ruby/enum.c

4206 строки
109 KiB
C
Исходник Обычный вид История

/**********************************************************************
enum.c -
$Author$
created at: Fri Oct 1 15:15:19 JST 1993
* encoding.c: provide basic features for M17N. * parse.y: encoding aware parsing. * parse.y (pragma_encoding): encoding specification pragma. * parse.y (rb_intern3): encoding specified symbols. * string.c (rb_str_length): length based on characters. for older behavior, bytesize method added. * string.c (rb_str_index_m): index based on characters. rindex as well. * string.c (succ_char): encoding aware succeeding string. * string.c (rb_str_reverse): reverse based on characters. * string.c (rb_str_inspect): encoding aware string description. * string.c (rb_str_upcase_bang): encoding aware case conversion. downcase, capitalize, swapcase as well. * string.c (rb_str_tr_bang): tr based on characters. delete, squeeze, tr_s, count as well. * string.c (rb_str_split_m): split based on characters. * string.c (rb_str_each_line): encoding aware each_line. * string.c (rb_str_each_char): added. iteration based on characters. * string.c (rb_str_strip_bang): encoding aware whitespace stripping. lstrip, rstrip as well. * string.c (rb_str_justify): encoding aware justifying (ljust, rjust, center). * string.c (str_encoding): get encoding attribute from a string. * re.c (rb_reg_initialize): encoding aware regular expression * sprintf.c (rb_str_format): formatting (i.e. length count) based on characters. * io.c (rb_io_getc): getc to return one-character string. for older behavior, getbyte method added. * ext/stringio/stringio.c (strio_getc): ditto. * io.c (rb_io_ungetc): allow pushing arbitrary string at the current reading point. * ext/stringio/stringio.c (strio_ungetc): ditto. * ext/strscan/strscan.c: encoding support. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@13261 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2007-08-25 07:29:39 +04:00
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/encoding.h"
#include "internal.h"
#include "ruby/util.h"
#include "id.h"
#include "symbol.h"
#include <assert.h>
VALUE rb_mEnumerable;
static ID id_next;
2019-08-03 02:37:08 +03:00
#define id_div idDiv
#define id_each idEach
#define id_eqq idEqq
#define id_cmp idCmp
#define id_lshift idLTLT
#define id_call idCall
#define id_size idSize
VALUE
rb_enum_values_pack(int argc, const VALUE *argv)
{
if (argc == 0) return Qnil;
if (argc == 1) return argv[0];
return rb_ary_new4(argc, argv);
}
#define ENUM_WANT_SVALUE() do { \
i = rb_enum_values_pack(argc, argv); \
} while (0)
static VALUE
enum_yield(int argc, VALUE ary)
{
if (argc > 1)
return rb_yield_force_blockarg(ary);
if (argc == 1)
return rb_yield(ary);
return rb_yield_values2(0, 0);
}
static VALUE
enum_yield_array(VALUE ary)
{
long len = RARRAY_LEN(ary);
if (len > 1)
return rb_yield_force_blockarg(ary);
if (len == 1)
return rb_yield(RARRAY_AREF(ary, 0));
return rb_yield_values2(0, 0);
}
static VALUE
grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
struct MEMO *memo = MEMO_CAST(args);
ENUM_WANT_SVALUE();
if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
rb_ary_push(memo->v2, i);
}
return Qnil;
}
static VALUE
grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
struct MEMO *memo = MEMO_CAST(args);
ENUM_WANT_SVALUE();
if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
rb_ary_push(memo->v2, enum_yield(argc, i));
}
return Qnil;
}
/*
* call-seq:
* enum.grep(pattern) -> array
* enum.grep(pattern) { |obj| block } -> array
*
* Returns an array of every element in <i>enum</i> for which
* <code>Pattern === element</code>. If the optional <em>block</em> is
* supplied, each matching element is passed to it, and the block's
* result is stored in the output array.
*
* (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44]
* c = IO.constants
* c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
* res = c.grep(/SEEK/) { |v| IO.const_get(v) }
* res #=> [0, 1, 2]
*
*/
static VALUE
enum_grep(VALUE obj, VALUE pat)
{
VALUE ary = rb_ary_new();
struct MEMO *memo = MEMO_NEW(pat, ary, Qtrue);
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
return ary;
}
/*
* call-seq:
* enum.grep_v(pattern) -> array
* enum.grep_v(pattern) { |obj| block } -> array
*
* Inverted version of Enumerable#grep.
* Returns an array of every element in <i>enum</i> for which
* not <code>Pattern === element</code>.
*
* (1..10).grep_v 2..5 #=> [1, 6, 7, 8, 9, 10]
* res =(1..10).grep_v(2..5) { |v| v * 2 }
* res #=> [2, 12, 14, 16, 18, 20]
*
*/
static VALUE
enum_grep_v(VALUE obj, VALUE pat)
{
VALUE ary = rb_ary_new();
struct MEMO *memo = MEMO_NEW(pat, ary, Qfalse);
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
return ary;
}
#define COUNT_BIGNUM IMEMO_FL_USER0
#define MEMO_V3_SET(m, v) RB_OBJ_WRITE((m), &(m)->u3.value, (v))
static void
imemo_count_up(struct MEMO *memo)
{
if (memo->flags & COUNT_BIGNUM) {
MEMO_V3_SET(memo, rb_int_succ(memo->u3.value));
}
else if (++memo->u3.cnt == 0) {
/* overflow */
unsigned long buf[2] = {0, 1};
MEMO_V3_SET(memo, rb_big_unpack(buf, 2));
memo->flags |= COUNT_BIGNUM;
}
}
static VALUE
imemo_count_value(struct MEMO *memo)
{
if (memo->flags & COUNT_BIGNUM) {
return memo->u3.value;
}
else {
return ULONG2NUM(memo->u3.cnt);
}
}
static VALUE
count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
{
struct MEMO *memo = MEMO_CAST(memop);
ENUM_WANT_SVALUE();
if (rb_equal(i, memo->v1)) {
imemo_count_up(memo);
}
return Qnil;
}
static VALUE
count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
{
struct MEMO *memo = MEMO_CAST(memop);
if (RTEST(rb_yield_values2(argc, argv))) {
imemo_count_up(memo);
}
return Qnil;
}
static VALUE
count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
{
struct MEMO *memo = MEMO_CAST(memop);
imemo_count_up(memo);
return Qnil;
}
/*
* call-seq:
* enum.count -> int
* enum.count(item) -> int
* enum.count { |obj| block } -> int
*
* Returns the number of items in +enum+ through enumeration.
* If an argument is given, the number of items in +enum+ that
* are equal to +item+ are counted. If a block is given, it
* counts the number of elements yielding a true value.
*
* ary = [1, 2, 4, 2]
* ary.count #=> 4
* ary.count(2) #=> 2
* ary.count{ |x| x%2==0 } #=> 3
*
*/
static VALUE
enum_count(int argc, VALUE *argv, VALUE obj)
{
VALUE item = Qnil;
struct MEMO *memo;
rb_block_call_func *func;
if (argc == 0) {
if (rb_block_given_p()) {
func = count_iter_i;
}
else {
func = count_all_i;
}
}
else {
rb_scan_args(argc, argv, "1", &item);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = count_i;
}
memo = MEMO_NEW(item, 0, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return imemo_count_value(memo);
}
static VALUE
find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
{
ENUM_WANT_SVALUE();
if (RTEST(enum_yield(argc, i))) {
struct MEMO *memo = MEMO_CAST(memop);
MEMO_V1_SET(memo, i);
memo->u3.cnt = 1;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.detect(ifnone = nil) { |obj| block } -> obj or nil
* enum.find(ifnone = nil) { |obj| block } -> obj or nil
* enum.detect(ifnone = nil) -> an_enumerator
* enum.find(ifnone = nil) -> an_enumerator
*
* Passes each entry in <i>enum</i> to <em>block</em>. Returns the
* first for which <em>block</em> is not false. If no
* object matches, calls <i>ifnone</i> and returns its result when it
* is specified, or returns <code>nil</code> otherwise.
*
* If no block is given, an enumerator is returned instead.
*
* (1..100).detect #=> #<Enumerator: 1..100:detect>
* (1..100).find #=> #<Enumerator: 1..100:find>
*
* (1..10).detect { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
* (1..10).find { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
* (1..10).detect(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 } #=> 0
* (1..10).find(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 } #=> 0
* (1..100).detect { |i| i % 5 == 0 && i % 7 == 0 } #=> 35
* (1..100).find { |i| i % 5 == 0 && i % 7 == 0 } #=> 35
*
*/
static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE if_none;
if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
RETURN_ENUMERATOR(obj, argc, argv);
memo = MEMO_NEW(Qundef, 0, 0);
rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
if (memo->u3.cnt) {
return memo->v1;
}
if (!NIL_P(if_none)) {
return rb_funcallv(if_none, id_call, 0, 0);
}
return Qnil;
}
static VALUE
find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
{
struct MEMO *memo = MEMO_CAST(memop);
ENUM_WANT_SVALUE();
if (rb_equal(i, memo->v2)) {
MEMO_V1_SET(memo, imemo_count_value(memo));
rb_iter_break();
}
imemo_count_up(memo);
return Qnil;
}
static VALUE
find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
{
struct MEMO *memo = MEMO_CAST(memop);
if (RTEST(rb_yield_values2(argc, argv))) {
MEMO_V1_SET(memo, imemo_count_value(memo));
rb_iter_break();
}
imemo_count_up(memo);
return Qnil;
}
/*
* call-seq:
* enum.find_index(value) -> int or nil
* enum.find_index { |obj| block } -> int or nil
* enum.find_index -> an_enumerator
*
* Compares each entry in <i>enum</i> with <em>value</em> or passes
* to <em>block</em>. Returns the index for the first for which the
* evaluated value is non-false. If no object matches, returns
* <code>nil</code>
*
* If neither block nor argument is given, an enumerator is returned instead.
*
* (1..10).find_index { |i| i % 5 == 0 && i % 7 == 0 } #=> nil
* (1..100).find_index { |i| i % 5 == 0 && i % 7 == 0 } #=> 34
* (1..100).find_index(50) #=> 49
*
*/
static VALUE
enum_find_index(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo; /* [return value, current index, ] */
VALUE condition_value = Qnil;
rb_block_call_func *func;
if (argc == 0) {
RETURN_ENUMERATOR(obj, 0, 0);
func = find_index_iter_i;
}
else {
rb_scan_args(argc, argv, "1", &condition_value);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = find_index_i;
}
memo = MEMO_NEW(Qnil, condition_value, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return memo->v1;
}
static VALUE
find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
ENUM_WANT_SVALUE();
if (RTEST(enum_yield(argc, i))) {
rb_ary_push(ary, i);
}
return Qnil;
}
static VALUE
enum_size(VALUE self, VALUE args, VALUE eobj)
{
return rb_check_funcall_default(self, id_size, 0, 0, Qnil);
}
static long
limit_by_enum_size(VALUE obj, long n)
{
unsigned long limit;
VALUE size = rb_check_funcall(obj, id_size, 0, 0);
if (!FIXNUM_P(size)) return n;
limit = FIX2ULONG(size);
return ((unsigned long)n > limit) ? (long)limit : n;
}
static int
enum_size_over_p(VALUE obj, long n)
{
VALUE size = rb_check_funcall(obj, id_size, 0, 0);
if (!FIXNUM_P(size)) return 0;
return ((unsigned long)n > FIX2ULONG(size));
}
/*
* call-seq:
* enum.find_all { |obj| block } -> array
* enum.select { |obj| block } -> array
* enum.filter { |obj| block } -> array
* enum.find_all -> an_enumerator
* enum.select -> an_enumerator
* enum.filter -> an_enumerator
*
* Returns an array containing all elements of +enum+
* for which the given +block+ returns a true value.
*
* If no block is given, an Enumerator is returned instead.
*
*
* (1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]
*
* [1,2,3,4,5].select { |num| num.even? } #=> [2, 4]
*
* [:foo, :bar].filter { |x| x == :foo } #=> [:foo]
*
* See also Enumerable#reject, Enumerable#grep.
*/
static VALUE
enum_find_all(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
static VALUE
filter_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
i = rb_yield_values2(argc, argv);
if (RTEST(i)) {
rb_ary_push(ary, i);
}
return Qnil;
}
/*
* call-seq:
* enum.filter_map { |obj| block } -> array
* enum.filter_map -> an_enumerator
*
* Returns a new array containing the truthy results (everything except
* +false+ or +nil+) of running the +block+ for every element in +enum+.
*
* If no block is given, an Enumerator is returned instead.
*
*
* (1..10).filter_map { |i| i * 2 if i.even? } #=> [4, 8, 12, 16, 20]
*
*/
static VALUE
enum_filter_map(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, filter_map_i, ary);
return ary;
}
static VALUE
reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
ENUM_WANT_SVALUE();
if (!RTEST(enum_yield(argc, i))) {
rb_ary_push(ary, i);
}
return Qnil;
}
/*
* call-seq:
* enum.reject { |obj| block } -> array
* enum.reject -> an_enumerator
*
* Returns an array for all elements of +enum+ for which the given
* +block+ returns <code>false</code>.
*
* If no block is given, an Enumerator is returned instead.
*
* (1..10).reject { |i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10]
*
* [1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5]
*
* See also Enumerable#find_all.
*/
static VALUE
enum_reject(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, reject_i, ary);
return ary;
}
static VALUE
collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
rb_ary_push(ary, rb_yield_values2(argc, argv));
return Qnil;
}
static VALUE
collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
rb_thread_check_ints();
rb_ary_push(ary, rb_enum_values_pack(argc, argv));
return Qnil;
}
/*
* call-seq:
* enum.collect { |obj| block } -> array
* enum.map { |obj| block } -> array
* enum.collect -> an_enumerator
* enum.map -> an_enumerator
*
* Returns a new array with the results of running <em>block</em> once
* for every element in <i>enum</i>.
