ruby/enumerator.c

1195 строки
26 KiB
C
Исходник Обычный вид История

/************************************************
enumerator.c - provides Enumerator class
$Author$
Copyright (C) 2001-2003 Akinori MUSHA
$Idaemons: /home/cvs/rb/enumerator/enumerator.c,v 1.1.1.1 2001/07/15 10:12:48 knu Exp $
$RoughId: enumerator.c,v 1.6 2003/07/27 11:03:24 nobu Exp $
$Id$
************************************************/
#include "ruby/ruby.h"
/*
* Document-class: Enumerator
*
* A class which provides a method `each' to be used as an Enumerable
* object.
*
* An enumerator can be created by following methods.
* - Kernel#to_enum
* - Kernel#enum_for
* - Enumerator.new
*
* Also, most iteration methods without a block returns an enumerator.
* For example, Array#map returns an enumerator if no block given.
* The enumerator has with_index.
* So ary.map.with_index works as follows.
*
* p %w[foo bar baz].map.with_index {|w,i| "#{i}:#{w}" }
* #=> ["0:foo", "1:bar", "2:baz"]
*
* An enumerator object can be used as an external iterator.
* I.e. Enumerator#next returns the next value of the iterator.
* Enumerator#next raises StopIteration at end.
*
* e = [1,2,3].each # returns an enumerator object.
* p e.next #=> 1
* p e.next #=> 2
* p e.next #=> 3
* p e.next #raises StopIteration
*
* An external iterator can be used to implement an internal iterator as follows.
*
* def ext_each(e)
* while true
* begin
* vs = e.next_values
* rescue StopIteration
* return $!.result
* end
* y = yield *vs
* e.feed y
* end
* end
*
* o = Object.new
* def o.each
* p yield
* p yield 1
* p yield(1, 2)
* 3
* end
*
* # use o.each as an internal iterator directly.
* p o.each {|*x| p x; [:b, *x] }
* #=> [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
*
* # convert o.each to an external external iterator for
* # implementing an internal iterator.
* p ext_each(o.to_enum) {|*x| p x; [:b, *x] }
* #=> [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
*
*/
VALUE rb_cEnumerator;
static ID id_rewind, id_each;
static VALUE sym_each;
VALUE rb_eStopIteration;
struct enumerator {
VALUE obj;
ID meth;
VALUE args;
VALUE fib;
VALUE dst;
VALUE lookahead;
VALUE feedvalue;
VALUE stop_exc;
};
static VALUE rb_cGenerator, rb_cYielder;
struct generator {
VALUE proc;
};
struct yielder {
VALUE proc;
};
static VALUE generator_allocate(VALUE klass);
static VALUE generator_init(VALUE obj, VALUE proc);
/*
* Enumerator
*/
static void
enumerator_mark(void *p)
{
struct enumerator *ptr = p;
rb_gc_mark(ptr->obj);
rb_gc_mark(ptr->args);
rb_gc_mark(ptr->fib);
rb_gc_mark(ptr->dst);
rb_gc_mark(ptr->lookahead);
rb_gc_mark(ptr->feedvalue);
rb_gc_mark(ptr->stop_exc);
}
static struct enumerator *
enumerator_ptr(VALUE obj)
{
struct enumerator *ptr;
Data_Get_Struct(obj, struct enumerator, ptr);
if (RDATA(obj)->dmark != enumerator_mark) {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected %s)",
rb_obj_classname(obj), rb_class2name(rb_cEnumerator));
}
if (!ptr || ptr->obj == Qundef) {
rb_raise(rb_eArgError, "uninitialized enumerator");
}
return ptr;
}
/*
* call-seq:
* obj.to_enum(method = :each, *args)
* obj.enum_for(method = :each, *args)
*
* Returns Enumerator.new(self, method, *args).
