ruby/yjit_iface.c

1312 строки
40 KiB
C
Исходник Обычный вид История

// This file is a fragment of the yjit.o compilation unit. See yjit.c.
#include "internal.h"
#include "vm_sync.h"
#include "vm_callinfo.h"
#include "builtin.h"
2021-03-18 02:07:20 +03:00
#include "gc.h"
#include "iseq.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "yjit.h"
#include "yjit_iface.h"
#include "yjit_codegen.h"
#include "yjit_core.h"
#include "darray.h"
2021-01-22 22:26:20 +03:00
2021-10-01 14:17:09 +03:00
#ifdef HAVE_LIBCAPSTONE
Directly link libcapstone for easier development This lets us use libcapstone directly from miniruby so we don't need a Ruby Gem to to dev work. Example usage: ```ruby def foo(x) if x < 1 "wow" else "neat" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) puts UJIT.disasm(iseq) 100.times { foo 1 } puts UJIT.disasm(iseq) ``` Then in the terminal ``` $ ./miniruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "wow" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "neat" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 10 -> 10 ======================================================== 0x0: movabs rax, 0x7fe816e2d1a0 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fe817808200 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffff7b 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffff7b 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffff7b 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: jne 0x3ffffd5 ``` Make sure to `brew install pkg-config capstone`
2021-01-22 21:43:26 +03:00
#include <capstone/capstone.h>
static VALUE cYjitDisasm;
static VALUE cYjitDisasmInsn;
2021-01-22 22:26:20 +03:00
#endif
static VALUE mYjit;
static VALUE cYjitBlock;
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
#if YJIT_STATS
static VALUE cYjitCodeComment;
#endif
#if YJIT_STATS
extern const int rb_vm_max_insn_name_size;
static int64_t exit_op_count[VM_INSTRUCTION_SIZE] = { 0 };
#endif
// Hash table of encoded instructions
extern st_table *rb_encoded_insn_data;
struct rb_yjit_options rb_yjit_opts;
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
// Size of code pages to allocate
#define CODE_PAGE_SIZE (16 * 1024)
// How many code pages to allocate at once
#define PAGES_PER_ALLOC 512
static const rb_data_type_t yjit_block_type = {
"YJIT/Block",
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
{0, 0, 0, },
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
// Get the PC for a given index in an iseq
static VALUE *
yjit_iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx)
{
RUBY_ASSERT(iseq != NULL);
RUBY_ASSERT(insn_idx < ISEQ_BODY(iseq)->iseq_size);
VALUE *encoded = ISEQ_BODY(iseq)->iseq_encoded;
VALUE *pc = &encoded[insn_idx];
return pc;
}
// For debugging. Print the disassembly of an iseq.
RBIMPL_ATTR_MAYBE_UNUSED()
static void
yjit_print_iseq(const rb_iseq_t *iseq)
{
char *ptr;
long len;
VALUE disassembly = rb_iseq_disasm(iseq);
RSTRING_GETMEM(disassembly, ptr, len);
fprintf(stderr, "%.*s\n", (int)len, ptr);
}
static int
yjit_opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc)
{
const VALUE at_pc = *pc;
if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) {
return rb_vm_insn_addr2opcode((const void *)at_pc);
}
else {
return (int)at_pc;
}
}
// Verify that calling with cd on receiver goes to callee
static void
2021-03-23 04:04:00 +03:00
check_cfunc_dispatch(VALUE receiver, struct rb_callinfo *ci, void *callee, rb_callable_method_entry_t *compile_time_cme)
{
if (METHOD_ENTRY_INVALIDATED(compile_time_cme)) {
rb_bug("yjit: output code uses invalidated cme %p", (void *)compile_time_cme);
}
bool callee_correct = false;
2021-03-23 04:04:00 +03:00
const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(receiver), vm_ci_mid(ci));
if (cme->def->type == VM_METHOD_TYPE_CFUNC) {
const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
if ((void *)cfunc->func == callee) {
callee_correct = true;
}
}
if (!callee_correct) {
2021-03-23 04:04:00 +03:00
rb_bug("yjit: output code calls wrong method");
}
}
MJIT_FUNC_EXPORTED VALUE rb_hash_has_key(VALUE hash, VALUE key);
// GC root for interacting with the GC
struct yjit_root_struct {
2021-02-17 00:50:09 +03:00
int unused; // empty structs are not legal in C99
};
2021-03-18 02:07:20 +03:00
// Hash table of BOP blocks
static st_table *blocks_assuming_bops;
static bool
assume_bop_not_redefined(jitstate_t *jit, int redefined_flag, enum ruby_basic_operators bop)
2021-03-18 02:07:20 +03:00
{
if (BASIC_OP_UNREDEFINED_P(bop, redefined_flag)) {
RUBY_ASSERT(blocks_assuming_bops);
jit_ensure_block_entry_exit(jit);
st_insert(blocks_assuming_bops, (st_data_t)jit->block, 0);
2021-03-18 02:07:20 +03:00
return true;
}
else {
return false;
}
}
2021-03-18 02:07:20 +03:00
// Map klass => id_table[mid, set of blocks]
// While a block `b` is in the table, b->callee_cme == rb_callable_method_entry(klass, mid).
// See assume_method_lookup_stable()
static st_table *method_lookup_dependency;
2021-03-18 02:07:20 +03:00
// For adding to method_lookup_dependency data with st_update
struct lookup_dependency_insertion {
block_t *block;
ID mid;
};
// Map cme => set of blocks
// See assume_method_lookup_stable()
static st_table *cme_validity_dependency;
static int
2021-03-18 02:07:20 +03:00
add_cme_validity_dependency_i(st_data_t *key, st_data_t *value, st_data_t new_block, int existing)
{
2021-03-18 02:07:20 +03:00
st_table *block_set;
if (existing) {
2021-03-18 02:07:20 +03:00
block_set = (st_table *)*value;
}
2021-03-18 02:07:20 +03:00
else {
// Make the set and put it into cme_validity_dependency
block_set = st_init_numtable();
*value = (st_data_t)block_set;
}
2021-03-18 02:07:20 +03:00
// Put block into set
st_insert(block_set, new_block, 1);
return ST_CONTINUE;
}
2021-03-18 02:07:20 +03:00
static int
add_lookup_dependency_i(st_data_t *key, st_data_t *value, st_data_t data, int existing)
{
2021-03-18 02:07:20 +03:00
struct lookup_dependency_insertion *info = (void *)data;
// Find or make an id table
struct rb_id_table *id2blocks;
if (existing) {
id2blocks = (void *)*value;
}
else {
2021-03-18 02:07:20 +03:00
// Make an id table and put it into the st_table
id2blocks = rb_id_table_create(1);
*value = (st_data_t)id2blocks;
}
// Find or make a block set
st_table *block_set;
{
VALUE blocks;
if (rb_id_table_lookup(id2blocks, info->mid, &blocks)) {
// Take existing set
block_set = (st_table *)blocks;
}
else {
// Make new block set and put it into the id table
block_set = st_init_numtable();
rb_id_table_insert(id2blocks, info->mid, (VALUE)block_set);
}
}
2021-03-18 02:07:20 +03:00
st_insert(block_set, (st_data_t)info->block, 1);
return ST_CONTINUE;
}
// Remember that a block assumes that
// `rb_callable_method_entry(receiver_klass, cme->called_id) == cme` and that
// `cme` is valid.