*
* If no block is given, an enumerator is returned instead.
*
* (1..4).map { |i| i*i } #=> [1, 4, 9, 16]
* (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
*
*/
static VALUE
enum_collect(VALUE obj)
{
VALUE ary;
int min_argc, max_argc;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
min_argc = rb_block_min_max_arity(&max_argc);
rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);
return ary;
}
static VALUE
flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
VALUE tmp;
i = rb_yield_values2(argc, argv);
tmp = rb_check_array_type(i);
if (NIL_P(tmp)) {
rb_ary_push(ary, i);
}
else {
rb_ary_concat(ary, tmp);
}
return Qnil;
}
/*
* call-seq:
* enum.flat_map { |obj| block } -> array
* enum.collect_concat { |obj| block } -> array
* enum.flat_map -> an_enumerator
* enum.collect_concat -> an_enumerator
*
* Returns a new array with the concatenated results of running
* <em>block</em> once for every element in <i>enum</i>.
*
* If no block is given, an enumerator is returned instead.
*
* [1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
* [[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]
*
*/
static VALUE
enum_flat_map(VALUE obj)
{
VALUE ary;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
return ary;
}
/*
* call-seq:
* enum.to_a(*args) -> array
* enum.entries(*args) -> array
*
* Returns an array containing the items in <i>enum</i>.
*
* (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
* { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
*
* require 'prime'
* Prime.entries 10 #=> [2, 3, 5, 7]
*/
static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
VALUE ary = rb_ary_new();
rb_block_call(obj, id_each, argc, argv, collect_all, ary);
OBJ_INFECT(ary, obj);
return ary;
}
static VALUE
enum_hashify(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter)
{
VALUE hash = rb_hash_new();
rb_block_call(obj, id_each, argc, argv, iter, hash);
OBJ_INFECT(hash, obj);
return hash;
}
static VALUE
enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
{
ENUM_WANT_SVALUE();
rb_thread_check_ints();
return rb_hash_set_pair(hash, i);
}
static VALUE
enum_to_h_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
{
rb_thread_check_ints();
return rb_hash_set_pair(hash, rb_yield_values2(argc, argv));
}
/*
* call-seq:
* enum.to_h(*args) -> hash
* enum.to_h(*args) {...} -> hash
*
* Returns the result of interpreting <i>enum</i> as a list of
* <tt>[key, value]</tt> pairs.
*
* %i[hello world].each_with_index.to_h
* # => {:hello => 0, :world => 1}
*
* If a block is given, the results of the block on each element of
* the enum will be used as pairs.
*
* (1..5).to_h {|x| [x, x ** 2]}
* #=> {1=>1, 2=>4, 3=>9, 4=>16, 5=>25}
*/
static VALUE
enum_to_h(int argc, VALUE *argv, VALUE obj)
{
rb_block_call_func *iter = rb_block_given_p() ? enum_to_h_ii : enum_to_h_i;
return enum_hashify(obj, argc, argv, iter);
}
static VALUE
inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
{
struct MEMO *memo = MEMO_CAST(p);
ENUM_WANT_SVALUE();
if (memo->v1 == Qundef) {
MEMO_V1_SET(memo, i);
}
else {
MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i));
}
return Qnil;
}
static VALUE
inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
{
struct MEMO *memo = MEMO_CAST(p);
VALUE name;
ENUM_WANT_SVALUE();
if (memo->v1 == Qundef) {
MEMO_V1_SET(memo, i);
}
else if (SYMBOL_P(name = memo->u3.value)) {
const ID mid = SYM2ID(name);
MEMO_V1_SET(memo, rb_funcallv(memo->v1, mid, 1, &i));
}
else {
VALUE args[2];
args[0] = name;
args[1] = i;
MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1));
}
return Qnil;
}
static VALUE
ary_inject_op(VALUE ary, VALUE init, VALUE op)
{
ID id;
VALUE v, e;
long i, n;
if (RARRAY_LEN(ary) == 0)
return init == Qundef ? Qnil : init;
if (init == Qundef) {
v = RARRAY_AREF(ary, 0);
i = 1;
if (RARRAY_LEN(ary) == 1)
return v;
}
else {
v = init;
i = 0;
}
id = SYM2ID(op);
if (id == idPLUS) {
if (RB_INTEGER_TYPE_P(v) &&
rb_method_basic_definition_p(rb_cInteger, idPLUS) &&
rb_obj_respond_to(v, idPLUS, FALSE)) {
n = 0;
for (; i < RARRAY_LEN(ary); i++) {
e = RARRAY_AREF(ary, i);
if (FIXNUM_P(e)) {
n += FIX2LONG(e); /* should not overflow long type */
if (!FIXABLE(n)) {
v = rb_big_plus(ULONG2NUM(n), v);
n = 0;
}
}
else if (RB_TYPE_P(e, T_BIGNUM))
v = rb_big_plus(e, v);
else
goto not_integer;
}
if (n != 0)
v = rb_fix_plus(LONG2FIX(n), v);
return v;
not_integer:
if (n != 0)
v = rb_fix_plus(LONG2FIX(n), v);
}
}
for (; i < RARRAY_LEN(ary); i++) {
VALUE arg = RARRAY_AREF(ary, i);
v = rb_funcallv_public(v, id, 1, &arg);
}
return v;
}
/*
* call-seq:
* enum.inject(initial, sym) -> obj
* enum.inject(sym) -> obj
* enum.inject(initial) { |memo, obj| block } -> obj
* enum.inject { |memo, obj| block } -> obj
* enum.reduce(initial, sym) -> obj
* enum.reduce(sym) -> obj
* enum.reduce(initial) { |memo, obj| block } -> obj
* enum.reduce { |memo, obj| block } -> obj
*
* Combines all elements of <i>enum</i> by applying a binary
* operation, specified by a block or a symbol that names a
* method or operator.
*
* The <i>inject</i> and <i>reduce</i> methods are aliases. There
* is no performance benefit to either.
*
* If you specify a block, then for each element in <i>enum</i>
* the block is passed an accumulator value (<i>memo</i>) and the element.
* If you specify a symbol instead, then each element in the collection
* will be passed to the named method of <i>memo</i>.
* In either case, the result becomes the new value for <i>memo</i>.
* At the end of the iteration, the final value of <i>memo</i> is the
* return value for the method.
*
* If you do not explicitly specify an <i>initial</i> value for <i>memo</i>,
* then the first element of collection is used as the initial value
* of <i>memo</i>.
*
*
* # Sum some numbers
* (5..10).reduce(:+) #=> 45
* # Same using a block and inject
* (5..10).inject { |sum, n| sum + n } #=> 45
* # Multiply some numbers
* (5..10).reduce(1, :*) #=> 151200
* # Same using a block
* (5..10).inject(1) { |product, n| product * n } #=> 151200
* # find the longest word
* longest = %w{ cat sheep bear }.inject do |memo, word|
* memo.length > word.length ? memo : word
* end
* longest #=> "sheep"
*
*/
static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE init, op;
rb_block_call_func *iter = inject_i;
ID id;
switch (rb_scan_args(argc, argv, "02", &init, &op)) {
case 0:
init = Qundef;
break;
case 1:
if (rb_block_given_p()) {
break;
}
id = rb_check_id(&init);
op = id ? ID2SYM(id) : init;
init = Qundef;
iter = inject_op_i;
break;
case 2:
if (rb_block_given_p()) {
rb_warning("given block not used");
}
id = rb_check_id(&op);
if (id) op = ID2SYM(id);
iter = inject_op_i;
break;
}
if (iter == inject_op_i &&
SYMBOL_P(op) &&
RB_TYPE_P(obj, T_ARRAY) &&
rb_method_basic_definition_p(CLASS_OF(obj), id_each)) {
return ary_inject_op(obj, init, op);
}
memo = MEMO_NEW(init, Qnil, op);
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
if (memo->v1 == Qundef) return Qnil;
return memo->v1;
}
static VALUE
partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys))
{
struct MEMO *memo = MEMO_CAST(arys);
VALUE ary;
ENUM_WANT_SVALUE();
if (RTEST(enum_yield(argc, i))) {
ary = memo->v1;
}
else {
ary = memo->v2;
}
rb_ary_push(ary, i);
return Qnil;
}
/*
* call-seq:
* enum.partition { |obj| block } -> [ true_array, false_array ]
* enum.partition -> an_enumerator
*
* Returns two arrays, the first containing the elements of
* <i>enum</i> for which the block evaluates to true, the second
* containing the rest.
*
* If no block is given, an enumerator is returned instead.
*
* (1..6).partition { |v| v.even? } #=> [[2, 4, 6], [1, 3, 5]]
*
*/
static VALUE
enum_partition(VALUE obj)
{
struct MEMO *memo;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
return rb_assoc_new(memo->v1, memo->v2);
}
static VALUE
group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
{
VALUE group;
VALUE values;
ENUM_WANT_SVALUE();
group = enum_yield(argc, i);
values = rb_hash_aref(hash, group);
if (!RB_TYPE_P(values, T_ARRAY)) {
values = rb_ary_new3(1, i);
rb_hash_aset(hash, group, values);
}
else {
rb_ary_push(values, i);
}
return Qnil;
}
/*
* call-seq:
* enum.group_by { |obj| block } -> a_hash
* enum.group_by -> an_enumerator
*
* Groups the collection by result of the block. Returns a hash where the
* keys are the evaluated result from the block and the values are
* arrays of elements in the collection that correspond to the key.
*
* If no block is given an enumerator is returned.
*
* (1..6).group_by { |i| i%3 } #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}
*
*/
static VALUE
enum_group_by(VALUE obj)
{
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
return enum_hashify(obj, 0, 0, group_by_i);
}
static void
tally_up(VALUE hash, VALUE group)
{
VALUE tally = rb_hash_aref(hash, group);
if (NIL_P(tally)) {
tally = INT2FIX(1);
}
else if (FIXNUM_P(tally) && tally < INT2FIX(FIXNUM_MAX)) {
tally += INT2FIX(1) & ~FIXNUM_FLAG;
}
else {
tally = rb_big_plus(tally, INT2FIX(1));
}
rb_hash_aset(hash, group, tally);
}
static VALUE
tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
{
ENUM_WANT_SVALUE();
tally_up(hash, i);
return Qnil;
}
/*
* call-seq:
* enum.tally -> a_hash
*
* Tallys the collection. Returns a hash where the keys are the
* elements and the values are numbers of elements in the collection
* that correspond to the key.
*
* ["a", "b", "c", "b"].tally #=> {"a"=>1, "b"=>2, "c"=>1}
*/
static VALUE
enum_tally(VALUE obj)
{
return enum_hashify(obj, 0, 0, tally_i);
}
static VALUE
first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params))
{
struct MEMO *memo = MEMO_CAST(params);
ENUM_WANT_SVALUE();
MEMO_V1_SET(memo, i);
rb_iter_break();
2012-04-14 04:36:26 +04:00
UNREACHABLE_RETURN(Qnil);
}
static VALUE enum_take(VALUE obj, VALUE n);
/*
* call-seq:
* enum.first -> obj or nil
* enum.first(n) -> an_array
*
* Returns the first element, or the first +n+ elements, of the enumerable.
* If the enumerable is empty, the first form returns <code>nil</code>, and the
* second form returns an empty array.
*
* %w[foo bar baz].first #=> "foo"
* %w[foo bar baz].first(2) #=> ["foo", "bar"]
* %w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
* [].first #=> nil
* [].first(10) #=> []
*
*/
static VALUE
enum_first(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
rb_check_arity(argc, 0, 1);
if (argc > 0) {
return enum_take(obj, argv[0]);
}
else {
memo = MEMO_NEW(Qnil, 0, 0);
rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
return memo->v1;
}
}
/*
* call-seq:
* enum.sort -> array
* enum.sort { |a, b| block } -> array
*
* Returns an array containing the items in <i>enum</i> sorted.
*
* Comparisons for the sort will be done using the items' own
* <code><=></code> operator or using an optional code block.
*
* The block must implement a comparison between +a+ and +b+ and return
* an integer less than 0 when +b+ follows +a+, +0+ when +a+ and +b+
* are equivalent, or an integer greater than 0 when +a+ follows +b+.
*
* The result is not guaranteed to be stable. When the comparison of two
* elements returns +0+, the order of the elements is unpredictable.
*
* %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"]
* (1..10).sort { |a, b| b <=> a } #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
*
* See also Enumerable#sort_by. It implements a Schwartzian transform
* which is useful when key computation or comparison is expensive.