*
* e.g.:
*
* str = "xyz"
*
* enum = str.enum_for(:each_byte)
* a = enum.map {|b| '%02x' % b } #=> ["78", "79", "7a"]
*
* # protects an array from being modified
* a = [1, 2, 3]
* some_method(a.to_enum)
*
*/
static VALUE
obj_to_enum(int argc, VALUE *argv, VALUE obj)
{
VALUE meth = sym_each;
if (argc > 0) {
--argc;
meth = *argv++;
}
return rb_enumeratorize(obj, meth, argc, argv);
}
static VALUE
each_slice_i(VALUE val, VALUE *memo)
{
VALUE ary = memo[0];
VALUE v = Qnil;
long size = (long)memo[1];
rb_ary_push(ary, val);
if (RARRAY_LEN(ary) == size) {
v = rb_yield(ary);
memo[0] = rb_ary_new2(size);
}
return v;
}
/*
* call-seq:
* e.each_slice(n) {...}
* e.each_slice(n)
*
* Iterates the given block for each slice of <n> elements. If no
* block is given, returns an enumerator.
*
* e.g.:
* (1..10).each_slice(3) {|a| p a}
* # outputs below
* [1, 2, 3]
* [4, 5, 6]
* [7, 8, 9]
* [10]
*
*/
static VALUE
enum_each_slice(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
VALUE args[2], ary;
if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
RETURN_ENUMERATOR(obj, 1, &n);
args[0] = rb_ary_new2(size);
args[1] = (VALUE)size;
rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)args);
ary = args[0];
if (RARRAY_LEN(ary) > 0) rb_yield(ary);
return Qnil;
}
static VALUE
each_cons_i(VALUE val, VALUE *memo)
{
VALUE ary = memo[0];
VALUE v = Qnil;
long size = (long)memo[1];
if (RARRAY_LEN(ary) == size) {
rb_ary_shift(ary);
}
rb_ary_push(ary, val);
if (RARRAY_LEN(ary) == size) {
v = rb_yield(rb_ary_dup(ary));
}
return v;
}
/*
* call-seq:
* each_cons(n) {...}
* each_cons(n)
*
* Iterates the given block for each array of consecutive <n>
* elements. If no block is given, returns an enumerator.
*
* e.g.:
* (1..10).each_cons(3) {|a| p a}
* # outputs below
* [1, 2, 3]
* [2, 3, 4]
* [3, 4, 5]
* [4, 5, 6]
* [5, 6, 7]
* [6, 7, 8]
* [7, 8, 9]
* [8, 9, 10]
*
*/
static VALUE
enum_each_cons(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
VALUE args[2];
if (size <= 0) rb_raise(rb_eArgError, "invalid size");
RETURN_ENUMERATOR(obj, 1, &n);
args[0] = rb_ary_new2(size);
args[1] = (VALUE)size;
rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)args);
return Qnil;
}
static VALUE
each_with_object_i(VALUE val, VALUE memo)
{
return rb_yield_values(2, val, memo);
}
/*
* call-seq:
* each_with_object(obj) {|(*args), memo_obj| ... }
* each_with_object(obj)
*
* Iterates the given block for each element with an arbitrary
* object given, and returns the initially given object.
*
* If no block is given, returns an enumerator.
*
* e.g.:
* evens = (1..10).each_with_object([]) {|i, a| a << i*2 }
* # => [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
*
*/
static VALUE
enum_each_with_object(VALUE obj, VALUE memo)
{
RETURN_ENUMERATOR(obj, 1, &memo);
rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
return memo;
}
static VALUE
enumerator_allocate(VALUE klass)
{
struct enumerator *ptr;
VALUE enum_obj;
enum_obj = Data_Make_Struct(klass, struct enumerator, enumerator_mark, -1, ptr);
ptr->obj = Qundef;
return enum_obj;
}
static VALUE
enumerator_each_i(VALUE v, VALUE enum_obj, int argc, VALUE *argv)
{
return rb_yield_values2(argc, argv);
}
static VALUE
enumerator_init(VALUE enum_obj, VALUE obj, VALUE meth, int argc, VALUE *argv)
{
struct enumerator *ptr;
Data_Get_Struct(enum_obj, struct enumerator, ptr);
if (!ptr) {
rb_raise(rb_eArgError, "unallocated enumerator");
}
ptr->obj = obj;
ptr->meth = rb_to_id(meth);
if (argc) ptr->args = rb_ary_new4(argc, argv);
ptr->fib = 0;
ptr->dst = Qnil;
ptr->lookahead = Qundef;
ptr->feedvalue = Qundef;
ptr->stop_exc = Qfalse;
return enum_obj;
}
/*
* call-seq:
* Enumerator.new(obj, method = :each, *args)
* Enumerator.new { |y| ... }
*
* Creates a new Enumerator object, which is to be used as an
* Enumerable object iterating in a given way.