2021-03-18 02:07:20 +03:00
// When either of these assumptions becomes invalid, rb_yjit_method_lookup_change() or
// rb_yjit_cme_invalidate() invalidates the block.
2021-03-23 03:12:34 +03:00
//
// @raise NoMemoryError
static void
assume_method_lookup_stable(VALUE receiver_klass, const rb_callable_method_entry_t *cme, jitstate_t *jit)
{
2021-03-18 02:07:20 +03:00
RUBY_ASSERT(cme_validity_dependency);
RUBY_ASSERT(method_lookup_dependency);
RUBY_ASSERT(rb_callable_method_entry(receiver_klass, cme->called_id) == cme);
RUBY_ASSERT_ALWAYS(RB_TYPE_P(receiver_klass, T_CLASS) || RB_TYPE_P(receiver_klass, T_ICLASS));
2021-03-18 02:07:20 +03:00
RUBY_ASSERT_ALWAYS(!rb_objspace_garbage_object_p(receiver_klass));
jit_ensure_block_entry_exit(jit);
block_t *block = jit->block;
cme_dependency_t cme_dep = { receiver_klass, (VALUE)cme };
rb_darray_append(&block->cme_dependencies, cme_dep);
2021-03-18 02:07:20 +03:00
st_update(cme_validity_dependency, (st_data_t)cme, add_cme_validity_dependency_i, (st_data_t)block);
struct lookup_dependency_insertion info = { block, cme->called_id };
st_update(method_lookup_dependency, (st_data_t)receiver_klass, add_lookup_dependency_i, (st_data_t)&info);
}
static st_table *blocks_assuming_single_ractor_mode;
// Can raise NoMemoryError.
RBIMPL_ATTR_NODISCARD()
static bool
assume_single_ractor_mode(jitstate_t *jit)
{
if (rb_multi_ractor_p()) return false;
jit_ensure_block_entry_exit(jit);
st_insert(blocks_assuming_single_ractor_mode, (st_data_t)jit->block, 1);
return true;
}
static st_table *blocks_assuming_stable_global_constant_state;
// Assume that the global constant state has not changed since call to this function.
// Can raise NoMemoryError.
static void
assume_stable_global_constant_state(jitstate_t *jit)
{
jit_ensure_block_entry_exit(jit);
st_insert(blocks_assuming_stable_global_constant_state, (st_data_t)jit->block, 1);
}
static int
mark_and_pin_keys_i(st_data_t k, st_data_t v, st_data_t ignore)
{
rb_gc_mark((VALUE)k);
return ST_CONTINUE;
}
// GC callback during mark phase
static void
yjit_root_mark(void *ptr)
{
if (method_lookup_dependency) {
2021-03-18 02:07:20 +03:00
// TODO: This is a leak. Unused blocks linger in the table forever, preventing the
// callee class they speculate on from being collected.
// We could do a bespoke weak reference scheme on classes similar to
// the interpreter's call cache. See finalizer for T_CLASS and cc_table_free().
st_foreach(method_lookup_dependency, mark_and_pin_keys_i, 0);
2021-03-18 02:07:20 +03:00
}
if (cme_validity_dependency) {
// Why not let the GC move the cme keys in this table?
// Because this is basically a compare_by_identity Hash.
// If a key moves, we would need to reinsert it into the table so it is rehashed.
// That is tricky to do, espcially as it could trigger allocation which could
// trigger GC. Not sure if it is okay to trigger GC while the GC is updating
// references.
st_foreach(cme_validity_dependency, mark_and_pin_keys_i, 0);
}
}
static void
yjit_root_free(void *ptr)
{
// Do nothing. The root lives as long as the process.
}
static size_t
yjit_root_memsize(const void *ptr)
{
// Count off-gc-heap allocation size of the dependency table
return st_memsize(method_lookup_dependency); // TODO: more accurate accounting
}
// GC callback during compaction
static void
yjit_root_update_references(void *ptr)
{
}
// Custom type for interacting with the GC
// TODO: make this write barrier protected
static const rb_data_type_t yjit_root_type = {
"yjit_root",
{yjit_root_mark, yjit_root_free, yjit_root_memsize, yjit_root_update_references},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
// st_table iterator for invalidating blocks that are keys to the table.
2021-03-18 02:07:20 +03:00
static int
block_set_invalidate_i(st_data_t key, st_data_t v, st_data_t ignore)
{
block_t *version = (block_t *)key;
// Thankfully, st_table supports deleting while iterating.
2021-03-18 02:07:20 +03:00
invalidate_block_version(version);
return ST_CONTINUE;
}
// Callback for when rb_callable_method_entry(klass, mid) is going to change.
// Invalidate blocks that assume stable method lookup of `mid` in `klass` when this happens.
void
2021-03-18 02:07:20 +03:00
rb_yjit_method_lookup_change(VALUE klass, ID mid)
{
2021-03-18 02:07:20 +03:00
if (!method_lookup_dependency) return;
2021-01-29 20:07:18 +03:00
RB_VM_LOCK_ENTER();
2021-03-18 02:07:20 +03:00
st_data_t image;
st_data_t key = (st_data_t)klass;
if (st_lookup(method_lookup_dependency, key, &image)) {
struct rb_id_table *id2blocks = (void *)image;
VALUE blocks;
// Invalidate all blocks in method_lookup_dependency[klass][mid]
if (rb_id_table_lookup(id2blocks, mid, &blocks)) {
rb_id_table_delete(id2blocks, mid);
2021-03-18 02:07:20 +03:00
st_table *block_set = (st_table *)blocks;
#if YJIT_STATS
yjit_runtime_counters.invalidate_method_lookup += block_set->num_entries;
#endif
2021-03-18 02:07:20 +03:00
st_foreach(block_set, block_set_invalidate_i, 0);
2021-01-29 20:07:18 +03:00
2021-03-18 02:07:20 +03:00
st_free_table(block_set);
}
2021-03-18 02:07:20 +03:00
}
RB_VM_LOCK_LEAVE();
}
// Callback for when a cme becomes invalid.