*/
static VALUE
enum_sort(VALUE obj)
{
return rb_ary_sort_bang(enum_to_a(0, 0, obj));
}
#define SORT_BY_BUFSIZE 16
struct sort_by_data {
const VALUE ary;
const VALUE buf;
long n;
};
static VALUE
sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
{
struct sort_by_data *data = (struct sort_by_data *)&MEMO_CAST(_data)->v1;
VALUE ary = data->ary;
VALUE v;
ENUM_WANT_SVALUE();
v = enum_yield(argc, i);
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
RARRAY_ASET(data->buf, data->n*2, v);
RARRAY_ASET(data->buf, data->n*2+1, i);
data->n++;
if (data->n == SORT_BY_BUFSIZE) {
rb_ary_concat(ary, data->buf);
data->n = 0;
}
return Qnil;
}
static int
sort_by_cmp(const void *ap, const void *bp, void *data)
{
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
struct cmp_opt_data cmp_opt = { 0, 0 };
VALUE a;
VALUE b;
VALUE ary = (VALUE)data;
* array.c (rb_ary_modify): should copy the internal buffer if the modifying buffer is shared. * array.c (ary_make_shared): make an internal buffer of an array to be shared. * array.c (rb_ary_shift): avoid sliding an internal buffer by using shared buffer. * array.c (rb_ary_subseq): avoid copying the buffer. * parse.y (gettable): should freeze __LINE__ string. * io.c (rb_io_puts): old behavoir restored. rationale: a) if you want to call to_s for arrays, you can just call print a, "\n". b) to_s wastes memory if array (and sum of its contents) is huge. c) now any object that has to_ary is treated as an array, using rb_check_convert_type(). * hash.c (rb_hash_initialize): now accepts a block to calculate the default value. [new] * hash.c (rb_hash_aref): call "default" method to get the value corrensponding to the non existing key. * hash.c (rb_hash_default): get the default value based on the block given to 'new'. Now it takes an optinal "key" argument. "default" became the method to get the value for non existing key. Users may override "default" method to change the hash behavior. * hash.c (rb_hash_set_default): clear the flag if a block is given to 'new' * object.c (Init_Object): undef Data.allocate, left Data.new. * ext/curses/curses.c (window_scrollok): use RTEST(). * ext/curses/curses.c (window_idlok): ditto. * ext/curses/curses.c (window_keypad): ditto. * ext/curses/curses.c (window_idlok): idlok() may return void on some platforms; so don't use return value. * ext/curses/curses.c (window_scrollok): ditto for consistency. * ext/curses/curses.c: replace FIX2INT() by typechecking NUM2INT(). * parse.y (str_extend): should not process immature #$x and #@x interpolation, e.g #@#@ etc. * enum.c (enum_sort_by): sort_by does not have to be stable always. * enum.c (enum_sort_by): call qsort directly to gain performance. * util.c (ruby_qsort): ruby_qsort(qs6) is now native thread safe. * error.c (rb_sys_fail): it must be a bug if it's called when errno == 0. * regex.c (WC2MBC1ST): should not pass through > 0x80 number in UTF-8. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@1896 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2001-12-10 10:18:16 +03:00
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
a = *(VALUE *)ap;
b = *(VALUE *)bp;
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
return OPTIMIZED_CMP(a, b, cmp_opt);
}
/*
* call-seq:
* enum.sort_by { |obj| block } -> array
* enum.sort_by -> an_enumerator
*
* Sorts <i>enum</i> using a set of keys generated by mapping the
* values in <i>enum</i> through the given block.
*
* The result is not guaranteed to be stable. When two keys are equal,
* the order of the corresponding elements is unpredictable.
*
* If no block is given, an enumerator is returned instead.
*
* %w{apple pear fig}.sort_by { |word| word.length }
* #=> ["fig", "pear", "apple"]
*
* The current implementation of #sort_by generates an array of
* tuples containing the original collection element and the mapped
* value. This makes #sort_by fairly expensive when the keysets are
* simple.
*
* require 'benchmark'
*
* a = (1..100000).map { rand(100000) }
*
* Benchmark.bm(10) do |b|
* b.report("Sort") { a.sort }
* b.report("Sort by") { a.sort_by { |a| a } }
* end
*
* <em>produces:</em>
*
* user system total real
* Sort 0.180000 0.000000 0.180000 ( 0.175469)
* Sort by 1.980000 0.040000 2.020000 ( 2.013586)
*
* However, consider the case where comparing the keys is a non-trivial
* operation. The following code sorts some files on modification time
* using the basic #sort method.
*
* files = Dir["*"]
* sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This sort is inefficient: it generates two new File
* objects during every comparison. A slightly better technique is to
* use the Kernel#test method to generate the modification
* times directly.
*
* files = Dir["*"]
* sorted = files.sort { |a, b|
* test(?M, a) <=> test(?M, b)
* }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This still generates many unnecessary Time objects. A more
* efficient technique is to cache the sort keys (modification times
* in this case) before the sort. Perl users often call this approach
* a Schwartzian transform, after Randal Schwartz. We construct a
* temporary array, where each element is an array containing our
* sort key along with the filename. We sort this array, and then
* extract the filename from the result.
*
* sorted = Dir["*"].collect { |f|
* [test(?M, f), f]
* }.sort.collect { |f| f[1] }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This is exactly what #sort_by does internally.
*
* sorted = Dir["*"].sort_by { |f| test(?M, f) }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
2019-06-13 10:42:31 +03:00
* To produce the reverse of a specific order, the following can be used:
*
* ary.sort_by { ... }.reverse!
*/
static VALUE
enum_sort_by(VALUE obj)
{
VALUE ary, buf;
struct MEMO *memo;
long i;
struct sort_by_data *data;
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
ary = rb_ary_new2(RARRAY_LEN(obj)*2);
}
else {
ary = rb_ary_new();
}
* include/ruby/ruby.h: constify RBasic::klass and add RBASIC_CLASS(obj) macro which returns a class of `obj'. This change is a part of RGENGC branch [ruby-trunk - Feature #8339]. * object.c: add new function rb_obj_reveal(). This function reveal interal (hidden) object by rb_obj_hide(). Note that do not change class before and after hiding. Only permitted example is: klass = RBASIC_CLASS(obj); rb_obj_hide(obj); .... rb_obj_reveal(obj, klass); TODO: API design. rb_obj_reveal() should be replaced with others. TODO: modify constified variables using cast may be harmful for compiler's analysis and optimizaton. Any idea to prohibt inserting RBasic::klass directly? If rename RBasic::klass and force to use RBASIC_CLASS(obj), then all codes such as `RBASIC(obj)->klass' will be compilation error. Is it acceptable? (We have similar experience at Ruby 1.9, for example "RARRAY(ary)->ptr" to "RARRAY_PTR(ary)". * internal.h: add some macros. * RBASIC_CLEAR_CLASS(obj) clear RBasic::klass to make it internal object. * RBASIC_SET_CLASS(obj, cls) set RBasic::klass. * RBASIC_SET_CLASS_RAW(obj, cls) same as RBASIC_SET_CLASS without write barrier (planned). * RCLASS_SET_SUPER(a, b) set super class of a. * array.c, class.c, compile.c, encoding.c, enum.c, error.c, eval.c, file.c, gc.c, hash.c, io.c, iseq.c, marshal.c, object.c, parse.y, proc.c, process.c, random.c, ruby.c, sprintf.c, string.c, thread.c, transcode.c, vm.c, vm_eval.c, win32/file.c: Use above macros and functions to access RBasic::klass. * ext/coverage/coverage.c, ext/readline/readline.c, ext/socket/ancdata.c, ext/socket/init.c, * ext/zlib/zlib.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40691 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-05-13 14:49:11 +04:00
RBASIC_CLEAR_CLASS(ary);
buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2);
rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
memo = MEMO_NEW(0, 0, 0);
OBJ_INFECT(memo, obj);
data = (struct sort_by_data *)&memo->v1;
RB_OBJ_WRITE(memo, &data->ary, ary);
RB_OBJ_WRITE(memo, &data->buf, buf);
data->n = 0;
rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
ary = data->ary;
buf = data->buf;
if (data->n) {
rb_ary_resize(buf, data->n*2);
rb_ary_concat(ary, buf);
}
if (RARRAY_LEN(ary) > 2) {
RARRAY_PTR_USE(ary, ptr,
ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
sort_by_cmp, (void *)ary));
}
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
for (i=1; i<RARRAY_LEN(ary); i+=2) {
RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
}
rb_ary_resize(ary, RARRAY_LEN(ary)/2);
* include/ruby/ruby.h: constify RBasic::klass and add RBASIC_CLASS(obj) macro which returns a class of `obj'. This change is a part of RGENGC branch [ruby-trunk - Feature #8339]. * object.c: add new function rb_obj_reveal(). This function reveal interal (hidden) object by rb_obj_hide(). Note that do not change class before and after hiding. Only permitted example is: klass = RBASIC_CLASS(obj); rb_obj_hide(obj); .... rb_obj_reveal(obj, klass); TODO: API design. rb_obj_reveal() should be replaced with others. TODO: modify constified variables using cast may be harmful for compiler's analysis and optimizaton. Any idea to prohibt inserting RBasic::klass directly? If rename RBasic::klass and force to use RBASIC_CLASS(obj), then all codes such as `RBASIC(obj)->klass' will be compilation error. Is it acceptable? (We have similar experience at Ruby 1.9, for example "RARRAY(ary)->ptr" to "RARRAY_PTR(ary)". * internal.h: add some macros. * RBASIC_CLEAR_CLASS(obj) clear RBasic::klass to make it internal object. * RBASIC_SET_CLASS(obj, cls) set RBasic::klass. * RBASIC_SET_CLASS_RAW(obj, cls) same as RBASIC_SET_CLASS without write barrier (planned). * RCLASS_SET_SUPER(a, b) set super class of a. * array.c, class.c, compile.c, encoding.c, enum.c, error.c, eval.c, file.c, gc.c, hash.c, io.c, iseq.c, marshal.c, object.c, parse.y, proc.c, process.c, random.c, ruby.c, sprintf.c, string.c, thread.c, transcode.c, vm.c, vm_eval.c, win32/file.c: Use above macros and functions to access RBasic::klass. * ext/coverage/coverage.c, ext/readline/readline.c, ext/socket/ancdata.c, ext/socket/init.c, * ext/zlib/zlib.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40691 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-05-13 14:49:11 +04:00
RBASIC_SET_CLASS_RAW(ary, rb_cArray);
OBJ_INFECT(ary, memo);
return ary;
}
#define ENUMFUNC(name) argc ? name##_eqq : rb_block_given_p() ? name##_iter_i : name##_i
#define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), MEMO_NEW((v1), (argc ? *argv : 0), 0))
#define DEFINE_ENUMFUNCS(name) \
static VALUE enum_##name##_func(VALUE result, struct MEMO *memo); \
\
static VALUE \
name##_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
{ \
return enum_##name##_func(rb_enum_values_pack(argc, argv), MEMO_CAST(memo)); \
} \
\
static VALUE \
name##_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
{ \
return enum_##name##_func(rb_yield_values2(argc, argv), MEMO_CAST(memo)); \
} \
\
static VALUE \
name##_eqq(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
{ \
ENUM_WANT_SVALUE(); \
return enum_##name##_func(rb_funcallv(MEMO_CAST(memo)->v2, id_eqq, 1, &i), MEMO_CAST(memo)); \
} \
\
static VALUE \
enum_##name##_func(VALUE result, struct MEMO *memo)
#define WARN_UNUSED_BLOCK(argc) do { \
if ((argc) > 0 && rb_block_given_p()) { \
rb_warn("given block not used"); \
} \
} while (0)
DEFINE_ENUMFUNCS(all)
{
if (!RTEST(result)) {
MEMO_V1_SET(memo, Qfalse);
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.all? [{ |obj| block } ] -> true or false
* enum.all?(pattern) -> true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block never returns
* <code>false</code> or <code>nil</code>. If the block is not given,
* Ruby adds an implicit block of <code>{ |obj| obj }</code> which will
* cause #all? to return +true+ when none of the collection members are
* +false+ or +nil+.
*
* If instead a pattern is supplied, the method returns whether
* <code>pattern === element</code> for every collection member.
*
* %w[ant bear cat].all? { |word| word.length >= 3 } #=> true
* %w[ant bear cat].all? { |word| word.length >= 4 } #=> false
* %w[ant bear cat].all?(/t/) #=> false
* [1, 2i, 3.14].all?(Numeric) #=> true
* [nil, true, 99].all? #=> false
* [].all? #=> true
*
*/
static VALUE
enum_all(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
WARN_UNUSED_BLOCK(argc);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
return memo->v1;
}
DEFINE_ENUMFUNCS(any)
{
if (RTEST(result)) {
MEMO_V1_SET(memo, Qtrue);
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.any? [{ |obj| block }] -> true or false
* enum.any?(pattern) -> true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block ever returns a value other
* than <code>false</code> or <code>nil</code>. If the block is not
* given, Ruby adds an implicit block of <code>{ |obj| obj }</code> that
* will cause #any? to return +true+ if at least one of the collection
* members is not +false+ or +nil+.
*
* If instead a pattern is supplied, the method returns whether
* <code>pattern === element</code> for any collection member.