*
* In the first form, a generated Enumerator iterates over the given
* object using the given method with the given arguments passed.
* Use of this form is discouraged. Use Kernel#enum_for(), alias
* to_enum, instead.
*
* e = Enumerator.new(ObjectSpace, :each_object)
* #-> ObjectSpace.enum_for(:each_object)
*
* e.select { |obj| obj.is_a?(Class) } #=> array of all classes
*
* In the second form, iteration is defined by the given block, in
* which a "yielder" object given as block parameter can be used to
* yield a value by calling the +yield+ method, alias +<<+.
*
* fib = Enumerator.new { |y|
* a = b = 1
* loop {
* y << a
* a, b = b, a + b
* }
* }
*
* p fib.take(10) #=> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
*/
static VALUE
enumerator_initialize(int argc, VALUE *argv, VALUE obj)
{
VALUE recv, meth = sym_each;
if (argc == 0) {
if (!rb_block_given_p())
rb_raise(rb_eArgError, "wrong number of argument (0 for 1+)");
recv = generator_init(generator_allocate(rb_cGenerator), rb_block_proc());
} else {
recv = *argv++;
if (--argc) {
meth = *argv++;
--argc;
}
}
return enumerator_init(obj, recv, meth, argc, argv);
}
/* :nodoc: */
static VALUE
enumerator_init_copy(VALUE obj, VALUE orig)
{
struct enumerator *ptr0, *ptr1;
ptr0 = enumerator_ptr(orig);
if (ptr0->fib) {
/* Fibers cannot be copied */
rb_raise(rb_eTypeError, "can't copy execution context");
}
Data_Get_Struct(obj, struct enumerator, ptr1);
if (!ptr1) {
rb_raise(rb_eArgError, "unallocated enumerator");
}
ptr1->obj = ptr0->obj;
ptr1->meth = ptr0->meth;
ptr1->args = ptr0->args;
ptr1->fib = 0;
ptr1->lookahead = Qundef;
ptr1->feedvalue = Qundef;
return obj;
}
VALUE
rb_enumeratorize(VALUE obj, VALUE meth, int argc, VALUE *argv)
{
return enumerator_init(enumerator_allocate(rb_cEnumerator), obj, meth, argc, argv);
}
/*
* call-seq:
* enum.each {...}
*
* Iterates the given block using the object and the method specified
* in the first place. If no block is given, returns self.
*
*/
static VALUE
enumerator_each(VALUE obj)
{
struct enumerator *e;
int argc = 0;
VALUE *argv = 0;
if (!rb_block_given_p()) return obj;
e = enumerator_ptr(obj);
if (e->args) {
argc = RARRAY_LENINT(e->args);
argv = RARRAY_PTR(e->args);
}
return rb_block_call(e->obj, e->meth, argc, argv,
enumerator_each_i, (VALUE)e);
}
static VALUE
enumerator_with_index_i(VALUE val, VALUE *memo, int argc, VALUE *argv)
{
VALUE idx;
idx = INT2FIX(*memo);
++*memo;
if (argc <= 1)
return rb_yield_values(2, val, idx);
return rb_yield_values(2, rb_ary_new4(argc, argv), idx);
}
/*
* call-seq:
* e.with_index(offset = 0) {|(*args), idx| ... }
* e.with_index(offset = 0)
*
* Iterates the given block for each element with an index, which
* starts from +offset+. If no block is given, returns an enumerator.
*
*/
static VALUE
enumerator_with_index(int argc, VALUE *argv, VALUE obj)
{
struct enumerator *e;
VALUE memo;
rb_scan_args(argc, argv, "01", &memo);
RETURN_ENUMERATOR(obj, argc, argv);
memo = NIL_P(memo) ? 0 : (VALUE)NUM2LONG(memo);
e = enumerator_ptr(obj);
if (e->args) {
argc = RARRAY_LENINT(e->args);
argv = RARRAY_PTR(e->args);
}
else {
argc = 0;
argv = NULL;
}
return rb_block_call(e->obj, e->meth, argc, argv,
enumerator_with_index_i, (VALUE)&memo);
}
/*
* call-seq:
* e.each_with_index {|(*args), idx| ... }
* e.each_with_index
*
* Same as Enumeartor#with_index, except each_with_index does not
* receive an offset argument.