// Invalidate all blocks that depend on cme being valid.
void
rb_yjit_cme_invalidate(VALUE cme)
{
if (!cme_validity_dependency) return;
2021-03-18 02:07:20 +03:00
RUBY_ASSERT(IMEMO_TYPE_P(cme, imemo_ment));
RB_VM_LOCK_ENTER();
// Delete the block set from the table
st_data_t cme_as_st_data = (st_data_t)cme;
st_data_t blocks;
if (st_delete(cme_validity_dependency, &cme_as_st_data, &blocks)) {
st_table *block_set = (st_table *)blocks;
#if YJIT_STATS
yjit_runtime_counters.invalidate_method_lookup += block_set->num_entries;
#endif
2021-03-18 02:07:20 +03:00
// Invalidate each block
st_foreach(block_set, block_set_invalidate_i, 0);
st_free_table(block_set);
}
2021-01-29 20:07:18 +03:00
RB_VM_LOCK_LEAVE();
}
2021-03-18 02:07:20 +03:00
// For dealing with refinements
void
rb_yjit_invalidate_all_method_lookup_assumptions(void)
{
// It looks like Module#using actually doesn't need to invalidate all the
// method caches, so we do nothing here for now.
2021-03-18 02:07:20 +03:00
}
// Remove a block from the method lookup dependency table
static void
remove_method_lookup_dependency(block_t *block, VALUE receiver_klass, const rb_callable_method_entry_t *callee_cme)
{
RUBY_ASSERT(receiver_klass);
RUBY_ASSERT(callee_cme); // callee_cme should be set when receiver_klass is set
2021-03-18 02:07:20 +03:00
st_data_t image;
st_data_t key = (st_data_t)receiver_klass;
if (st_lookup(method_lookup_dependency, key, &image)) {
2021-03-18 02:07:20 +03:00
struct rb_id_table *id2blocks = (void *)image;
ID mid = callee_cme->called_id;
2021-03-18 02:07:20 +03:00
// Find block set
VALUE blocks;
if (rb_id_table_lookup(id2blocks, mid, &blocks)) {
st_table *block_set = (st_table *)blocks;
// Remove block from block set
st_data_t block_as_st_data = (st_data_t)block;
(void)st_delete(block_set, &block_as_st_data, NULL);
if (block_set->num_entries == 0) {
// Block set now empty. Remove from id table.
rb_id_table_delete(id2blocks, mid);
st_free_table(block_set);
}
}
}
}
// Remove a block from cme_validity_dependency
static void
remove_cme_validity_dependency(block_t *block, const rb_callable_method_entry_t *callee_cme)
2021-03-18 02:07:20 +03:00
{
RUBY_ASSERT(callee_cme);
2021-03-18 02:07:20 +03:00
st_data_t blocks;
if (st_lookup(cme_validity_dependency, (st_data_t)callee_cme, &blocks)) {
2021-03-18 02:07:20 +03:00
st_table *block_set = (st_table *)blocks;
2021-03-18 02:07:20 +03:00
st_data_t block_as_st_data = (st_data_t)block;
(void)st_delete(block_set, &block_as_st_data, NULL);
}
}
static void
yjit_unlink_method_lookup_dependency(block_t *block)
{
cme_dependency_t *cme_dep;
rb_darray_foreach(block->cme_dependencies, cme_dependency_idx, cme_dep) {
remove_method_lookup_dependency(block, cme_dep->receiver_klass, (const rb_callable_method_entry_t *)cme_dep->callee_cme);
remove_cme_validity_dependency(block, (const rb_callable_method_entry_t *)cme_dep->callee_cme);
}
rb_darray_free(block->cme_dependencies);
}
static void
yjit_block_assumptions_free(block_t *block)
{
st_data_t as_st_data = (st_data_t)block;
if (blocks_assuming_stable_global_constant_state) {
st_delete(blocks_assuming_stable_global_constant_state, &as_st_data, NULL);
}
if (blocks_assuming_single_ractor_mode) {
st_delete(blocks_assuming_single_ractor_mode, &as_st_data, NULL);
}
if (blocks_assuming_bops) {
st_delete(blocks_assuming_bops, &as_st_data, NULL);
}
}
2021-07-15 22:40:34 +03:00
typedef VALUE (*yjit_func_t)(rb_execution_context_t *, rb_control_frame_t *);
bool
rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec)
{
#if (OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE) && JIT_ENABLED
bool success = true;
RB_VM_LOCK_ENTER();
rb_vm_barrier();
2020-12-10 08:06:10 +03:00
// Compile a block version starting at the first instruction
2021-09-29 21:58:01 +03:00
uint8_t *code_ptr = gen_entry_point(iseq, 0, ec);
if (code_ptr) {
ISEQ_BODY(iseq)->jit_func = (yjit_func_t)code_ptr;
}
else {
ISEQ_BODY(iseq)->jit_func = 0;
success = false;
}
2020-12-10 08:06:10 +03:00
RB_VM_LOCK_LEAVE();
return success;
#else
return false;
#endif
}
struct yjit_block_itr {
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
const rb_iseq_t *iseq;
VALUE list;
};
/* Get a list of the YJIT blocks associated with `rb_iseq` */
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
static VALUE
yjit_blocks_for(VALUE mod, VALUE rb_iseq)
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
{
if (CLASS_OF(rb_iseq) != rb_cISeq) {
2021-02-04 20:29:36 +03:00
return rb_ary_new();
}
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
const rb_iseq_t *iseq = rb_iseqw_to_iseq(rb_iseq);
2021-03-04 20:05:18 +03:00
VALUE all_versions = rb_ary_new();
rb_darray_for(ISEQ_BODY(iseq)->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t versions = rb_darray_get(ISEQ_BODY(iseq)->yjit_blocks, version_array_idx);
rb_darray_for(versions, block_idx) {
block_t *block = rb_darray_get(versions, block_idx);
// FIXME: The object craeted here can outlive the block itself
VALUE rb_block = TypedData_Wrap_Struct(cYjitBlock, &yjit_block_type, block);
rb_ary_push(all_versions, rb_block);
}
}
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
return all_versions;
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
}
2021-11-02 12:18:26 +03:00
/* Get the address of the code associated with a YJIT::Block */
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
static VALUE
block_address(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
return LONG2NUM((intptr_t)block->start_addr);
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
}
/* Get the machine code for YJIT::Block as a binary string */
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
static VALUE
block_code(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
return (VALUE)rb_str_new(
(const char*)block->start_addr,
block->end_addr - block->start_addr
);
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
}
/* Get the start index in the Instruction Sequence that corresponds to this
* YJIT::Block */
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
static VALUE
iseq_start_index(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
return INT2NUM(block->blockid.idx);
}
/* Get the end index in the Instruction Sequence that corresponds to this
* YJIT::Block */
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
static VALUE
iseq_end_index(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
return INT2NUM(block->end_idx);
}
/* Called when a basic operation is redefined */
void
rb_yjit_bop_redefined(VALUE klass, const rb_method_entry_t *me, enum ruby_basic_operators bop)
{
if (blocks_assuming_bops) {
#if YJIT_STATS
yjit_runtime_counters.invalidate_bop_redefined += blocks_assuming_bops->num_entries;
#endif
st_foreach(blocks_assuming_bops, block_set_invalidate_i, 0);
}
}
/* Called when the constant state changes */
void
rb_yjit_constant_state_changed(void)
{
if (blocks_assuming_stable_global_constant_state) {
#if YJIT_STATS
yjit_runtime_counters.constant_state_bumps++;
yjit_runtime_counters.invalidate_constant_state_bump += blocks_assuming_stable_global_constant_state->num_entries;
#endif
st_foreach(blocks_assuming_stable_global_constant_state, block_set_invalidate_i, 0);
}
}
// Callback from the opt_setinlinecache instruction in the interpreter.