*
* %w[ant bear cat].any? { |word| word.length >= 3 } #=> true
* %w[ant bear cat].any? { |word| word.length >= 4 } #=> true
* %w[ant bear cat].any?(/d/) #=> false
* [nil, true, 99].any?(Integer) #=> true
* [nil, true, 99].any? #=> true
* [].any? #=> false
*
*/
static VALUE
enum_any(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qfalse);
WARN_UNUSED_BLOCK(argc);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
return memo->v1;
}
DEFINE_ENUMFUNCS(one)
{
if (RTEST(result)) {
if (memo->v1 == Qundef) {
MEMO_V1_SET(memo, Qtrue);
}
else if (memo->v1 == Qtrue) {
MEMO_V1_SET(memo, Qfalse);
rb_iter_break();
}
}
return Qnil;
}
struct nmin_data {
long n;
long bufmax;
long curlen;
VALUE buf;
VALUE limit;
int (*cmpfunc)(const void *, const void *, void *);
int rev: 1; /* max if 1 */
int by: 1; /* min_by if 1 */
};
static VALUE
cmpint_reenter_check(struct nmin_data *data, VALUE val)
{
if (RBASIC(data->buf)->klass) {
rb_raise(rb_eRuntimeError, "%s%s reentered",
data->rev ? "max" : "min",
data->by ? "_by" : "");
}
return val;
}
static int
nmin_cmp(const void *ap, const void *bp, void *_data)
{
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
struct cmp_opt_data cmp_opt = { 0, 0 };
struct nmin_data *data = (struct nmin_data *)_data;
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
#define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b)
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
return OPTIMIZED_CMP(a, b, cmp_opt);
#undef rb_cmpint
}
static int
nmin_block_cmp(const void *ap, const void *bp, void *_data)
{
struct nmin_data *data = (struct nmin_data *)_data;
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
VALUE cmp = rb_yield_values(2, a, b);
cmpint_reenter_check(data, cmp);
return rb_cmpint(cmp, a, b);
}
static void
nmin_filter(struct nmin_data *data)
{
long n;
VALUE *beg;
int eltsize;
long numelts;
long left, right;
long store_index;
long i, j;
if (data->curlen <= data->n)
return;
n = data->n;
beg = RARRAY_PTR(data->buf);
eltsize = data->by ? 2 : 1;
numelts = data->curlen;
left = 0;
right = numelts-1;
#define GETPTR(i) (beg+(i)*eltsize)
#define SWAP(i, j) do { \
VALUE tmp[2]; \
memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \
memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \
memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \
} while (0)
while (1) {
long pivot_index = left + (right-left)/2;
long num_pivots = 1;
SWAP(pivot_index, right);
pivot_index = right;
store_index = left;
i = left;
while (i <= right-num_pivots) {
int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data);
if (data->rev)
c = -c;
if (c == 0) {
SWAP(i, right-num_pivots);
num_pivots++;
continue;
}
if (c < 0) {
SWAP(i, store_index);
store_index++;
}
i++;
}
j = store_index;
for (i = right; right-num_pivots < i; i--) {
if (i <= j)
break;
SWAP(j, i);
j++;
}
if (store_index <= n && n <= store_index+num_pivots)
break;
if (n < store_index) {
right = store_index-1;
}
else {
left = store_index+num_pivots;
}
}
#undef GETPTR
#undef SWAP
data->limit = RARRAY_AREF(data->buf, store_index*eltsize); /* the last pivot */
data->curlen = data->n;
rb_ary_resize(data->buf, data->n * eltsize);
}
static VALUE
nmin_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
{
struct nmin_data *data = (struct nmin_data *)_data;
VALUE cmpv;
ENUM_WANT_SVALUE();
if (data->by)
cmpv = enum_yield(argc, i);
else
cmpv = i;
if (data->limit != Qundef) {
int c = data->cmpfunc(&cmpv, &data->limit, data);
if (data->rev)
c = -c;
if (c >= 0)
return Qnil;
}
if (data->by)
rb_ary_push(data->buf, cmpv);
rb_ary_push(data->buf, i);
data->curlen++;
if (data->curlen == data->bufmax) {
nmin_filter(data);
}
return Qnil;
}
VALUE
rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary)
{
VALUE result;
struct nmin_data data;
data.n = NUM2LONG(num);
if (data.n < 0)
rb_raise(rb_eArgError, "negative size (%ld)", data.n);
if (data.n == 0)
return rb_ary_new2(0);
if (LONG_MAX/4/(by ? 2 : 1) < data.n)
rb_raise(rb_eArgError, "too big size");
data.bufmax = data.n * 4;
data.curlen = 0;
data.buf = rb_ary_tmp_new(data.bufmax * (by ? 2 : 1));
data.limit = Qundef;
data.cmpfunc = by ? nmin_cmp :
rb_block_given_p() ? nmin_block_cmp :
nmin_cmp;
data.rev = rev;
data.by = by;
if (ary) {
long i;
for (i = 0; i < RARRAY_LEN(obj); i++) {
VALUE args[1];
args[0] = RARRAY_AREF(obj, i);
nmin_i(obj, (VALUE)&data, 1, args, Qundef);
}
}
else {
rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data);
}
nmin_filter(&data);
result = data.buf;
if (by) {
long i;
RARRAY_PTR_USE(result, ptr, {
ruby_qsort(ptr,
RARRAY_LEN(result)/2,
sizeof(VALUE)*2,
data.cmpfunc, (void *)&data);
for (i=1; i<RARRAY_LEN(result); i+=2) {
ptr[i/2] = ptr[i];
}
});
rb_ary_resize(result, RARRAY_LEN(result)/2);
}
else {
RARRAY_PTR_USE(result, ptr, {
ruby_qsort(ptr, RARRAY_LEN(result), sizeof(VALUE),
data.cmpfunc, (void *)&data);
});
}
if (rev) {
rb_ary_reverse(result);
}
RBASIC_SET_CLASS(result, rb_cArray);
return result;
}
/*
* call-seq:
* enum.one? [{ |obj| block }] -> true or false
* enum.one?(pattern) -> true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block returns <code>true</code>
* exactly once. If the block is not given, <code>one?</code> will return
* <code>true</code> only if exactly one of the collection members is
* true.
*
* If instead a pattern is supplied, the method returns whether
* <code>pattern === element</code> for exactly one collection member.
*
* %w{ant bear cat}.one? { |word| word.length == 4 } #=> true
* %w{ant bear cat}.one? { |word| word.length > 4 } #=> false
* %w{ant bear cat}.one? { |word| word.length < 4 } #=> false
* %w{ant bear cat}.one?(/t/) #=> false
* [ nil, true, 99 ].one? #=> false
* [ nil, true, false ].one? #=> true
* [ nil, true, 99 ].one?(Integer) #=> true
* [].one? #=> false
*
*/
static VALUE
enum_one(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qundef);
VALUE result;
WARN_UNUSED_BLOCK(argc);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
result = memo->v1;
if (result == Qundef) return Qfalse;
return result;
}
DEFINE_ENUMFUNCS(none)
{
if (RTEST(result)) {
MEMO_V1_SET(memo, Qfalse);
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.none? [{ |obj| block }] -> true or false
* enum.none?(pattern) -> true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block never returns <code>true</code>
* for all elements. If the block is not given, <code>none?</code> will return
* <code>true</code> only if none of the collection members is true.
*
* If instead a pattern is supplied, the method returns whether
* <code>pattern === element</code> for none of the collection members.
*
* %w{ant bear cat}.none? { |word| word.length == 5 } #=> true
* %w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
* %w{ant bear cat}.none?(/d/) #=> true
* [1, 3.14, 42].none?(Float) #=> false
* [].none? #=> true
* [nil].none? #=> true
* [nil, false].none? #=> true
* [nil, false, true].none? #=> false
*/
static VALUE
enum_none(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
WARN_UNUSED_BLOCK(argc);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
return memo->v1;
}
struct min_t {
VALUE min;
struct cmp_opt_data cmp_opt;
};
static VALUE
min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
struct min_t *memo = MEMO_FOR(struct min_t, args);
ENUM_WANT_SVALUE();
if (memo->min == Qundef) {
memo->min = i;
}
else {
if (OPTIMIZED_CMP(i, memo->min, memo->cmp_opt) < 0) {
memo->min = i;
}
}
return Qnil;
}
static VALUE
min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
VALUE cmp;
struct min_t *memo = MEMO_FOR(struct min_t, args);
ENUM_WANT_SVALUE();
if (memo->min == Qundef) {
memo->min = i;
}
else {
cmp = rb_yield_values(2, i, memo->min);
if (rb_cmpint(cmp, i, memo->min) < 0) {
memo->min = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.min -> obj
* enum.min { |a, b| block } -> obj
* enum.min(n) -> array
* enum.min(n) { |a, b| block } -> array
*
* Returns the object in _enum_ with the minimum value. The
* first form assumes all objects implement Comparable;
* the second uses the block to return <em>a <=> b</em>.
*
* a = %w(albatross dog horse)
* a.min #=> "albatross"
* a.min { |a, b| a.length <=> b.length } #=> "dog"
*
* If the +n+ argument is given, minimum +n+ elements are returned
* as a sorted array.
*
* a = %w[albatross dog horse]
* a.min(2) #=> ["albatross", "dog"]
* a.min(2) {|a, b| a.length <=> b.length } #=> ["dog", "horse"]
* [5, 1, 3, 4, 2].min(3) #=> [1, 2, 3]
*/
static VALUE
enum_min(int argc, VALUE *argv, VALUE obj)
{
VALUE memo;
struct min_t *m = NEW_CMP_OPT_MEMO(struct min_t, memo);
VALUE result;
VALUE num;
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 0, 0, 0);
m->min = Qundef;
m->cmp_opt.opt_methods = 0;
m->cmp_opt.opt_inited = 0;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, min_ii, memo);
}
else {
rb_block_call(obj, id_each, 0, 0, min_i, memo);
}
result = m->min;
if (result == Qundef) return Qnil;
return result;
}
struct max_t {
VALUE max;
struct cmp_opt_data cmp_opt;
};
static VALUE
max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
struct max_t *memo = MEMO_FOR(struct max_t, args);
ENUM_WANT_SVALUE();
if (memo->max == Qundef) {
memo->max = i;
}
else {
if (OPTIMIZED_CMP(i, memo->max, memo->cmp_opt) > 0) {
memo->max = i;
}
}
return Qnil;
}
static VALUE
max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
struct max_t *memo = MEMO_FOR(struct max_t, args);
VALUE cmp;
ENUM_WANT_SVALUE();
if (memo->max == Qundef) {
memo->max = i;
}
else {
cmp = rb_yield_values(2, i, memo->max);
if (rb_cmpint(cmp, i, memo->max) > 0) {
memo->max = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.max -> obj
* enum.max { |a, b| block } -> obj
* enum.max(n) -> array
* enum.max(n) { |a, b| block } -> array
*
* Returns the object in _enum_ with the maximum value. The
* first form assumes all objects implement Comparable;
* the second uses the block to return <em>a <=> b</em>.
*
* a = %w(albatross dog horse)
* a.max #=> "horse"
* a.max { |a, b| a.length <=> b.length } #=> "albatross"
*
* If the +n+ argument is given, maximum +n+ elements are returned
* as an array, sorted in descending order.
*
* a = %w[albatross dog horse]
* a.max(2) #=> ["horse", "dog"]
* a.max(2) {|a, b| a.length <=> b.length } #=> ["albatross", "horse"]
* [5, 1, 3, 4, 2].max(3) #=> [5, 4, 3]
*/
static VALUE
enum_max(int argc, VALUE *argv, VALUE obj)
{
VALUE memo;
struct max_t *m = NEW_CMP_OPT_MEMO(struct max_t, memo);
VALUE result;
VALUE num;
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 0, 1, 0);
m->max = Qundef;
m->cmp_opt.opt_methods = 0;
m->cmp_opt.opt_inited = 0;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
}
else {
rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
}
result = m->max;
if (result == Qundef) return Qnil;
return result;
}
struct minmax_t {
VALUE min;
VALUE max;
VALUE last;
struct cmp_opt_data cmp_opt;
};
static void
minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo)
{
int n;
if (memo->min == Qundef) {
memo->min = i;
memo->max = j;
}
else {
n = OPTIMIZED_CMP(i, memo->min, memo->cmp_opt);
if (n < 0) {
memo->min = i;
}
n = OPTIMIZED_CMP(j, memo->max, memo->cmp_opt);
if (n > 0) {
memo->max = j;
}
}
}
static VALUE
minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
{
struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
int n;
VALUE j;
ENUM_WANT_SVALUE();
if (memo->last == Qundef) {
memo->last = i;
return Qnil;
}
j = memo->last;
memo->last = Qundef;
n = OPTIMIZED_CMP(j, i, memo->cmp_opt);
if (n == 0)
i = j;
else if (n < 0) {
VALUE tmp;
tmp = i;
i = j;
j = tmp;
}
minmax_i_update(i, j, memo);
return Qnil;
}
static void
minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo)
{
int n;
if (memo->min == Qundef) {
memo->min = i;
memo->max = j;
}
else {
n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min);
if (n < 0) {
memo->min = i;
}
n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max);
if (n > 0) {
memo->max = j;
}
}
}
static VALUE
minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
{
struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
int n;
VALUE j;
ENUM_WANT_SVALUE();
if (memo->last == Qundef) {
memo->last = i;
return Qnil;
}
j = memo->last;
memo->last = Qundef;
n = rb_cmpint(rb_yield_values(2, j, i), j, i);
if (n == 0)
i = j;
else if (n < 0) {
VALUE tmp;
tmp = i;
i = j;
j = tmp;
}
minmax_ii_update(i, j, memo);
return Qnil;
}
/*
* call-seq:
* enum.minmax -> [min, max]
* enum.minmax { |a, b| block } -> [min, max]
*
* Returns a two element array which contains the minimum and the
* maximum value in the enumerable. The first form assumes all
* objects implement Comparable; the second uses the
* block to return <em>a <=> b</em>.
*
* a = %w(albatross dog horse)
* a.minmax #=> ["albatross", "horse"]
* a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]
*/
static VALUE
enum_minmax(VALUE obj)
{
VALUE memo;
struct minmax_t *m = NEW_CMP_OPT_MEMO(struct minmax_t, memo);
m->min = Qundef;
m->last = Qundef;
m->cmp_opt.opt_methods = 0;
m->cmp_opt.opt_inited = 0;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, minmax_ii, memo);
if (m->last != Qundef)
minmax_ii_update(m->last, m->last, m);
}
else {
rb_block_call(obj, id_each, 0, 0, minmax_i, memo);
if (m->last != Qundef)
minmax_i_update(m->last, m->last, m);
}
if (m->min != Qundef) {
return rb_assoc_new(m->min, m->max);
}
return rb_assoc_new(Qnil, Qnil);
}
static VALUE
min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
struct cmp_opt_data cmp_opt = { 0, 0 };
struct MEMO *memo = MEMO_CAST(args);
VALUE v;
ENUM_WANT_SVALUE();
v = enum_yield(argc, i);
if (memo->v1 == Qundef) {
MEMO_V1_SET(memo, v);
MEMO_V2_SET(memo, i);
}
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) < 0) {
MEMO_V1_SET(memo, v);
MEMO_V2_SET(memo, i);
}
return Qnil;
}
/*
* call-seq:
* enum.min_by {|obj| block } -> obj
* enum.min_by -> an_enumerator
* enum.min_by(n) {|obj| block } -> array
* enum.min_by(n) -> an_enumerator
*
* Returns the object in <i>enum</i> that gives the minimum
* value from the given block.