*
*/
static VALUE
enumerator_each_with_index(VALUE obj)
{
return enumerator_with_index(0, NULL, obj);
}
static VALUE
enumerator_with_object_i(VALUE val, VALUE memo, int argc, VALUE *argv)
{
if (argc <= 1)
return rb_yield_values(2, val, memo);
return rb_yield_values(2, rb_ary_new4(argc, argv), memo);
}
/*
* call-seq:
* e.with_object(obj) {|(*args), memo_obj| ... }
* e.with_object(obj)
*
* Iterates the given block for each element with an arbitrary
* object given, and returns the initially given object.
*
* If no block is given, returns an enumerator.
*
*/
static VALUE
enumerator_with_object(VALUE obj, VALUE memo)
{
struct enumerator *e;
int argc = 0;
VALUE *argv = 0;
RETURN_ENUMERATOR(obj, 1, &memo);
e = enumerator_ptr(obj);
if (e->args) {
argc = RARRAY_LENINT(e->args);
argv = RARRAY_PTR(e->args);
}
rb_block_call(e->obj, e->meth, argc, argv,
enumerator_with_object_i, memo);
return memo;
}
static VALUE
next_ii(VALUE i, VALUE obj, int argc, VALUE *argv)
{
struct enumerator *e = enumerator_ptr(obj);
VALUE feedvalue = Qnil;
VALUE args = rb_ary_new4(argc, argv);
rb_fiber_yield(1, &args);
if (e->feedvalue != Qundef) {
feedvalue = e->feedvalue;
e->feedvalue = Qundef;
}
return feedvalue;
}
static VALUE
next_i(VALUE curr, VALUE obj)
{
struct enumerator *e = enumerator_ptr(obj);
VALUE nil = Qnil;
VALUE result;
result = rb_block_call(obj, id_each, 0, 0, next_ii, obj);
e->stop_exc = rb_exc_new2(rb_eStopIteration, "iteration reached at end");
rb_ivar_set(e->stop_exc, rb_intern("result"), result);
return rb_fiber_yield(1, &nil);
}
static void
next_init(VALUE obj, struct enumerator *e)
{
VALUE curr = rb_fiber_current();
e->dst = curr;
e->fib = rb_fiber_new(next_i, obj);
e->lookahead = Qundef;
}
static VALUE
get_next_values(VALUE obj, struct enumerator *e)
{
VALUE curr, vs;
if (e->stop_exc)
rb_exc_raise(e->stop_exc);
curr = rb_fiber_current();
if (!e->fib || !rb_fiber_alive_p(e->fib)) {
next_init(obj, e);
}
vs = rb_fiber_resume(e->fib, 1, &curr);
if (e->stop_exc) {
e->fib = 0;
e->dst = Qnil;
e->lookahead = Qundef;
e->feedvalue = Qundef;
rb_exc_raise(e->stop_exc);
}
return vs;
}
/*
* call-seq:
* e.next_values => array
*
* Returns the next object as an array in the enumerator,
* and move the internal position forward.
* When the position reached at the end, StopIteration is raised.
*
* This method can be used to distinguish <code>yield</code> and <code>yield nil</code>.
*
* o = Object.new
* def o.each
* yield
* yield 1
* yield 1, 2
* yield nil
* yield [1, 2]
* end
* e = o.to_enum
* p e.next_values
* p e.next_values
* p e.next_values
* p e.next_values
* p e.next_values
* e = o.to_enum
* p e.next
* p e.next
* p e.next
* p e.next
* p e.next
*
* ## yield args next_values next
* # yield [] nil
* # yield 1 [1] 1
* # yield 1, 2 [1, 2] [1, 2]
* # yield nil [nil] nil
* # yield [1, 2] [[1, 2]] [1, 2]
*
* Note that enumeration sequence by next_values method does not affect other
* non-external enumeration methods, unless underlying iteration
* methods itself has side-effect, e.g. IO#each_line.