// Invalidate the block for the matching opt_getinlinecache so it could regenerate code
// using the new value in the constant cache.
void
rb_yjit_constant_ic_update(const rb_iseq_t *const iseq, IC ic)
{
if (!rb_yjit_enabled_p()) return;
// We can't generate code in these situations, so no need to invalidate.
// See gen_opt_getinlinecache.
if (ic->entry->ic_cref || rb_multi_ractor_p()) {
return;
}
RB_VM_LOCK_ENTER();
rb_vm_barrier(); // Stop other ractors since we are going to patch machine code.
{
const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
VALUE *code = body->iseq_encoded;
const unsigned get_insn_idx = ic->get_insn_idx;
// This should come from a running iseq, so direct threading translation
// should have been done
RUBY_ASSERT(FL_TEST((VALUE)iseq, ISEQ_TRANSLATED));
RUBY_ASSERT(get_insn_idx < body->iseq_size);
RUBY_ASSERT(rb_vm_insn_addr2insn((const void *)code[get_insn_idx]) == BIN(opt_getinlinecache));
// Find the matching opt_getinlinecache and invalidate all the blocks there
RUBY_ASSERT(insn_op_type(BIN(opt_getinlinecache), 1) == TS_IC);
if (ic == (IC)code[get_insn_idx + 1 + 1]) {
rb_yjit_block_array_t getinlinecache_blocks = yjit_get_version_array(iseq, get_insn_idx);
// Put a bound for loop below to be defensive
const size_t initial_version_count = rb_darray_size(getinlinecache_blocks);
for (size_t iteration=0; iteration<initial_version_count; ++iteration) {
getinlinecache_blocks = yjit_get_version_array(iseq, get_insn_idx);
if (rb_darray_size(getinlinecache_blocks) > 0) {
block_t *block = rb_darray_get(getinlinecache_blocks, 0);
invalidate_block_version(block);
#if YJIT_STATS
yjit_runtime_counters.invalidate_constant_ic_fill++;
#endif
}
else {
break;
}
}
// All versions at get_insn_idx should now be gone
RUBY_ASSERT(0 == rb_darray_size(yjit_get_version_array(iseq, get_insn_idx)));
}
else {
RUBY_ASSERT(false && "ic->get_insn_diex not set properly");
}
}
RB_VM_LOCK_LEAVE();
}
void
rb_yjit_before_ractor_spawn(void)
{
if (blocks_assuming_single_ractor_mode) {
#if YJIT_STATS
yjit_runtime_counters.invalidate_ractor_spawn += blocks_assuming_single_ractor_mode->num_entries;
#endif
st_foreach(blocks_assuming_single_ractor_mode, block_set_invalidate_i, 0);
}
}
2021-10-01 14:17:09 +03:00
#ifdef HAVE_LIBCAPSTONE
static const rb_data_type_t yjit_disasm_type = {
"YJIT/Disasm",
2021-01-22 22:26:20 +03:00
{0, (void(*)(void *))cs_close, 0, },
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
Directly link libcapstone for easier development This lets us use libcapstone directly from miniruby so we don't need a Ruby Gem to to dev work. Example usage: ```ruby def foo(x) if x < 1 "wow" else "neat" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) puts UJIT.disasm(iseq) 100.times { foo 1 } puts UJIT.disasm(iseq) ``` Then in the terminal ``` $ ./miniruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "wow" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "neat" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 10 -> 10 ======================================================== 0x0: movabs rax, 0x7fe816e2d1a0 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fe817808200 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffff7b 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffff7b 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffff7b 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: jne 0x3ffffd5 ``` Make sure to `brew install pkg-config capstone`
2021-01-22 21:43:26 +03:00
static VALUE
yjit_disasm_init(VALUE klass)
Directly link libcapstone for easier development This lets us use libcapstone directly from miniruby so we don't need a Ruby Gem to to dev work. Example usage: ```ruby def foo(x) if x < 1 "wow" else "neat" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) puts UJIT.disasm(iseq) 100.times { foo 1 } puts UJIT.disasm(iseq) ``` Then in the terminal ``` $ ./miniruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "wow" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "neat" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 10 -> 10 ======================================================== 0x0: movabs rax, 0x7fe816e2d1a0 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fe817808200 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffff7b 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffff7b 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffff7b 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: jne 0x3ffffd5 ``` Make sure to `brew install pkg-config capstone`
2021-01-22 21:43:26 +03:00
{
csh * handle;
VALUE disasm = TypedData_Make_Struct(klass, csh, &yjit_disasm_type, handle);
if (cs_open(CS_ARCH_X86, CS_MODE_64, handle) != CS_ERR_OK) {
rb_raise(rb_eRuntimeError, "failed to make Capstone handle");
}
Directly link libcapstone for easier development This lets us use libcapstone directly from miniruby so we don't need a Ruby Gem to to dev work. Example usage: ```ruby def foo(x) if x < 1 "wow" else "neat" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) puts UJIT.disasm(iseq) 100.times { foo 1 } puts UJIT.disasm(iseq) ``` Then in the terminal ``` $ ./miniruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "wow" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "neat" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 10 -> 10 ======================================================== 0x0: movabs rax, 0x7fe816e2d1a0 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fe817808200 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffff7b 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffff7b 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffff7b 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: jne 0x3ffffd5 ``` Make sure to `brew install pkg-config capstone`
2021-01-22 21:43:26 +03:00
return disasm;
}
static VALUE
yjit_disasm(VALUE self, VALUE code, VALUE from)