*
* If no block is given, an enumerator is returned instead.
*
* a = %w(albatross dog horse)
* a.min_by { |x| x.length } #=> "dog"
*
* If the +n+ argument is given, minimum +n+ elements are returned
* as an array. These +n+ elements are sorted by the value from the
* given block.
*
* a = %w[albatross dog horse]
* p a.min_by(2) {|x| x.length } #=> ["dog", "horse"]
*/
static VALUE
enum_min_by(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE num;
rb_check_arity(argc, 0, 1);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
if (argc && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 1, 0, 0);
memo = MEMO_NEW(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
return memo->v2;
}
static VALUE
max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
struct cmp_opt_data cmp_opt = { 0, 0 };
struct MEMO *memo = MEMO_CAST(args);
VALUE v;
ENUM_WANT_SVALUE();
v = enum_yield(argc, i);
if (memo->v1 == Qundef) {
MEMO_V1_SET(memo, v);
MEMO_V2_SET(memo, i);
}
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) > 0) {
MEMO_V1_SET(memo, v);
MEMO_V2_SET(memo, i);
}
return Qnil;
}
/*
* call-seq:
* enum.max_by {|obj| block } -> obj
* enum.max_by -> an_enumerator
* enum.max_by(n) {|obj| block } -> obj
* enum.max_by(n) -> an_enumerator
*
* Returns the object in <i>enum</i> that gives the maximum
* value from the given block.
*
* If no block is given, an enumerator is returned instead.
*
* a = %w(albatross dog horse)
* a.max_by { |x| x.length } #=> "albatross"
*
* If the +n+ argument is given, maximum +n+ elements are returned
* as an array. These +n+ elements are sorted by the value from the
* given block, in descending order.
*
* a = %w[albatross dog horse]
* a.max_by(2) {|x| x.length } #=> ["albatross", "horse"]
*
* enum.max_by(n) can be used to implement weighted random sampling.
* Following example implements and use Enumerable#wsample.
*
* module Enumerable
* # weighted random sampling.
* #
* # Pavlos S. Efraimidis, Paul G. Spirakis
* # Weighted random sampling with a reservoir
* # Information Processing Letters
* # Volume 97, Issue 5 (16 March 2006)
* def wsample(n)
* self.max_by(n) {|v| rand ** (1.0/yield(v)) }
* end
* end
* e = (-20..20).to_a*10000
* a = e.wsample(20000) {|x|
* Math.exp(-(x/5.0)**2) # normal distribution
* }
* # a is 20000 samples from e.
* p a.length #=> 20000
* h = a.group_by {|x| x }
* -10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] }
* #=> *
* # ***
* # ******
* # ***********
* # ******************
* # *****************************
* # *****************************************
* # ****************************************************
* # ***************************************************************
* # ********************************************************************
* # ***********************************************************************
* # ***********************************************************************
* # **************************************************************
* # ****************************************************
* # ***************************************
* # ***************************
* # ******************
* # ***********
* # *******
* # ***
* # *
*
*/
static VALUE
enum_max_by(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
VALUE num;
rb_check_arity(argc, 0, 1);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
if (argc && !NIL_P(num = argv[0]))
return rb_nmin_run(obj, num, 1, 1, 0);
memo = MEMO_NEW(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
return memo->v2;
}
struct minmax_by_t {
VALUE min_bv;
VALUE max_bv;
VALUE min;
VALUE max;
VALUE last_bv;
VALUE last;
};
static void
minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo)
{
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
struct cmp_opt_data cmp_opt = { 0, 0 };
if (memo->min_bv == Qundef) {
memo->min_bv = v1;
memo->max_bv = v2;
memo->min = i1;
memo->max = i2;
}
else {
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
if (OPTIMIZED_CMP(v1, memo->min_bv, cmp_opt) < 0) {
memo->min_bv = v1;
memo->min = i1;
}
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
if (OPTIMIZED_CMP(v2, memo->max_bv, cmp_opt) > 0) {
memo->max_bv = v2;
memo->max = i2;
}
}
}
static VALUE
minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
{
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
struct cmp_opt_data cmp_opt = { 0, 0 };
struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo);
VALUE vi, vj, j;
int n;
ENUM_WANT_SVALUE();
vi = enum_yield(argc, i);
if (memo->last_bv == Qundef) {
memo->last_bv = vi;
memo->last = i;
return Qnil;
}
vj = memo->last_bv;
j = memo->last;
memo->last_bv = Qundef;
Improve performance of Enumerable#{sort_by,min_by,max_by,minmax_by} This is totally same approach with r58964. enum.c (sort_by_cmp): use OPTIMIZED_CMP() to compare the objects instead of `<=>' method dispatching for Fixnum/Float/String object. enum.c (nmin_cmp): ditto. enum.c (min_by_i): ditto. enum.c (max_by_i): ditto. enum.c (minmax_by_i_update): ditto. enum.c (minmax_by_i): ditto. Enumerable#sort_by -> 51 % up Enumerable#min_by(n) -> 34 % up Enumerable#min_by -> 37 % up Enumerable#max_by(n) -> 61 % up Enumerable#max_by -> 40 % up Enumerable#minmax_by -> 67 % up [ruby-core:80689] [Bug #13437] [Fix GH-1584] ### Before Enumerable#sort_by 5.692k (± 2.2%) i/s - 28.611k in 5.028861s Enumerable#min_by(n) 8.496k (± 0.5%) i/s - 43.146k in 5.078394s Enumerable#min_by 8.678k (± 0.5%) i/s - 43.911k in 5.060128s Enumerable#max_by(n) 3.306k (± 3.0%) i/s - 16.562k in 5.014727s Enumerable#max_by 8.322k (± 2.8%) i/s - 42.400k in 5.099400s Enumerable#minmax_by 6.769k (± 2.6%) i/s - 34.100k in 5.041354s ### After Enumerable#sort_by 8.591k (± 3.0%) i/s - 43.316k in 5.046836s Enumerable#min_by(n) 11.489k (± 1.2%) i/s - 57.732k in 5.025504s Enumerable#min_by 11.835k (± 2.7%) i/s - 60.150k in 5.086450s Enumerable#max_by(n) 5.322k (± 1.1%) i/s - 26.650k in 5.008289s Enumerable#max_by 11.705k (± 0.6%) i/s - 59.262k in 5.062997s Enumerable#minmax_by 11.323k (± 1.3%) i/s - 57.018k in 5.036565s ### Test code require 'benchmark/ips' Benchmark.ips do |x| enum = (1..1000).to_a.to_enum x.report "Enumerable#sort_by" do enum.sort_by { |a| a } end x.report "Enumerable#min_by(n)" do enum.min_by(2) { |a| a } end x.report "Enumerable#min_by" do enum.min_by { |a| a } end x.report "Enumerable#max_by(n)" do enum.max_by(2) { |a| a } end x.report "Enumerable#max_by" do enum.max_by { |a| a } end x.report "Enumerable#minmax_by" do enum.minmax_by { |a| a } end end git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58968 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-05-30 12:00:56 +03:00
n = OPTIMIZED_CMP(vj, vi, cmp_opt);
if (n == 0) {
i = j;
vi = vj;
}
else if (n < 0) {
VALUE tmp;
tmp = i;
i = j;
j = tmp;
tmp = vi;
vi = vj;
vj = tmp;
}
minmax_by_i_update(vi, vj, i, j, memo);
return Qnil;
}
/*
* call-seq:
* enum.minmax_by { |obj| block } -> [min, max]
* enum.minmax_by -> an_enumerator
*
* Returns a two element array containing the objects in
* <i>enum</i> that correspond to the minimum and maximum values respectively
* from the given block.
*
* If no block is given, an enumerator is returned instead.
*
* a = %w(albatross dog horse)
* a.minmax_by { |x| x.length } #=> ["dog", "albatross"]
*/
static VALUE
enum_minmax_by(VALUE obj)
{
VALUE memo;
struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
m->min_bv = Qundef;
m->max_bv = Qundef;
m->min = Qnil;
m->max = Qnil;
m->last_bv = Qundef;
m->last = Qundef;
rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
if (m->last_bv != Qundef)
minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
m = MEMO_FOR(struct minmax_by_t, memo);
return rb_assoc_new(m->min, m->max);
}
static VALUE
member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args))
{
struct MEMO *memo = MEMO_CAST(args);
if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) {
MEMO_V2_SET(memo, Qtrue);
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.include?(obj) -> true or false
* enum.member?(obj) -> true or false
*
* Returns <code>true</code> if any member of <i>enum</i> equals
* <i>obj</i>. Equality is tested using <code>==</code>.
*
* (1..10).include? 5 #=> true
* (1..10).include? 15 #=> false
* (1..10).member? 5 #=> true
* (1..10).member? 15 #=> false
*
*/
static VALUE
enum_member(VALUE obj, VALUE val)
{
struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
return memo->v2;
}
static VALUE
each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
{
struct MEMO *m = MEMO_CAST(memo);
VALUE n = imemo_count_value(m);
imemo_count_up(m);
return rb_yield_values(2, rb_enum_values_pack(argc, argv), n);
}
/*
* call-seq:
* enum.each_with_index(*args) { |obj, i| block } -> enum
* enum.each_with_index(*args) -> an_enumerator
*
* Calls <em>block</em> with two arguments, the item and its index,
* for each item in <i>enum</i>. Given arguments are passed through
* to #each().
*
* If no block is given, an enumerator is returned instead.
*
* hash = Hash.new
* %w(cat dog wombat).each_with_index { |item, index|
* hash[item] = index
* }
* hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2}
*
*/
static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
struct MEMO *memo;
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
memo = MEMO_NEW(0, 0, 0);
rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
return obj;
}
/*
* call-seq:
* enum.reverse_each(*args) { |item| block } -> enum
* enum.reverse_each(*args) -> an_enumerator
*
* Builds a temporary array and traverses that array in reverse order.
*
* If no block is given, an enumerator is returned instead.
*
* (1..3).reverse_each { |v| p v }
*
* produces:
*
* 3
* 2
* 1
*/
static VALUE
enum_reverse_each(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
long i;
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
ary = enum_to_a(argc, argv, obj);
for (i = RARRAY_LEN(ary); --i >= 0; ) {
rb_yield(RARRAY_AREF(ary, i));
}
return obj;
}
static VALUE
each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
{
ENUM_WANT_SVALUE();
enum_yield(argc, i);
return Qnil;
}
/*
* call-seq:
* enum.each_entry { |obj| block } -> enum
* enum.each_entry -> an_enumerator
*
* Calls <i>block</i> once for each element in +self+, passing that
* element as a parameter, converting multiple values from yield to an
* array.
*
* If no block is given, an enumerator is returned instead.
*
* class Foo
* include Enumerable
* def each
* yield 1
* yield 1, 2
* yield
* end
* end
* Foo.new.each_entry{ |o| p o }
*
* produces:
*
* 1
* [1, 2]
* nil
*
*/
static VALUE
enum_each_entry(int argc, VALUE *argv, VALUE obj)
{
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
return obj;
}
static VALUE
add_int(VALUE x, long n)
{
const VALUE y = LONG2NUM(n);
if (RB_INTEGER_TYPE_P(x)) return rb_int_plus(x, y);
return rb_funcallv(x, '+', 1, &y);
}
static VALUE
div_int(VALUE x, long n)
{
const VALUE y = LONG2NUM(n);
if (RB_INTEGER_TYPE_P(x)) return rb_int_idiv(x, y);
return rb_funcallv(x, id_div, 1, &y);
}
#define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0)
static VALUE
each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m))
{
struct MEMO *memo = MEMO_CAST(m);
VALUE ary = memo->v1;
VALUE v = Qnil;
long size = memo->u3.cnt;
ENUM_WANT_SVALUE();
rb_ary_push(ary, i);
if (RARRAY_LEN(ary) == size) {
v = rb_yield(ary);
if (memo->v2) {
MEMO_V1_SET(memo, rb_ary_new2(size));
}
else {
rb_ary_clear(ary);
}
}
return v;
}
static VALUE
enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj)
{
VALUE n, size;
long slice_size = NUM2LONG(RARRAY_AREF(args, 0));
ID infinite_p;
CONST_ID(infinite_p, "infinite?");
if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size");
size = enum_size(obj, 0, 0);
if (size == Qnil) return Qnil;
if (RB_FLOAT_TYPE_P(size) && RTEST(rb_funcall(size, infinite_p, 0))) {
return size;
}
n = add_int(size, slice_size-1);
return div_int(n, slice_size);
}
/*
* call-seq:
* enum.each_slice(n) { ... } -> nil
* enum.each_slice(n) -> an_enumerator
*
* Iterates the given block for each slice of <n> elements. If no
* block is given, returns an enumerator.