*
*/
static VALUE
enumerator_next_values(VALUE obj)
{
struct enumerator *e = enumerator_ptr(obj);
VALUE vs;
if (e->lookahead != Qundef) {
vs = e->lookahead;
e->lookahead = Qundef;
return vs;
}
return get_next_values(obj, e);
}
static VALUE
ary2sv(VALUE args, int dup)
{
if (TYPE(args) != T_ARRAY)
return args;
switch (RARRAY_LEN(args)) {
case 0:
return Qnil;
case 1:
return RARRAY_PTR(args)[0];
default:
if (dup)
return rb_ary_dup(args);
return args;
}
}
/*
* call-seq:
* e.next => object
*
* Returns the next object in the enumerator, and move the internal
* position forward. When the position reached at the end, StopIteration
* is raised.
*
* Note that enumeration sequence by next method does not affect other
* non-external enumeration methods, unless underlying iteration
* methods itself has side-effect, e.g. IO#each_line.
*
*/
static VALUE
enumerator_next(VALUE obj)
{
VALUE vs = enumerator_next_values(obj);
return ary2sv(vs, 0);
}
static VALUE
enumerator_peek_values(VALUE obj)
{
struct enumerator *e = enumerator_ptr(obj);
if (e->lookahead == Qundef) {
e->lookahead = get_next_values(obj, e);
}
return e->lookahead;
}
/*
* call-seq:
* e.peek_values => array
*
* Returns the next object as an array in the enumerator,
* but don't move the internal position forward.
* When the position reached at the end, StopIteration is raised.
*
* o = Object.new
* def o.each
* yield
* yield 1
* yield 1, 2
* end
* e = o.to_enum
* p e.peek_values #=> []
* e.next
* p e.peek_values #=> [1]
* e.next
* p e.peek_values #=> [1, 2]
* e.next
* p e.peek_values # raises StopIteration
*
*/
static VALUE
enumerator_peek_values_m(VALUE obj)
{
return rb_ary_dup(enumerator_peek_values(obj));
}
/*
* call-seq:
* e.peek => object
*
* Returns the next object in the enumerator, but don't move the internal
* position forward. When the position reached at the end, StopIteration
* is raised.
*
*/
static VALUE
enumerator_peek(VALUE obj)
{
VALUE vs = enumerator_peek_values(obj);
return ary2sv(vs, 1);
}
/*
* call-seq:
* e.feed obj => nil
*
* Set the value for the next yield in the enumerator returns.
*
* If the value is not set, yield returns nil.
*
* This value is cleared after used.
*
* o = Object.new
* def o.each
* p yield #=> 1
* p yield #=> nil
* p yield
* end
* e = o.to_enum
* e.next
* e.feed 1
* e.next
* e.next
*
*/
static VALUE
enumerator_feed(VALUE obj, VALUE v)
{
struct enumerator *e = enumerator_ptr(obj);
if (e->feedvalue != Qundef) {
rb_raise(rb_eTypeError, "feed value already set");
}
e->feedvalue = v;
return Qnil;
}
/*
* call-seq:
* e.rewind => e
*
* Rewinds the enumeration sequence by the next method.
*
* If the enclosed object responds to a "rewind" method, it is called.
*/
static VALUE
enumerator_rewind(VALUE obj)
{
struct enumerator *e = enumerator_ptr(obj);
if (rb_respond_to(e->obj, id_rewind))
rb_funcall(e->obj, id_rewind, 0);
e->fib = 0;
e->dst = Qnil;
e->lookahead = Qundef;
e->feedvalue = Qundef;
e->stop_exc = Qfalse;
return obj;
}
static VALUE
inspect_enumerator(VALUE obj, VALUE dummy, int recur)
{
struct enumerator *e = enumerator_ptr(obj);
const char *cname = rb_obj_classname(obj);
VALUE eobj, str;
int tainted, untrusted;
if (recur) {
str = rb_sprintf("#<%s: ...>", cname);
OBJ_TAINT(str);
return str;
}
eobj = e->obj;
tainted = OBJ_TAINTED(eobj);
untrusted = OBJ_UNTRUSTED(eobj);
/* (1..100).each_cons(2) => "#<Enumerator: 1..100:each_cons(2)>" */
str = rb_sprintf("#<%s: ", cname);
rb_str_concat(str, rb_inspect(eobj));
rb_str_buf_cat2(str, ":");
rb_str_buf_cat2(str, rb_id2name(e->meth));
if (e->args) {
long argc = RARRAY_LEN(e->args);
VALUE *argv = RARRAY_PTR(e->args);
rb_str_buf_cat2(str, "(");
while (argc--) {
VALUE arg = *argv++;
rb_str_concat(str, rb_inspect(arg));
rb_str_buf_cat2(str, argc > 0 ? ", " : ")");
if (OBJ_TAINTED(arg)) tainted = TRUE;
if (OBJ_UNTRUSTED(arg)) untrusted = TRUE;
}
}
rb_str_buf_cat2(str, ">");
if (tainted) OBJ_TAINT(str);
if (untrusted) OBJ_UNTRUST(str);
return str;
}
/*
* call-seq:
* e.inspect => string
*
* Create a printable version of <i>e</i>.