Directly link libcapstone for easier development This lets us use libcapstone directly from miniruby so we don't need a Ruby Gem to to dev work. Example usage: ```ruby def foo(x) if x < 1 "wow" else "neat" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) puts UJIT.disasm(iseq) 100.times { foo 1 } puts UJIT.disasm(iseq) ``` Then in the terminal ``` $ ./miniruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "wow" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "neat" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 10 -> 10 ======================================================== 0x0: movabs rax, 0x7fe816e2d1a0 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fe817808200 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffff7b 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffff7b 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffff7b 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: jne 0x3ffffd5 ``` Make sure to `brew install pkg-config capstone`
2021-01-22 21:43:26 +03:00
{
size_t count;
csh * handle;
cs_insn *insns;
TypedData_Get_Struct(self, csh, &yjit_disasm_type, handle);
count = cs_disasm(*handle, (uint8_t*)StringValuePtr(code), RSTRING_LEN(code), NUM2ULL(from), 0, &insns);
Directly link libcapstone for easier development This lets us use libcapstone directly from miniruby so we don't need a Ruby Gem to to dev work. Example usage: ```ruby def foo(x) if x < 1 "wow" else "neat" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) puts UJIT.disasm(iseq) 100.times { foo 1 } puts UJIT.disasm(iseq) ``` Then in the terminal ``` $ ./miniruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "wow" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "neat" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 10 -> 10 ======================================================== 0x0: movabs rax, 0x7fe816e2d1a0 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fe817808200 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffff7b 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffff7b 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffff7b 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: jne 0x3ffffd5 ``` Make sure to `brew install pkg-config capstone`
2021-01-22 21:43:26 +03:00
VALUE insn_list = rb_ary_new_capa(count);
for (size_t i = 0; i < count; i++) {
VALUE vals = rb_ary_new_from_args(3, LONG2NUM(insns[i].address),
rb_str_new2(insns[i].mnemonic),
rb_str_new2(insns[i].op_str));
rb_ary_push(insn_list, rb_struct_alloc(cYjitDisasmInsn, vals));
Directly link libcapstone for easier development This lets us use libcapstone directly from miniruby so we don't need a Ruby Gem to to dev work. Example usage: ```ruby def foo(x) if x < 1 "wow" else "neat" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) puts UJIT.disasm(iseq) 100.times { foo 1 } puts UJIT.disasm(iseq) ``` Then in the terminal ``` $ ./miniruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "wow" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "neat" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 10 -> 10 ======================================================== 0x0: movabs rax, 0x7fe816e2d1a0 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fe817808200 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffff7b 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffff7b 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffff7b 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: jne 0x3ffffd5 ``` Make sure to `brew install pkg-config capstone`
2021-01-22 21:43:26 +03:00
}
cs_free(insns, count);
return insn_list;
}
2021-01-22 22:26:20 +03:00
#endif
Directly link libcapstone for easier development This lets us use libcapstone directly from miniruby so we don't need a Ruby Gem to to dev work. Example usage: ```ruby def foo(x) if x < 1 "wow" else "neat" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) puts UJIT.disasm(iseq) 100.times { foo 1 } puts UJIT.disasm(iseq) ``` Then in the terminal ``` $ ./miniruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "wow" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "neat" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 10 -> 10 ======================================================== 0x0: movabs rax, 0x7fe816e2d1a0 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fe817808200 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffff7b 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffff7b 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffff7b 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: jne 0x3ffffd5 ``` Make sure to `brew install pkg-config capstone`
2021-01-22 21:43:26 +03:00
// Primitive called in yjit.rb. Export all machine code comments as a Ruby array.
static VALUE
comments_for(rb_execution_context_t *ec, VALUE self, VALUE start_address, VALUE end_address)
{
VALUE comment_array = rb_ary_new();
#if RUBY_DEBUG
uint8_t *start = (void *)NUM2ULL(start_address);
uint8_t *end = (void *)NUM2ULL(end_address);
rb_darray_for(yjit_code_comments, i) {
struct yjit_comment comment = rb_darray_get(yjit_code_comments, i);
uint8_t *comment_pos = cb_get_ptr(cb, comment.offset);
if (comment_pos >= end) {
break;
}
if (comment_pos >= start) {
VALUE vals = rb_ary_new_from_args(
2,
LL2NUM((long long) comment_pos),
rb_str_new_cstr(comment.comment)
);
rb_ary_push(comment_array, rb_struct_alloc(cYjitCodeComment, vals));
}
}
#endif // if RUBY_DEBUG
return comment_array;
}
static VALUE
yjit_stats_enabled_p(rb_execution_context_t *ec, VALUE self)
{
return RBOOL(YJIT_STATS && rb_yjit_opts.gen_stats);
}
// Primitive called in yjit.rb. Export all YJIT statistics as a Ruby hash.
static VALUE
get_yjit_stats(rb_execution_context_t *ec, VALUE self)
{
// Return Qnil if YJIT isn't enabled
if (cb == NULL) {
return Qnil;
}
VALUE hash = rb_hash_new();
RB_VM_LOCK_ENTER();
{
VALUE key = ID2SYM(rb_intern("inline_code_size"));
VALUE value = LL2NUM((long long)cb->write_pos);
rb_hash_aset(hash, key, value);
key = ID2SYM(rb_intern("outlined_code_size"));
value = LL2NUM((long long)ocb->write_pos);
rb_hash_aset(hash, key, value);
}
#if YJIT_STATS
if (rb_yjit_opts.gen_stats) {
// Indicate that the complete set of stats is available
rb_hash_aset(hash, ID2SYM(rb_intern("all_stats")), Qtrue);
int64_t *counter_reader = (int64_t *)&yjit_runtime_counters;
int64_t *counter_reader_end = &yjit_runtime_counters.last_member;
// For each counter in yjit_counter_names, add that counter as
// a key/value pair.