*
* (1..10).each_slice(3) { |a| p a }
* # outputs below
* [1, 2, 3]
* [4, 5, 6]
* [7, 8, 9]
* [10]
*
*/
static VALUE
enum_each_slice(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
VALUE ary;
struct MEMO *memo;
int arity;
if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
size = limit_by_enum_size(obj, size);
ary = rb_ary_new2(size);
arity = rb_block_arity();
memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
ary = memo->v1;
if (RARRAY_LEN(ary) > 0) rb_yield(ary);
return Qnil;
}
static VALUE
each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
struct MEMO *memo = MEMO_CAST(args);
VALUE ary = memo->v1;
VALUE v = Qnil;
long size = memo->u3.cnt;
ENUM_WANT_SVALUE();
if (RARRAY_LEN(ary) == size) {
rb_ary_shift(ary);
}
rb_ary_push(ary, i);
if (RARRAY_LEN(ary) == size) {
if (memo->v2) {
ary = rb_ary_dup(ary);
}
v = rb_yield(ary);
}
return v;
}
static VALUE
enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj)
{
struct cmp_opt_data cmp_opt = { 0, 0 };
const VALUE zero = LONG2FIX(0);
VALUE n, size;
long cons_size = NUM2LONG(RARRAY_AREF(args, 0));
if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size");
size = enum_size(obj, 0, 0);
if (size == Qnil) return Qnil;
n = add_int(size, 1 - cons_size);
return (OPTIMIZED_CMP(n, zero, cmp_opt) == -1) ? zero : n;
}
/*
* call-seq:
* enum.each_cons(n) { ... } -> nil
* enum.each_cons(n) -> an_enumerator
*
* Iterates the given block for each array of consecutive <n>
* elements. If no block is given, returns an enumerator.
*
* e.g.:
* (1..10).each_cons(3) { |a| p a }
* # outputs below
* [1, 2, 3]
* [2, 3, 4]
* [3, 4, 5]
* [4, 5, 6]
* [5, 6, 7]
* [6, 7, 8]
* [7, 8, 9]
* [8, 9, 10]
*
*/
static VALUE
enum_each_cons(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
struct MEMO *memo;
int arity;
if (size <= 0) rb_raise(rb_eArgError, "invalid size");
RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
arity = rb_block_arity();
if (enum_size_over_p(obj, size)) return Qnil;
memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
return Qnil;
}
static VALUE
each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
{
ENUM_WANT_SVALUE();
return rb_yield_values(2, i, memo);
}
/*
* call-seq:
* enum.each_with_object(obj) { |(*args), memo_obj| ... } -> obj
* enum.each_with_object(obj) -> an_enumerator
*
* Iterates the given block for each element with an arbitrary
* object given, and returns the initially given object.
*
* If no block is given, returns an enumerator.
*
* evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
* #=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
*
*/
static VALUE
enum_each_with_object(VALUE obj, VALUE memo)
{
RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);
rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
return memo;
}
static VALUE
zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
{
struct MEMO *memo = (struct MEMO *)memoval;
VALUE result = memo->v1;
VALUE args = memo->v2;
long n = memo->u3.cnt++;
VALUE tmp;
int i;
tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
for (i=0; i<RARRAY_LEN(args); i++) {
VALUE e = RARRAY_AREF(args, i);
if (RARRAY_LEN(e) <= n) {
rb_ary_push(tmp, Qnil);
}
else {
rb_ary_push(tmp, RARRAY_AREF(e, n));
}
}
if (NIL_P(result)) {
enum_yield_array(tmp);
}
else {
rb_ary_push(result, tmp);
}
RB_GC_GUARD(args);
return Qnil;
}
static VALUE
call_next(VALUE w)
{
VALUE *v = (VALUE *)w;
return v[0] = rb_funcallv(v[1], id_next, 0, 0);
}
static VALUE
call_stop(VALUE w, VALUE _)
{
VALUE *v = (VALUE *)w;
return v[0] = Qundef;
}
static VALUE
zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
{
struct MEMO *memo = (struct MEMO *)memoval;
VALUE result = memo->v1;
VALUE args = memo->v2;
VALUE tmp;
int i;
tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
for (i=0; i<RARRAY_LEN(args); i++) {
if (NIL_P(RARRAY_AREF(args, i))) {
rb_ary_push(tmp, Qnil);
}
else {
VALUE v[2];
v[1] = RARRAY_AREF(args, i);
rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0);
if (v[0] == Qundef) {
RARRAY_ASET(args, i, Qnil);
v[0] = Qnil;
}
rb_ary_push(tmp, v[0]);
}
}
if (NIL_P(result)) {
enum_yield_array(tmp);
}
else {
rb_ary_push(result, tmp);
}
RB_GC_GUARD(args);
return Qnil;
}
/*
* call-seq:
* enum.zip(arg, ...) -> an_array_of_array
* enum.zip(arg, ...) { |arr| block } -> nil
*
* Takes one element from <i>enum</i> and merges corresponding
* elements from each <i>args</i>. This generates a sequence of
* <em>n</em>-element arrays, where <em>n</em> is one more than the
* count of arguments. The length of the resulting sequence will be
* <code>enum#size</code>. If the size of any argument is less than
* <code>enum#size</code>, <code>nil</code> values are supplied. If
* a block is given, it is invoked for each output array, otherwise
* an array of arrays is returned.
*
* a = [ 4, 5, 6 ]
* b = [ 7, 8, 9 ]
*
* a.zip(b) #=> [[4, 7], [5, 8], [6, 9]]
* [1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
* [1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]]
* a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
*
* c = []
* a.zip(b) { |x, y| c << x + y } #=> nil
* c #=> [11, 13, 15]
*
*/
static VALUE
enum_zip(int argc, VALUE *argv, VALUE obj)
{
int i;
ID conv;
struct MEMO *memo;
VALUE result = Qnil;
VALUE args = rb_ary_new4(argc, argv);
int allary = TRUE;
argv = RARRAY_PTR(args);
for (i=0; i<argc; i++) {
VALUE ary = rb_check_array_type(argv[i]);
if (NIL_P(ary)) {
allary = FALSE;
break;
}
argv[i] = ary;
}
if (!allary) {
static const VALUE sym_each = STATIC_ID2SYM(id_each);
CONST_ID(conv, "to_enum");
for (i=0; i<argc; i++) {
if (!rb_respond_to(argv[i], id_each)) {
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
rb_obj_class(argv[i]));
}
argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each);
}
}
if (!rb_block_given_p()) {
result = rb_ary_new();
}
/* TODO: use NODE_DOT2 as memo(v, v, -) */
memo = MEMO_NEW(result, args, 0);
rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
return result;
}
static VALUE
take_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
struct MEMO *memo = MEMO_CAST(args);
rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
if (--memo->u3.cnt == 0) rb_iter_break();
return Qnil;
}
/*
* call-seq:
* enum.take(n) -> array
*
* Returns first n elements from <i>enum</i>.
*
* a = [1, 2, 3, 4, 5, 0]
* a.take(3) #=> [1, 2, 3]
* a.take(30) #=> [1, 2, 3, 4, 5, 0]
*
*/
static VALUE
enum_take(VALUE obj, VALUE n)
{
struct MEMO *memo;
VALUE result;
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to take negative size");
}
if (len == 0) return rb_ary_new2(0);
result = rb_ary_new2(len);
memo = MEMO_NEW(result, 0, len);
rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
return result;
}
static VALUE
take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
if (!RTEST(rb_yield_values2(argc, argv))) rb_iter_break();
rb_ary_push(ary, rb_enum_values_pack(argc, argv));
return Qnil;
}
/*
* call-seq:
* enum.take_while { |obj| block } -> array
* enum.take_while -> an_enumerator
*
* Passes elements to the block until the block returns +nil+ or +false+,
* then stops iterating and returns an array of all prior elements.
*
* If no block is given, an enumerator is returned instead.
*
* a = [1, 2, 3, 4, 5, 0]
* a.take_while { |i| i < 3 } #=> [1, 2]
*
*/
static VALUE
enum_take_while(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
return ary;
}
static VALUE
drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
struct MEMO *memo = MEMO_CAST(args);
if (memo->u3.cnt == 0) {
rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
}
else {
memo->u3.cnt--;
}
return Qnil;
}
/*
* call-seq:
* enum.drop(n) -> array
*
* Drops first n elements from <i>enum</i>, and returns rest elements
* in an array.
*
* a = [1, 2, 3, 4, 5, 0]
* a.drop(3) #=> [4, 5, 0]
*
*/
static VALUE
enum_drop(VALUE obj, VALUE n)
{
VALUE result;
struct MEMO *memo;
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to drop negative size");
}
result = rb_ary_new();
memo = MEMO_NEW(result, 0, len);
rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
return result;
}
static VALUE
drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
struct MEMO *memo = MEMO_CAST(args);
ENUM_WANT_SVALUE();
if (!memo->u3.state && !RTEST(enum_yield(argc, i))) {
memo->u3.state = TRUE;
}
if (memo->u3.state) {
rb_ary_push(memo->v1, i);
}
return Qnil;
}
/*
* call-seq:
* enum.drop_while { |obj| block } -> array
* enum.drop_while -> an_enumerator
*
* Drops elements up to, but not including, the first element for
* which the block returns +nil+ or +false+ and returns an array
* containing the remaining elements.
*
* If no block is given, an enumerator is returned instead.
*
* a = [1, 2, 3, 4, 5, 0]
* a.drop_while { |i| i < 3 } #=> [3, 4, 5, 0]
*
*/
static VALUE
enum_drop_while(VALUE obj)
{
VALUE result;
struct MEMO *memo;
RETURN_ENUMERATOR(obj, 0, 0);
result = rb_ary_new();
memo = MEMO_NEW(result, 0, FALSE);
rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
return result;
}
static VALUE
cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
ENUM_WANT_SVALUE();
rb_ary_push(ary, argc > 1 ? i : rb_ary_new_from_values(argc, argv));
enum_yield(argc, i);
return Qnil;
}
static VALUE
enum_cycle_size(VALUE self, VALUE args, VALUE eobj)
{
long mul = 0;
VALUE n = Qnil;
VALUE size;
if (args && (RARRAY_LEN(args) > 0)) {
n = RARRAY_AREF(args, 0);
if (!NIL_P(n)) mul = NUM2LONG(n);
}
size = enum_size(self, args, 0);
if (NIL_P(size) || FIXNUM_ZERO_P(size)) return size;
if (NIL_P(n)) return DBL2NUM(HUGE_VAL);
if (mul <= 0) return INT2FIX(0);
n = LONG2FIX(mul);
return rb_funcallv(size, '*', 1, &n);
}
/*
* call-seq:
* enum.cycle(n=nil) { |obj| block } -> nil
* enum.cycle(n=nil) -> an_enumerator
*
* Calls <i>block</i> for each element of <i>enum</i> repeatedly _n_
* times or forever if none or +nil+ is given. If a non-positive
* number is given or the collection is empty, does nothing. Returns
* +nil+ if the loop has finished without getting interrupted.
*
* Enumerable#cycle saves elements in an internal array so changes
* to <i>enum</i> after the first pass have no effect.
*
* If no block is given, an enumerator is returned instead.
*
* a = ["a", "b", "c"]
* a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever.
* a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c.
*
*/
static VALUE
enum_cycle(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
VALUE nv = Qnil;
long n, i, len;
rb_check_arity(argc, 0, 1);
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
if (!argc || NIL_P(nv = argv[0])) {
n = -1;
}
else {
n = NUM2LONG(nv);
if (n <= 0) return Qnil;
}
ary = rb_ary_new();
* include/ruby/ruby.h: constify RBasic::klass and add RBASIC_CLASS(obj) macro which returns a class of `obj'. This change is a part of RGENGC branch [ruby-trunk - Feature #8339]. * object.c: add new function rb_obj_reveal(). This function reveal interal (hidden) object by rb_obj_hide(). Note that do not change class before and after hiding. Only permitted example is: klass = RBASIC_CLASS(obj); rb_obj_hide(obj); .... rb_obj_reveal(obj, klass); TODO: API design. rb_obj_reveal() should be replaced with others. TODO: modify constified variables using cast may be harmful for compiler's analysis and optimizaton. Any idea to prohibt inserting RBasic::klass directly? If rename RBasic::klass and force to use RBASIC_CLASS(obj), then all codes such as `RBASIC(obj)->klass' will be compilation error. Is it acceptable? (We have similar experience at Ruby 1.9, for example "RARRAY(ary)->ptr" to "RARRAY_PTR(ary)". * internal.h: add some macros. * RBASIC_CLEAR_CLASS(obj) clear RBasic::klass to make it internal object. * RBASIC_SET_CLASS(obj, cls) set RBasic::klass. * RBASIC_SET_CLASS_RAW(obj, cls) same as RBASIC_SET_CLASS without write barrier (planned). * RCLASS_SET_SUPER(a, b) set super class of a. * array.c, class.c, compile.c, encoding.c, enum.c, error.c, eval.c, file.c, gc.c, hash.c, io.c, iseq.c, marshal.c, object.c, parse.y, proc.c, process.c, random.c, ruby.c, sprintf.c, string.c, thread.c, transcode.c, vm.c, vm_eval.c, win32/file.c: Use above macros and functions to access RBasic::klass. * ext/coverage/coverage.c, ext/readline/readline.c, ext/socket/ancdata.c, ext/socket/init.c, * ext/zlib/zlib.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40691 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-05-13 14:49:11 +04:00
RBASIC_CLEAR_CLASS(ary);
rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
len = RARRAY_LEN(ary);
if (len == 0) return Qnil;
while (n < 0 || 0 < --n) {
for (i=0; i<len; i++) {
enum_yield_array(RARRAY_AREF(ary, i));
}
}
return Qnil;
}
struct chunk_arg {
VALUE categorize;
VALUE prev_value;
VALUE prev_elts;
VALUE yielder;
};
static VALUE
chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
{
struct chunk_arg *argp = MEMO_FOR(struct chunk_arg, _argp);
VALUE v, s;
VALUE alone = ID2SYM(rb_intern("_alone"));
VALUE separator = ID2SYM(rb_intern("_separator"));
ENUM_WANT_SVALUE();
v = rb_funcallv(argp->categorize, id_call, 1, &i);
if (v == alone) {
if (!NIL_P(argp->prev_value)) {
s = rb_assoc_new(argp->prev_value, argp->prev_elts);
rb_funcallv(argp->yielder, id_lshift, 1, &s);
argp->prev_value = argp->prev_elts = Qnil;
}
v = rb_assoc_new(v, rb_ary_new3(1, i));
rb_funcallv(argp->yielder, id_lshift, 1, &v);
}
else if (NIL_P(v) || v == separator) {
if (!NIL_P(argp->prev_value)) {
v = rb_assoc_new(argp->prev_value, argp->prev_elts);
rb_funcallv(argp->yielder, id_lshift, 1, &v);
argp->prev_value = argp->prev_elts = Qnil;
}
}
else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) {
rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved");
}
else {
if (NIL_P(argp->prev_value)) {
argp->prev_value = v;
argp->prev_elts = rb_ary_new3(1, i);
}
else {
if (rb_equal(argp->prev_value, v)) {
rb_ary_push(argp->prev_elts, i);
}
else {
s = rb_assoc_new(argp->prev_value, argp->prev_elts);
rb_funcallv(argp->yielder, id_lshift, 1, &s);
argp->prev_value = v;
argp->prev_elts = rb_ary_new3(1, i);
}
}
}
return Qnil;
}
static VALUE
chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
{
VALUE enumerable;
VALUE arg;
struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg);
enumerable = rb_ivar_get(enumerator, rb_intern("chunk_enumerable"));
memo->categorize = rb_ivar_get(enumerator, rb_intern("chunk_categorize"));
memo->prev_value = Qnil;
memo->prev_elts = Qnil;
memo->yielder = yielder;
rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg);
memo = MEMO_FOR(struct chunk_arg, arg);
if (!NIL_P(memo->prev_elts)) {
arg = rb_assoc_new(memo->prev_value, memo->prev_elts);
rb_funcallv(memo->yielder, id_lshift, 1, &arg);
}
return Qnil;
}
/*
* call-seq:
* enum.chunk { |elt| ... } -> an_enumerator
*
* Enumerates over the items, chunking them together based on the return
* value of the block.