*/
static VALUE
enumerator_inspect(VALUE obj)
{
return rb_exec_recursive(inspect_enumerator, obj, 0);
}
/*
* Yielder
*/
static void
yielder_mark(void *p)
{
struct yielder *ptr = p;
rb_gc_mark(ptr->proc);
}
static struct yielder *
yielder_ptr(VALUE obj)
{
struct yielder *ptr;
Data_Get_Struct(obj, struct yielder, ptr);
if (RDATA(obj)->dmark != yielder_mark) {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected %s)",
rb_obj_classname(obj), rb_class2name(rb_cYielder));
}
if (!ptr || ptr->proc == Qundef) {
rb_raise(rb_eArgError, "uninitialized yielder");
}
return ptr;
}
/* :nodoc: */
static VALUE
yielder_allocate(VALUE klass)
{
struct yielder *ptr;
VALUE obj;
obj = Data_Make_Struct(klass, struct yielder, yielder_mark, -1, ptr);
ptr->proc = Qundef;
return obj;
}
static VALUE
yielder_init(VALUE obj, VALUE proc)
{
struct yielder *ptr;
Data_Get_Struct(obj, struct yielder, ptr);
if (!ptr) {
rb_raise(rb_eArgError, "unallocated yielder");
}
ptr->proc = proc;
return obj;
}
/* :nodoc: */
static VALUE
yielder_initialize(VALUE obj)
{
rb_need_block();
return yielder_init(obj, rb_block_proc());
}
/* :nodoc: */
static VALUE
yielder_yield(VALUE obj, VALUE args)
{
struct yielder *ptr = yielder_ptr(obj);
return rb_proc_call(ptr->proc, args);
}
static VALUE
yielder_yield_i(VALUE obj, VALUE memo, int argc, VALUE *argv)
{
return rb_yield_values2(argc, argv);
}
static VALUE
yielder_new(void)
{
return yielder_init(yielder_allocate(rb_cYielder), rb_proc_new(yielder_yield_i, 0));
}
/*
* Generator
*/
static void
generator_mark(void *p)
{
struct generator *ptr = p;
rb_gc_mark(ptr->proc);
}
static struct generator *
generator_ptr(VALUE obj)
{
struct generator *ptr;
Data_Get_Struct(obj, struct generator, ptr);
if (RDATA(obj)->dmark != generator_mark) {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected %s)",
rb_obj_classname(obj), rb_class2name(rb_cGenerator));
}
if (!ptr || ptr->proc == Qundef) {
rb_raise(rb_eArgError, "uninitialized generator");
}
return ptr;
}
/* :nodoc: */
static VALUE
generator_allocate(VALUE klass)
{
struct generator *ptr;
VALUE obj;
obj = Data_Make_Struct(klass, struct generator, generator_mark, -1, ptr);
ptr->proc = Qundef;
return obj;
}
static VALUE
generator_init(VALUE obj, VALUE proc)
{
struct generator *ptr;
Data_Get_Struct(obj, struct generator, ptr);
if (!ptr) {
rb_raise(rb_eArgError, "unallocated generator");
}
ptr->proc = proc;
return obj;
}
VALUE rb_obj_is_proc(VALUE proc);
/* :nodoc: */
static VALUE
generator_initialize(int argc, VALUE *argv, VALUE obj)
{
VALUE proc;
if (argc == 0) {
rb_need_block();
proc = rb_block_proc();
} else {
rb_scan_args(argc, argv, "1", &proc);
if (!rb_obj_is_proc(proc))
rb_raise(rb_eTypeError,
"wrong argument type %s (expected Proc)",
rb_obj_classname(proc));
if (rb_block_given_p()) {
rb_warn("given block not used");
}
}
return generator_init(obj, proc);
}
/* :nodoc: */
static VALUE
generator_init_copy(VALUE obj, VALUE orig)
{
struct generator *ptr0, *ptr1;
ptr0 = generator_ptr(orig);
Data_Get_Struct(obj, struct generator, ptr1);
if (!ptr1) {
rb_raise(rb_eArgError, "unallocated generator");
}
ptr1->proc = ptr0->proc;
return obj;
}
/* :nodoc: */
static VALUE
generator_each(VALUE obj)
{
struct generator *ptr = generator_ptr(obj);
VALUE yielder;
yielder = yielder_new();
return rb_proc_call(ptr->proc, rb_ary_new3(1, yielder));
}
/*
* StopIteration
*/
/*
* call-seq:
* stopiteration.result => value
*
* Returns the return value of the iterator.