// Iterate through comma separated counter name list
char *name_reader = yjit_counter_names;
char *counter_name_end = yjit_counter_names + sizeof(yjit_counter_names);
while (name_reader < counter_name_end && counter_reader < counter_reader_end) {
if (*name_reader == ',' || *name_reader == ' ') {
name_reader++;
continue;
}
// Compute length of counter name
int name_len;
char *name_end;
{
name_end = strchr(name_reader, ',');
if (name_end == NULL) break;
name_len = (int)(name_end - name_reader);
}
// Put counter into hash
VALUE key = ID2SYM(rb_intern2(name_reader, name_len));
VALUE value = LL2NUM((long long)*counter_reader);
rb_hash_aset(hash, key, value);
counter_reader++;
name_reader = name_end;
}
// For each entry in exit_op_count, add a stats entry with key "exit_INSTRUCTION_NAME"
// and the value is the count of side exits for that instruction.
char key_string[rb_vm_max_insn_name_size + 6]; // Leave room for "exit_" and a final NUL
for (int i = 0; i < VM_INSTRUCTION_SIZE; i++) {
const char *i_name = insn_name(i); // Look up Ruby's NUL-terminated insn name string
snprintf(key_string, rb_vm_max_insn_name_size + 6, "%s%s", "exit_", i_name);
VALUE key = ID2SYM(rb_intern(key_string));
VALUE value = LL2NUM((long long)exit_op_count[i]);
rb_hash_aset(hash, key, value);
}
}
#endif
RB_VM_LOCK_LEAVE();
return hash;
}
// Primitive called in yjit.rb. Zero out all the counters.
static VALUE
reset_stats_bang(rb_execution_context_t *ec, VALUE self)
{
#if YJIT_STATS
memset(&exit_op_count, 0, sizeof(exit_op_count));
memset(&yjit_runtime_counters, 0, sizeof(yjit_runtime_counters));
#endif // if YJIT_STATS
return Qnil;
}
// Primitive for yjit.rb. For testing running out of executable memory
static VALUE
simulate_oom_bang(rb_execution_context_t *ec, VALUE self)
{
if (RUBY_DEBUG && cb && ocb) {
// Only simulate in debug builds for paranoia.
cb_set_pos(cb, cb->mem_size-1);
cb_set_pos(ocb, ocb->mem_size-1);
}
return Qnil;
}
#include "yjit.rbinc"
#if YJIT_STATS
void
rb_yjit_collect_vm_usage_insn(int insn)
{
yjit_runtime_counters.vm_insns_count++;
}
Collect statistics about binding allocations / local variable set This commit collects statistics about how many binding objects are allocated as well as the number of local variables set on bindings. Statistics are output along with other YJIT stats. Here is an example of the output: ``` ***YJIT: Printing runtime counters from yjit.rb*** Number of Bindings Allocated: 195 Number of locals modified through binding: 0 opt_send_without_block exit reasons: ivar_get_method 7515891 (40.4%) se_cc_klass_differ 3081330 (16.6%) iseq_argc_mismatch 1564578 ( 8.4%) se_receiver_not_heap 1557663 ( 8.4%) ic_empty 1407064 ( 7.6%) optimized_method 995823 ( 5.4%) iseq_not_simple 819413 ( 4.4%) alias_method 706972 ( 3.8%) bmethod 685253 ( 3.7%) callsite_not_simple 225983 ( 1.2%) kw_splat 25999 ( 0.1%) ivar_set_method 902 ( 0.0%) cfunc_toomany_args 394 ( 0.0%) refined_method 42 ( 0.0%) cfunc_ruby_array_varg 29 ( 0.0%) invalid_cme 4 ( 0.0%) leave exit reasons: se_finish_frame 4067107 (100.0%) se_interrupt 24 ( 0.0%) getinstancevariable exit reasons: undef 121177 (100.0%) idx_out_of_range 5 ( 0.0%) opt_aref exit reasons: (all relevant counters are zero) compiled_iseq_count: 3944 main_block_code_size: 1.1 MiB side_block_code_size: 0.6 MiB vm_insns_count: 1137268516 yjit_exec_insns_count: 414015644 ratio_in_yjit: 26.7% avg_len_in_yjit: 7.5 total_exit_count: 55491789 most frequent exit op: opt_send_without_block: 18587628 (33.5%) opt_getinlinecache: 11075822 (20.0%) send: 4949300 (8.9%) leave: 4067131 (7.3%) defined: 3975196 (7.2%) setinstancevariable: 3567315 (6.4%) invokesuper: 2982163 (5.4%) getblockparamproxy: 2168852 (3.9%) opt_nil_p: 2104524 (3.8%) opt_aref: 2013858 (3.6%) ``` Running RailsBench allocates 195 binding objects but doesn't set any local variables.
2021-04-07 22:51:50 +03:00
void
rb_yjit_collect_binding_alloc(void)
{
yjit_runtime_counters.binding_allocations++;
}
void
rb_yjit_collect_binding_set(void)
{
yjit_runtime_counters.binding_set++;
}
static const VALUE *
yjit_count_side_exit_op(const VALUE *exit_pc)
{
int insn = rb_vm_insn_addr2opcode((const void *)*exit_pc);
exit_op_count[insn]++;
return exit_pc; // This function must return exit_pc!
}
#endif
void
rb_yjit_iseq_mark(const struct rb_iseq_constant_body *body)
{
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
2021-03-04 20:05:18 +03:00
rb_darray_for(version_array, block_idx) {
block_t *block = rb_darray_get(version_array, block_idx);
2021-03-04 20:05:18 +03:00
rb_gc_mark_movable((VALUE)block->blockid.iseq);
cme_dependency_t *cme_dep;
rb_darray_foreach(block->cme_dependencies, cme_dependency_idx, cme_dep) {
rb_gc_mark_movable(cme_dep->receiver_klass);
rb_gc_mark_movable(cme_dep->callee_cme);
}
// Mark outgoing branch entries
rb_darray_for(block->outgoing, branch_idx) {
2021-09-29 21:58:01 +03:00
branch_t *branch = rb_darray_get(block->outgoing, branch_idx);
for (int i = 0; i < 2; ++i) {
rb_gc_mark_movable((VALUE)branch->targets[i].iseq);
}
}
// Walk over references to objects in generated code.
uint32_t *offset_element;
rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) {
uint32_t offset_to_value = *offset_element;
uint8_t *value_address = cb_get_ptr(cb, offset_to_value);
VALUE object;
memcpy(&object, value_address, SIZEOF_VALUE);
rb_gc_mark_movable(object);
}
2021-07-13 21:56:02 +03:00
// Mark the machine code page this block lives on
//rb_gc_mark_movable(block->code_page);
}
}
}
void
rb_yjit_iseq_update_references(const struct rb_iseq_constant_body *body)
{
rb_vm_barrier();
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
rb_darray_for(version_array, block_idx) {
block_t *block = rb_darray_get(version_array, block_idx);
block->blockid.iseq = (const rb_iseq_t *)rb_gc_location((VALUE)block->blockid.iseq);
cme_dependency_t *cme_dep;
rb_darray_foreach(block->cme_dependencies, cme_dependency_idx, cme_dep) {
cme_dep->receiver_klass = rb_gc_location(cme_dep->receiver_klass);
cme_dep->callee_cme = rb_gc_location(cme_dep->callee_cme);
}
// Update outgoing branch entries
rb_darray_for(block->outgoing, branch_idx) {
2021-09-29 21:58:01 +03:00
branch_t *branch = rb_darray_get(block->outgoing, branch_idx);
for (int i = 0; i < 2; ++i) {
branch->targets[i].iseq = (const void *)rb_gc_location((VALUE)branch->targets[i].iseq);
}
}
// Walk over references to objects in generated code.