*
* Consecutive elements which return the same block value are chunked together.
*
* For example, consecutive even numbers and odd numbers can be
* chunked as follows.
*
* [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
* n.even?
* }.each { |even, ary|
* p [even, ary]
* }
* #=> [false, [3, 1]]
* # [true, [4]]
* # [false, [1, 5, 9]]
* # [true, [2, 6]]
* # [false, [5, 3, 5]]
*
* This method is especially useful for sorted series of elements.
* The following example counts words for each initial letter.
*
* open("/usr/share/dict/words", "r:iso-8859-1") { |f|
* f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] }
* }
* #=> ["\n", 1]
* # ["A", 1327]
* # ["B", 1372]
* # ["C", 1507]
* # ["D", 791]
* # ...
*
* The following key values have special meaning:
* - +nil+ and +:_separator+ specifies that the elements should be dropped.
* - +:_alone+ specifies that the element should be chunked by itself.
*
* Any other symbols that begin with an underscore will raise an error:
*
* items.chunk { |item| :_underscore }
* #=> RuntimeError: symbols beginning with an underscore are reserved
*
* +nil+ and +:_separator+ can be used to ignore some elements.
*
* For example, the sequence of hyphens in svn log can be eliminated as follows:
*
* sep = "-"*72 + "\n"
* IO.popen("svn log README") { |f|
* f.chunk { |line|
* line != sep || nil
* }.each { |_, lines|
* pp lines
* }
* }
* #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
* # "\n",
* # "* README, README.ja: Update the portability section.\n",
* # "\n"]
* # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
* # "\n",
* # "* README, README.ja: Add a note about default C flags.\n",
* # "\n"]
* # ...
*
* Paragraphs separated by empty lines can be parsed as follows:
*
* File.foreach("README").chunk { |line|
* /\A\s*\z/ !~ line || nil
* }.each { |_, lines|
* pp lines
* }
*
* +:_alone+ can be used to force items into their own chunk.
* For example, you can put lines that contain a URL by themselves,
* and chunk the rest of the lines together, like this:
*
* pattern = /http/
* open(filename) { |f|
* f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
* pp lines
* }
* }
*
* If no block is given, an enumerator to `chunk` is returned instead.
*/
static VALUE
enum_chunk(VALUE enumerable)
{
VALUE enumerator;
RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
return enumerator;
}
struct slicebefore_arg {
VALUE sep_pred;
VALUE sep_pat;
VALUE prev_elts;
VALUE yielder;
};
static VALUE
slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
{
struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp);
VALUE header_p;
ENUM_WANT_SVALUE();
if (!NIL_P(argp->sep_pat))
header_p = rb_funcallv(argp->sep_pat, id_eqq, 1, &i);
else
header_p = rb_funcallv(argp->sep_pred, id_call, 1, &i);
if (RTEST(header_p)) {
if (!NIL_P(argp->prev_elts))
rb_funcallv(argp->yielder, id_lshift, 1, &argp->prev_elts);
argp->prev_elts = rb_ary_new3(1, i);
}
else {
if (NIL_P(argp->prev_elts))
argp->prev_elts = rb_ary_new3(1, i);
else
rb_ary_push(argp->prev_elts, i);
}
return Qnil;
}
static VALUE
slicebefore_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
{
VALUE enumerable;
VALUE arg;
struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg);
enumerable = rb_ivar_get(enumerator, rb_intern("slicebefore_enumerable"));
memo->sep_pred = rb_attr_get(enumerator, rb_intern("slicebefore_sep_pred"));
memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, rb_intern("slicebefore_sep_pat")) : Qnil;
memo->prev_elts = Qnil;
memo->yielder = yielder;
rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg);
memo = MEMO_FOR(struct slicebefore_arg, arg);
if (!NIL_P(memo->prev_elts))
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
return Qnil;
}
/*
* call-seq:
* enum.slice_before(pattern) -> an_enumerator
* enum.slice_before { |elt| bool } -> an_enumerator
*
* Creates an enumerator for each chunked elements.
* The beginnings of chunks are defined by _pattern_ and the block.
* If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
* returns <code>true</code> for the element, the element is beginning of a
* chunk.
* The <code>===</code> and _block_ is called from the first element to the last
* element of _enum_. The result for the first element is ignored.
* The result enumerator yields the chunked elements as an array.
* So +each+ method can be called as follows:
*
* enum.slice_before(pattern).each { |ary| ... }
* enum.slice_before { |elt| bool }.each { |ary| ... }
*
* Other methods of the Enumerator class and Enumerable module,
* such as +to_a+, +map+, etc., are also usable.
*
* For example, iteration over ChangeLog entries can be implemented as
* follows:
*
* # iterate over ChangeLog entries.
* open("ChangeLog") { |f|
* f.slice_before(/\A\S/).each { |e| pp e }
* }
*
* # same as above. block is used instead of pattern argument.
* open("ChangeLog") { |f|
* f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
* }
*
*
* "svn proplist -R" produces multiline output for each file.
* They can be chunked as follows:
*
* IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
* f.lines.slice_before(/\AProp/).each { |lines| p lines }
* }
* #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
* # ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
* # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
* # ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
* # ...
*
* If the block needs to maintain state over multiple elements,
* local variables can be used.
* For example, three or more consecutive increasing numbers can be squashed
* as follows (see +chunk_while+ for a better way):
*
* a = [0, 2, 3, 4, 6, 7, 9]
* prev = a[0]
* p a.slice_before { |e|
* prev, prev2 = e, prev
* prev2 + 1 != e
* }.map { |es|
* es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
* }.join(",")
* #=> "0,2-4,6,7,9"
*
* However local variables should be used carefully
* if the result enumerator is enumerated twice or more.
* The local variables should be initialized for each enumeration.
* Enumerator.new can be used to do it.
*
* # Word wrapping. This assumes all characters have same width.
* def wordwrap(words, maxwidth)
* Enumerator.new {|y|
* # cols is initialized in Enumerator.new.
* cols = 0
* words.slice_before { |w|
* cols += 1 if cols != 0
* cols += w.length
* if maxwidth < cols
* cols = w.length
* true
* else
* false
* end
* }.each {|ws| y.yield ws }
* }
* end
* text = (1..20).to_a.join(" ")
* enum = wordwrap(text.split(/\s+/), 10)
* puts "-"*10
* enum.each { |ws| puts ws.join(" ") } # first enumeration.
* puts "-"*10
* enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
* puts "-"*10
* #=> ----------
* # 1 2 3 4 5
* # 6 7 8 9 10
* # 11 12 13
* # 14 15 16
* # 17 18 19
* # 20
* # ----------
* # 1 2 3 4 5
* # 6 7 8 9 10
* # 11 12 13
* # 14 15 16
* # 17 18 19
* # 20
* # ----------
*
* mbox contains series of mails which start with Unix From line.
* So each mail can be extracted by slice before Unix From line.
*
* # parse mbox
* open("mbox") { |f|
* f.slice_before { |line|
* line.start_with? "From "
* }.each { |mail|
* unix_from = mail.shift
* i = mail.index("\n")
* header = mail[0...i]
* body = mail[(i+1)..-1]
* body.pop if body.last == "\n"
* fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
* p unix_from
* pp fields
* pp body
* }
* }
*
* # split mails in mbox (slice before Unix From line after an empty line)
* open("mbox") { |f|
* emp = true
* f.slice_before { |line|
* prevemp = emp
* emp = line == "\n"
* prevemp && line.start_with?("From ")
* }.each { |mail|
* mail.pop if mail.last == "\n"
* pp mail
* }
* }
*
*/
static VALUE
enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
{
VALUE enumerator;
if (rb_block_given_p()) {
if (argc != 0)
rb_error_arity(argc, 0, 0);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
}
else {
VALUE sep_pat;
rb_scan_args(argc, argv, "1", &sep_pat);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
}
rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
return enumerator;
}
struct sliceafter_arg {
VALUE pat;
VALUE pred;
VALUE prev_elts;
VALUE yielder;
};
static VALUE
sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
{
#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo)))
struct sliceafter_arg *memo;
int split_p;
UPDATE_MEMO;
ENUM_WANT_SVALUE();
if (NIL_P(memo->prev_elts)) {
memo->prev_elts = rb_ary_new3(1, i);
}
else {
rb_ary_push(memo->prev_elts, i);
}
if (NIL_P(memo->pred)) {
split_p = RTEST(rb_funcallv(memo->pat, id_eqq, 1, &i));
UPDATE_MEMO;
}
else {
split_p = RTEST(rb_funcallv(memo->pred, id_call, 1, &i));
UPDATE_MEMO;
}
if (split_p) {
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
UPDATE_MEMO;
memo->prev_elts = Qnil;
}
return Qnil;
#undef UPDATE_MEMO
}
static VALUE
sliceafter_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
{
VALUE enumerable;
VALUE arg;
struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg);
enumerable = rb_ivar_get(enumerator, rb_intern("sliceafter_enum"));
memo->pat = rb_ivar_get(enumerator, rb_intern("sliceafter_pat"));
memo->pred = rb_attr_get(enumerator, rb_intern("sliceafter_pred"));
memo->prev_elts = Qnil;
memo->yielder = yielder;
rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg);
memo = MEMO_FOR(struct sliceafter_arg, arg);
if (!NIL_P(memo->prev_elts))
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
return Qnil;
}
/*
* call-seq:
* enum.slice_after(pattern) -> an_enumerator
* enum.slice_after { |elt| bool } -> an_enumerator
*
* Creates an enumerator for each chunked elements.
* The ends of chunks are defined by _pattern_ and the block.
*
* If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
* returns <code>true</code> for the element, the element is end of a
* chunk.
*
* The <code>===</code> and _block_ is called from the first element to the last
* element of _enum_.
*
* The result enumerator yields the chunked elements as an array.
* So +each+ method can be called as follows:
*
* enum.slice_after(pattern).each { |ary| ... }
* enum.slice_after { |elt| bool }.each { |ary| ... }
*
* Other methods of the Enumerator class and Enumerable module,
* such as +map+, etc., are also usable.
*
* For example, continuation lines (lines end with backslash) can be
* concatenated as follows:
*
* lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
* e = lines.slice_after(/(?<!\\)\n\z/)
* p e.to_a
* #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
* p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
* #=>["foo\n", "barbaz\n", "\n", "qux\n"]
*
*/
static VALUE
enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
{
VALUE enumerator;
VALUE pat = Qnil, pred = Qnil;
if (rb_block_given_p()) {
if (0 < argc)
rb_raise(rb_eArgError, "both pattern and block are given");
pred = rb_block_proc();
}
else {
rb_scan_args(argc, argv, "1", &pat);
}
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable);
rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat);
rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred);
rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
return enumerator;
}
struct slicewhen_arg {
VALUE pred;
VALUE prev_elt;
VALUE prev_elts;
VALUE yielder;
int inverted; /* 0 for slice_when and 1 for chunk_while. */
};
static VALUE
slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
{
#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo)))
struct slicewhen_arg *memo;
int split_p;
UPDATE_MEMO;
ENUM_WANT_SVALUE();
if (memo->prev_elt == Qundef) {
/* The first element */
memo->prev_elt = i;
memo->prev_elts = rb_ary_new3(1, i);
}
else {
VALUE args[2];
args[0] = memo->prev_elt;
args[1] = i;
split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args));
UPDATE_MEMO;
if (memo->inverted)
split_p = !split_p;
if (split_p) {
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
UPDATE_MEMO;
memo->prev_elts = rb_ary_new3(1, i);
}
else {
rb_ary_push(memo->prev_elts, i);
}
memo->prev_elt = i;
}
return Qnil;
#undef UPDATE_MEMO
}
static VALUE
slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
{
VALUE enumerable;
VALUE arg;
struct slicewhen_arg *memo =
NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted);
enumerable = rb_ivar_get(enumerator, rb_intern("slicewhen_enum"));
memo->pred = rb_attr_get(enumerator, rb_intern("slicewhen_pred"));
memo->prev_elt = Qundef;
memo->prev_elts = Qnil;
memo->yielder = yielder;
memo->inverted = RTEST(rb_attr_get(enumerator, rb_intern("slicewhen_inverted")));
rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg);
memo = MEMO_FOR(struct slicewhen_arg, arg);
if (!NIL_P(memo->prev_elts))
rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
return Qnil;
}
/*
* call-seq:
* enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator
*
* Creates an enumerator for each chunked elements.