*
*
* o = Object.new
* def o.each
* yield 1
* yield 2
* yield 3
* 100
* end
* e = o.to_enum
* p e.next #=> 1
* p e.next #=> 2
* p e.next #=> 3
* begin
* e.next
* rescue StopIteration
* p $!.result #=> 100
* end
*
*/
static VALUE
stop_result(VALUE self)
{
return rb_attr_get(self, rb_intern("result"));
}
void
Init_Enumerator(void)
{
rb_define_method(rb_mKernel, "to_enum", obj_to_enum, -1);
rb_define_method(rb_mKernel, "enum_for", obj_to_enum, -1);
rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1);
rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1);
rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1);
rb_cEnumerator = rb_define_class("Enumerator", rb_cObject);
rb_include_module(rb_cEnumerator, rb_mEnumerable);
rb_define_alloc_func(rb_cEnumerator, enumerator_allocate);
rb_define_method(rb_cEnumerator, "initialize", enumerator_initialize, -1);
rb_define_method(rb_cEnumerator, "initialize_copy", enumerator_init_copy, 1);
rb_define_method(rb_cEnumerator, "each", enumerator_each, 0);
rb_define_method(rb_cEnumerator, "each_with_index", enumerator_each_with_index, 0);
rb_define_method(rb_cEnumerator, "each_with_object", enumerator_with_object, 1);
rb_define_method(rb_cEnumerator, "with_index", enumerator_with_index, -1);
rb_define_method(rb_cEnumerator, "with_object", enumerator_with_object, 1);
rb_define_method(rb_cEnumerator, "next_values", enumerator_next_values, 0);
rb_define_method(rb_cEnumerator, "peek_values", enumerator_peek_values_m, 0);
rb_define_method(rb_cEnumerator, "next", enumerator_next, 0);
rb_define_method(rb_cEnumerator, "peek", enumerator_peek, 0);
rb_define_method(rb_cEnumerator, "feed", enumerator_feed, 1);
rb_define_method(rb_cEnumerator, "rewind", enumerator_rewind, 0);
rb_define_method(rb_cEnumerator, "inspect", enumerator_inspect, 0);
rb_eStopIteration = rb_define_class("StopIteration", rb_eIndexError);
rb_define_method(rb_eStopIteration, "result", stop_result, 0);
/* Generator */
rb_cGenerator = rb_define_class_under(rb_cEnumerator, "Generator", rb_cObject);
rb_include_module(rb_cGenerator, rb_mEnumerable);
rb_define_alloc_func(rb_cGenerator, generator_allocate);
rb_define_method(rb_cGenerator, "initialize", generator_initialize, -1);
rb_define_method(rb_cGenerator, "initialize_copy", generator_init_copy, 1);
rb_define_method(rb_cGenerator, "each", generator_each, 0);
/* Yielder */
rb_cYielder = rb_define_class_under(rb_cEnumerator, "Yielder", rb_cObject);
rb_define_alloc_func(rb_cYielder, yielder_allocate);
rb_define_method(rb_cYielder, "initialize", yielder_initialize, 0);
rb_define_method(rb_cYielder, "yield", yielder_yield, -2);
rb_define_method(rb_cYielder, "<<", yielder_yield, -2);
id_rewind = rb_intern("rewind");
id_each = rb_intern("each");
sym_each = ID2SYM(id_each);
rb_provide("enumerator.so"); /* for backward compatibility */
}