uint32_t *offset_element;
rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) {
uint32_t offset_to_value = *offset_element;
uint8_t *value_address = cb_get_ptr(cb, offset_to_value);
VALUE object;
memcpy(&object, value_address, SIZEOF_VALUE);
VALUE possibly_moved = rb_gc_location(object);
// Only write when the VALUE moves, to be CoW friendly.
if (possibly_moved != object) {
// Possibly unlock the page we need to update
cb_mark_position_writeable(cb, offset_to_value);
// Object could cross a page boundary, so unlock there as well
cb_mark_position_writeable(cb, offset_to_value + SIZEOF_VALUE - 1);
memcpy(value_address, &possibly_moved, SIZEOF_VALUE);
}
}
2021-07-13 21:56:02 +03:00
// Update the machine code page this block lives on
//block->code_page = rb_gc_location(block->code_page);
}
}
/* If YJIT isn't initialized, then cb or ocb could be NULL. */
if (cb) {
cb_mark_all_executable(cb);
}
if (ocb) {
cb_mark_all_executable(ocb);
}
}
// Free the yjit resources associated with an iseq
void
rb_yjit_iseq_free(const struct rb_iseq_constant_body *body)
{
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
rb_darray_for(version_array, block_idx) {
block_t *block = rb_darray_get(version_array, block_idx);
yjit_free_block(block);
}
rb_darray_free(version_array);
}
rb_darray_free(body->yjit_blocks);
}
// Struct representing a code page
typedef struct code_page_struct
{
// Chunk of executable memory
uint8_t* mem_block;
// Size of the executable memory chunk
uint32_t page_size;
// Inline code block
codeblock_t cb;
// Outlined code block
codeblock_t ocb;
// Next node in the free list (private)
struct code_page_struct* _next;
} code_page_t;
// Current code page we are writing machine code into
static VALUE yjit_cur_code_page = Qfalse;
// Head of the list of free code pages
static code_page_t *code_page_freelist = NULL;
// Free a code page, add it to the free list
2021-07-13 21:56:02 +03:00
static void
yjit_code_page_free(void *voidp)
2021-07-13 21:56:02 +03:00
{
code_page_t* code_page = (code_page_t*)voidp;
code_page->_next = code_page_freelist;
code_page_freelist = code_page;
2021-07-13 21:56:02 +03:00
}
// Custom type for interacting with the GC
static const rb_data_type_t yjit_code_page_type = {
"yjit_code_page",
{NULL, yjit_code_page_free, NULL, NULL},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
// Allocate a code page and wrap it into a Ruby object owned by the GC
static VALUE
rb_yjit_code_page_alloc(void)
2021-07-13 21:56:02 +03:00
{
// If the free list is empty
if (!code_page_freelist) {
// Allocate many pages at once
uint8_t* code_chunk = alloc_exec_mem(PAGES_PER_ALLOC * CODE_PAGE_SIZE);
// Do this in reverse order so we allocate our pages in order
for (int i = PAGES_PER_ALLOC - 1; i >= 0; --i) {
code_page_t* code_page = malloc(sizeof(code_page_t));
code_page->mem_block = code_chunk + i * CODE_PAGE_SIZE;
assert ((intptr_t)code_page->mem_block % CODE_PAGE_SIZE == 0);
code_page->page_size = CODE_PAGE_SIZE;
code_page->_next = code_page_freelist;
code_page_freelist = code_page;
}
}
code_page_t* code_page = code_page_freelist;
code_page_freelist = code_page_freelist->_next;
// Create a Ruby wrapper struct for the code page object
VALUE wrapper = TypedData_Wrap_Struct(0, &yjit_code_page_type, code_page);
// Write a pointer to the wrapper object on the page
*((VALUE*)code_page->mem_block) = wrapper;
// Initialize the code blocks
uint8_t* page_start = code_page->mem_block + sizeof(VALUE);
uint8_t* page_end = code_page->mem_block + CODE_PAGE_SIZE;
uint32_t halfsize = (uint32_t)(page_end - page_start) / 2;
cb_init(&code_page->cb, page_start, halfsize);
cb_init(&code_page->cb, page_start + halfsize, halfsize);
return wrapper;
2021-07-13 21:56:02 +03:00
}
// Unwrap the Ruby object representing a code page
static code_page_t *
rb_yjit_code_page_unwrap(VALUE cp_obj)
2021-07-13 21:56:02 +03:00
{
code_page_t * code_page;
TypedData_Get_Struct(cp_obj, code_page_t, &yjit_code_page_type, code_page);
return code_page;
}
// Get the code page wrapper object for a code pointer
static VALUE
rb_yjit_code_page_from_ptr(uint8_t* code_ptr)
{
VALUE* page_start = (VALUE*)((intptr_t)code_ptr & ~(CODE_PAGE_SIZE - 1));
VALUE wrapper = *page_start;
return wrapper;
}
// Get the inline code block corresponding to a code pointer
static void
yjit_get_cb(codeblock_t* cb, uint8_t* code_ptr)
{
VALUE page_wrapper = rb_yjit_code_page_from_ptr(code_ptr);
code_page_t *code_page = rb_yjit_code_page_unwrap(page_wrapper);
// A pointer to the page wrapper object is written at the start of the code page
uint8_t* mem_block = code_page->mem_block + sizeof(VALUE);
uint32_t mem_size = (code_page->page_size/2) - sizeof(VALUE);
RUBY_ASSERT(mem_block);
// Map the code block to this memory region
cb_init(cb, mem_block, mem_size);
}
// Get the outlined code block corresponding to a code pointer
static void
yjit_get_ocb(codeblock_t* cb, uint8_t* code_ptr)
{
VALUE page_wrapper = rb_yjit_code_page_from_ptr(code_ptr);
code_page_t *code_page = rb_yjit_code_page_unwrap(page_wrapper);
// A pointer to the page wrapper object is written at the start of the code page
uint8_t* mem_block = code_page->mem_block + (code_page->page_size/2);
uint32_t mem_size = code_page->page_size/2;
RUBY_ASSERT(mem_block);
// Map the code block to this memory region
cb_init(cb, mem_block, mem_size);
}
// Get the current code page or allocate a new one
static VALUE
yjit_get_code_page(uint32_t cb_bytes_needed, uint32_t ocb_bytes_needed)
{
// If this is the first code page
if (yjit_cur_code_page == Qfalse) {
yjit_cur_code_page = rb_yjit_code_page_alloc();
}
// Get the current code page