* The beginnings of chunks are defined by the block.
*
* This method split each chunk using adjacent elements,
* _elt_before_ and _elt_after_,
* in the receiver enumerator.
* This method split chunks between _elt_before_ and _elt_after_ where
* the block returns <code>true</code>.
*
* The block is called the length of the receiver enumerator minus one.
*
* The result enumerator yields the chunked elements as an array.
* So +each+ method can be called as follows:
*
* enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
*
* Other methods of the Enumerator class and Enumerable module,
* such as +to_a+, +map+, etc., are also usable.
*
* For example, one-by-one increasing subsequence can be chunked as follows:
*
* a = [1,2,4,9,10,11,12,15,16,19,20,21]
* b = a.slice_when {|i, j| i+1 != j }
* p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
* c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
* p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
* d = c.join(",")
* p d #=> "1,2,4,9-12,15,16,19-21"
*
* Near elements (threshold: 6) in sorted array can be chunked as follows:
*
* a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
* p a.slice_when {|i, j| 6 < j - i }.to_a
* #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
*
* Increasing (non-decreasing) subsequence can be chunked as follows:
*
* a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
* p a.slice_when {|i, j| i > j }.to_a
* #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
*
* Adjacent evens and odds can be chunked as follows:
* (Enumerable#chunk is another way to do it.)
*
* a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
* p a.slice_when {|i, j| i.even? != j.even? }.to_a
* #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
*
* Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows:
* (See Enumerable#chunk to ignore empty lines.)
*
* lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
* p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
* #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
*
* Enumerable#chunk_while does the same, except splitting when the block
* returns <code>false</code> instead of <code>true</code>.
*/
static VALUE
enum_slice_when(VALUE enumerable)
{
VALUE enumerator;
VALUE pred;
pred = rb_block_proc();
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qfalse);
rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
return enumerator;
}
/*
* call-seq:
* enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator
*
* Creates an enumerator for each chunked elements.
* The beginnings of chunks are defined by the block.
*
* This method split each chunk using adjacent elements,
* _elt_before_ and _elt_after_,
* in the receiver enumerator.
* This method split chunks between _elt_before_ and _elt_after_ where
* the block returns <code>false</code>.
*
* The block is called the length of the receiver enumerator minus one.
*
* The result enumerator yields the chunked elements as an array.
* So +each+ method can be called as follows:
*
* enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }
*
* Other methods of the Enumerator class and Enumerable module,
* such as +to_a+, +map+, etc., are also usable.
*
* For example, one-by-one increasing subsequence can be chunked as follows:
*
* a = [1,2,4,9,10,11,12,15,16,19,20,21]
* b = a.chunk_while {|i, j| i+1 == j }
* p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
* c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
* p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
* d = c.join(",")
* p d #=> "1,2,4,9-12,15,16,19-21"
*
* Increasing (non-decreasing) subsequence can be chunked as follows:
*
* a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
* p a.chunk_while {|i, j| i <= j }.to_a
* #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
*
* Adjacent evens and odds can be chunked as follows:
* (Enumerable#chunk is another way to do it.)
*
* a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
* p a.chunk_while {|i, j| i.even? == j.even? }.to_a
* #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
*
* Enumerable#slice_when does the same, except splitting when the block
* returns <code>true</code> instead of <code>false</code>.
*/
static VALUE
enum_chunk_while(VALUE enumerable)
{
VALUE enumerator;
VALUE pred;
pred = rb_block_proc();
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qtrue);
rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
return enumerator;
}
struct enum_sum_memo {
VALUE v, r;
long n;
double f, c;
int block_given;
int float_value;
};
static void
sum_iter(VALUE i, struct enum_sum_memo *memo)
{
const int unused = (assert(memo != NULL), 0);
long n = memo->n;
VALUE v = memo->v;
VALUE r = memo->r;
double f = memo->f;
double c = memo->c;
if (memo->block_given)
i = rb_yield(i);
if (memo->float_value)
goto float_value;
if (FIXNUM_P(v) || RB_TYPE_P(v, T_BIGNUM) || RB_TYPE_P(v, T_RATIONAL)) {
if (FIXNUM_P(i)) {
n += FIX2LONG(i); /* should not overflow long type */
if (!FIXABLE(n)) {
v = rb_big_plus(LONG2NUM(n), v);
n = 0;
}
}
else if (RB_TYPE_P(i, T_BIGNUM))
v = rb_big_plus(i, v);
else if (RB_TYPE_P(i, T_RATIONAL)) {
if (r == Qundef)
r = i;
else
r = rb_rational_plus(r, i);
}
else {
if (n != 0) {
v = rb_fix_plus(LONG2FIX(n), v);
n = 0;
}
if (r != Qundef) {
/* r can be an Integer when mathn is loaded */
if (FIXNUM_P(r))
v = rb_fix_plus(r, v);
else if (RB_TYPE_P(r, T_BIGNUM))
v = rb_big_plus(r, v);
else
v = rb_rational_plus(r, v);
r = Qundef;
}
if (RB_FLOAT_TYPE_P(i)) {
f = NUM2DBL(v);
c = 0.0;
memo->float_value = 1;
goto float_value;
}
else
goto some_value;
}
}
else if (RB_FLOAT_TYPE_P(v)) {
/*
* Kahan-Babuska balancing compensated summation algorithm
* See http://link.springer.com/article/10.1007/s00607-005-0139-x
*/
double x, t;
float_value:
if (RB_FLOAT_TYPE_P(i))
x = RFLOAT_VALUE(i);
else if (FIXNUM_P(i))
x = FIX2LONG(i);
else if (RB_TYPE_P(i, T_BIGNUM))
x = rb_big2dbl(i);
else if (RB_TYPE_P(i, T_RATIONAL))
x = rb_num2dbl(i);
else {
v = DBL2NUM(f);
memo->float_value = 0;
goto some_value;
}
if (isnan(f)) return;
if (isnan(x)) {
memo->v = i;
memo->f = x;
return;
}
if (isinf(x)) {
if (isinf(f) && signbit(x) != signbit(f)) {
memo->f = NAN;
memo->v = DBL2NUM(f);
}
else {
memo->f = x;
memo->v = i;
}
return;
}
if (isinf(f)) return;
t = f + x;
if (fabs(f) >= fabs(x))
c += ((f - t) + x);
else
c += ((x - t) + f);
f = t;
}
else {
some_value:
v = rb_funcallv(v, idPLUS, 1, &i);
}
memo->v = v;
memo->n = n;
memo->r = r;
memo->f = f;
memo->c = c;
(void)unused;
}
static VALUE
enum_sum_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
{
ENUM_WANT_SVALUE();
sum_iter(i, (struct enum_sum_memo *) args);
return Qnil;
}
static int
hash_sum_i(VALUE key, VALUE value, VALUE arg)
{
sum_iter(rb_assoc_new(key, value), (struct enum_sum_memo *) arg);
return ST_CONTINUE;
}
static void
hash_sum(VALUE hash, struct enum_sum_memo *memo)
{
assert(RB_TYPE_P(hash, T_HASH));
assert(memo != NULL);
rb_hash_foreach(hash, hash_sum_i, (VALUE)memo);
}
static VALUE
int_range_sum(VALUE beg, VALUE end, int excl, VALUE init)
{
if (excl) {
if (FIXNUM_P(end))
end = LONG2FIX(FIX2LONG(end) - 1);
else
end = rb_big_minus(end, LONG2FIX(1));
}
if (rb_int_ge(end, beg)) {
VALUE a;
a = rb_int_plus(rb_int_minus(end, beg), LONG2FIX(1));
a = rb_int_mul(a, rb_int_plus(end, beg));
a = rb_int_idiv(a, LONG2FIX(2));
return rb_int_plus(init, a);
}
return init;
}
/*
* call-seq:
* enum.sum(init=0) -> number
* enum.sum(init=0) {|e| expr } -> number
*
* Returns the sum of elements in an Enumerable.
*
* If a block is given, the block is applied to each element
* before addition.
*
* If <i>enum</i> is empty, it returns <i>init</i>.
*
* For example:
*
* { 1 => 10, 2 => 20 }.sum {|k, v| k * v } #=> 50
* (1..10).sum #=> 55
* (1..10).sum {|v| v * 2 } #=> 110
* ('a'..'z').sum #=> TypeError
*
* This method can be used for non-numeric objects by
* explicit <i>init</i> argument.
*
* { 1 => 10, 2 => 20 }.sum([]) #=> [1, 10, 2, 20]
* "a\nb\nc".each_line.lazy.map(&:chomp).sum("") #=> "abc"
*
* Enumerable#sum method may not respect method redefinition of "+"
* methods such as Integer#+, or "each" methods such as Range#each.
*/
static VALUE
enum_sum(int argc, VALUE* argv, VALUE obj)
{
struct enum_sum_memo memo;
VALUE beg, end;
int excl;
memo.v = (rb_check_arity(argc, 0, 1) == 0) ? LONG2FIX(0) : argv[0];
memo.block_given = rb_block_given_p();
memo.n = 0;
memo.r = Qundef;
if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) {
memo.f = RFLOAT_VALUE(memo.v);
memo.c = 0.0;
}
else {
memo.f = 0.0;
memo.c = 0.0;
}
if (RTEST(rb_range_values(obj, &beg, &end, &excl))) {
if (!memo.block_given && !memo.float_value &&
(FIXNUM_P(beg) || RB_TYPE_P(beg, T_BIGNUM)) &&
(FIXNUM_P(end) || RB_TYPE_P(end, T_BIGNUM))) {
return int_range_sum(beg, end, excl, memo.v);
}
}
if (RB_TYPE_P(obj, T_HASH) &&
rb_method_basic_definition_p(CLASS_OF(obj), id_each))
hash_sum(obj, &memo);
else
rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo);
if (memo.float_value) {
return DBL2NUM(memo.f + memo.c);
}
else {
if (memo.n != 0)
memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v);
if (memo.r != Qundef) {
/* r can be an Integer when mathn is loaded */
if (FIXNUM_P(memo.r))
memo.v = rb_fix_plus(memo.r, memo.v);
else if (RB_TYPE_P(memo.r, T_BIGNUM))
memo.v = rb_big_plus(memo.r, memo.v);
else
memo.v = rb_rational_plus(memo.r, memo.v);
}
return memo.v;
}
}
static VALUE
uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
{
ENUM_WANT_SVALUE();
rb_hash_add_new_element(hash, i, i);
return Qnil;
}
static VALUE
uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
{
ENUM_WANT_SVALUE();
rb_hash_add_new_element(hash, rb_yield_values2(argc, argv), i);
return Qnil;
}
/*
* call-seq:
* enum.uniq -> new_ary
* enum.uniq { |item| ... } -> new_ary
*
* Returns a new array by removing duplicate values in +self+.
*
* See also Array#uniq.
*/
static VALUE
enum_uniq(VALUE obj)
{
VALUE hash, ret;
rb_block_call_func *const func =
rb_block_given_p() ? uniq_iter : uniq_func;
hash = rb_obj_hide(rb_hash_new());
rb_block_call(obj, id_each, 0, 0, func, hash);
ret = rb_hash_values(hash);
rb_hash_clear(hash);
return ret;
}
/*
* The Enumerable mixin provides collection classes with several
* traversal and searching methods, and with the ability to sort. The
* class must provide a method #each, which yields
* successive members of the collection. If Enumerable#max, #min, or
* #sort is used, the objects in the collection must also implement a
* meaningful <code><=></code> operator, as these methods rely on an
* ordering between members of the collection.
*/
void
Init_Enumerable(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
rb_mEnumerable = rb_define_module("Enumerable");
rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1);
rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
rb_define_method(rb_mEnumerable, "grep_v", enum_grep_v, 1);
rb_define_method(rb_mEnumerable, "count", enum_count, -1);
rb_define_method(rb_mEnumerable, "find", enum_find, -1);
rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
rb_define_method(rb_mEnumerable, "filter", enum_find_all, 0);
rb_define_method(rb_mEnumerable, "filter_map", enum_filter_map, 0);
rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0);
rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0);
rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
rb_define_method(rb_mEnumerable, "tally", enum_tally, 0);
rb_define_method(rb_mEnumerable, "first", enum_first, -1);
rb_define_method(rb_mEnumerable, "all?", enum_all, -1);
rb_define_method(rb_mEnumerable, "any?", enum_any, -1);
rb_define_method(rb_mEnumerable, "one?", enum_one, -1);
rb_define_method(rb_mEnumerable, "none?", enum_none, -1);
rb_define_method(rb_mEnumerable, "min", enum_min, -1);
rb_define_method(rb_mEnumerable, "max", enum_max, -1);
rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1);
rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1);
rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1);
rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1);
rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1);
rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1);
rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
rb_define_method(rb_mEnumerable, "take", enum_take, 1);
rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
rb_define_method(rb_mEnumerable, "chunk", enum_chunk, 0);
rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1);
rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1);
rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0);
rb_define_method(rb_mEnumerable, "chunk_while", enum_chunk_while, 0);
rb_define_method(rb_mEnumerable, "sum", enum_sum, -1);
rb_define_method(rb_mEnumerable, "uniq", enum_uniq, 0);
id_next = rb_intern("next");
}