is only in the fake stack.
*
* n.b. - this only works for addresses passed in from local variables on the same
* thread, because the ASAN fake stacks are threadlocal.
*
* \param[in] slot the address of some local variable
* \retval a pointer to something from that frame on the _real_ machine stack
*/
static inline void *
asan_get_real_stack_addr(void* slot)
{
VALUE *addr;
addr = __asan_addr_is_in_fake_stack(__asan_get_current_fake_stack(), slot, NULL, NULL);
return addr ? addr : slot;
}
/*!
* Gets the current thread's fake stack handle, which can be passed into get_fake_stack_extents
*
* \retval An opaque value which can be passed to asan_get_fake_stack_extents
*/
static inline void *
asan_get_thread_fake_stack_handle(void)
{
return __asan_get_current_fake_stack();
}
/*!
* Checks if the given VALUE _actually_ represents a pointer to an ASAN fake stack.
*
* If the given slot _is_ actually a reference to an ASAN fake stack, and that fake stack
* contains the real values for the passed-in range of machine stack addresses, returns true
* and the range of the fake stack through the outparams.
*
* Otherwise, returns false, and sets the outparams to NULL.
*
* Note that this function expects "start" to be > "end" on downward-growing stack architectures;
*
* \param[in] thread_fake_stack_handle The asan fake stack reference for the thread we're scanning
* \param[in] slot The value on the machine stack we want to inspect
* \param[in] machine_stack_start The extents of the real machine stack on which slot lives
* \param[in] machine_stack_end The extents of the real machine stack on which slot lives
* \param[out] fake_stack_start_out The extents of the fake stack which contains real VALUEs
* \param[out] fake_stack_end_out The extents of the fake stack which contains real VALUEs
* \return Whether slot is a pointer to a fake stack for the given machine stack range
*/
static inline bool
asan_get_fake_stack_extents(void *thread_fake_stack_handle, VALUE slot,
void *machine_stack_start, void *machine_stack_end,
void **fake_stack_start_out, void **fake_stack_end_out)
{
/* the ifdef is needed here to suppress a warning about fake_frame_{start/end} being
uninitialized if __asan_addr_is_in_fake_stack is an empty macro */
#ifdef RUBY_ASAN_ENABLED
void *fake_frame_start;
void *fake_frame_end;
void *real_stack_frame = __asan_addr_is_in_fake_stack(
thread_fake_stack_handle, (void *)slot, &fake_frame_start, &fake_frame_end
);
if (real_stack_frame) {
bool in_range;
#if STACK_GROW_DIRECTION < 0
in_range = machine_stack_start >= real_stack_frame && real_stack_frame >= machine_stack_end;
#else
in_range = machine_stack_start <= real_stack_frame && real_stack_frame <= machine_stack_end;
#endif
if (in_range) {
*fake_stack_start_out = fake_frame_start;
*fake_stack_end_out = fake_frame_end;
return true;
}
}
#endif
*fake_stack_start_out = 0;
*fake_stack_end_out = 0;
return false;
}
#endif /* INTERNAL_SANITIZERS_H */