code_page_t *code_page = rb_yjit_code_page_unwrap(yjit_cur_code_page);
// Compute how many bytes are left in the code blocks
uint32_t cb_bytes_left = code_page->cb.mem_size - code_page->cb.write_pos;
uint32_t ocb_bytes_left = code_page->ocb.mem_size - code_page->ocb.write_pos;
RUBY_ASSERT_ALWAYS(cb_bytes_needed <= code_page->cb.mem_size);
RUBY_ASSERT_ALWAYS(ocb_bytes_needed <= code_page->ocb.mem_size);
// If there's enough space left in the current code page
if (cb_bytes_needed <= cb_bytes_left && ocb_bytes_needed <= ocb_bytes_left) {
return yjit_cur_code_page;
}
// Allocate a new code page
yjit_cur_code_page = rb_yjit_code_page_alloc();
code_page_t *new_code_page = rb_yjit_code_page_unwrap(yjit_cur_code_page);
// Jump to the new code page
jmp_ptr(&code_page->cb, cb_get_ptr(&new_code_page->cb, 0));
return yjit_cur_code_page;
}
2021-03-18 02:07:20 +03:00
bool
rb_yjit_enabled_p(void)
2021-02-23 23:22:20 +03:00
{
return rb_yjit_opts.yjit_enabled;
2021-02-23 23:22:20 +03:00
}
2021-03-18 02:07:20 +03:00
unsigned
rb_yjit_call_threshold(void)
2021-02-23 23:22:20 +03:00
{
return rb_yjit_opts.call_threshold;
2021-02-23 23:22:20 +03:00
}
# define PTR2NUM(x) (rb_int2inum((intptr_t)(void *)(x)))
/**
* call-seq: block.id -> unique_id
*
* Returns a unique integer ID for the block. For example:
*
* blocks = blocks_for(iseq)
* blocks.group_by(&:id)
*/
static VALUE
block_id(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
return PTR2NUM(block);
}
/**
* call-seq: block.outgoing_ids -> list
*
* Returns a list of outgoing ids for the current block. This list can be used
* in conjunction with Block#id to construct a graph of block objects.
*/
static VALUE
outgoing_ids(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
VALUE ids = rb_ary_new();
rb_darray_for(block->outgoing, branch_idx) {
2021-09-29 21:58:01 +03:00
branch_t *out_branch = rb_darray_get(block->outgoing, branch_idx);
for (size_t succ_idx = 0; succ_idx < 2; succ_idx++) {
2021-09-29 21:58:01 +03:00
block_t *succ = out_branch->blocks[succ_idx];
if (succ == NULL)
continue;
rb_ary_push(ids, PTR2NUM(succ));
}
}
return ids;
}
// Can raise RuntimeError
void
rb_yjit_init(struct rb_yjit_options *options)
{
if (!YJIT_SUPPORTED_P || !JIT_ENABLED) {
return;
}
rb_yjit_opts = *options;
rb_yjit_opts.yjit_enabled = true;
rb_yjit_opts.gen_stats = rb_yjit_opts.gen_stats || getenv("RUBY_YJIT_STATS");
#if !YJIT_STATS
if(rb_yjit_opts.gen_stats) {
rb_warning("--yjit-stats requires that Ruby is compiled with CPPFLAGS='-DYJIT_STATS=1' or CPPFLAGS='-DRUBY_DEBUG=1'");
}
#endif
// Normalize command-line options to default values
if (rb_yjit_opts.exec_mem_size < 1) {
rb_yjit_opts.exec_mem_size = 256;
}
if (rb_yjit_opts.call_threshold < 1) {
rb_yjit_opts.call_threshold = YJIT_DEFAULT_CALL_THRESHOLD;
2021-02-23 23:22:20 +03:00
}
if (rb_yjit_opts.max_versions < 1) {
rb_yjit_opts.max_versions = 4;
}
// If type propagation is disabled, max 1 version per block
YJIT: Add ability to exit to interpreter from stubs Previously, YJIT assumed that it's always possible to generate a new basic block when servicing a stub in branch_stub_hit(). When YJIT is out of executable memory, for example, this assumption doesn't hold up. Add handling to branch_stub_hit() for servicing stubs without consuming more executable memory by adding a code path that exits to the interpreter at the location the branch stub represents. The new code path reconstructs interpreter state in branch_stub_hit() and then exits with a new snippet called `code_for_exit_from_stub` that returns `Qundef` from the YJIT native stack frame. As this change adds another place where we regenerate code from `branch_t`, extract the logic for it into a new function and call it regenerate_branch(). While we are at it, make the branch shrinking code path in branch_stub_hit() more explicit. This new functionality is hard to test without full support for out of memory conditions. To verify this change, I ran `RUBY_YJIT_ENABLE=1 make check -j12` with the following patch to stress test the new code path: ```diff diff --git a/yjit_core.c b/yjit_core.c index 4ab63d9806..5788b8c5ed 100644 --- a/yjit_core.c +++ b/yjit_core.c @@ -878,8 +878,12 @@ branch_stub_hit(branch_t *branch, const uint32_t target_idx, rb_execution_contex cb_set_write_ptr(cb, branch->end_addr); } +if (rand() < RAND_MAX/2) { // Compile the new block version p_block = gen_block_version(target, target_ctx, ec); +}else{ + p_block = NULL; +} if (!p_block && branch_modified) { // We couldn't generate a new block for the branch, but we modified the branch. ``` We can enable the new test along with other OOM tests once full support lands. Other small changes: * yjit_utils.c (print_str): Update to work with new native frame shape. Follow up for 8fa0ee4d404. * yjit_iface.c (rb_yjit_init): Run yjit_init_core() after yjit_init_codegen() so `cb` and `ocb` are available.
2021-11-27 02:00:42 +03:00
if (rb_yjit_opts.no_type_prop) {
rb_yjit_opts.max_versions = 1;
}
blocks_assuming_stable_global_constant_state = st_init_numtable();
blocks_assuming_single_ractor_mode = st_init_numtable();
blocks_assuming_bops = st_init_numtable();
yjit_init_codegen();
YJIT: Add ability to exit to interpreter from stubs Previously, YJIT assumed that it's always possible to generate a new basic block when servicing a stub in branch_stub_hit(). When YJIT is out of executable memory, for example, this assumption doesn't hold up. Add handling to branch_stub_hit() for servicing stubs without consuming more executable memory by adding a code path that exits to the interpreter at the location the branch stub represents. The new code path reconstructs interpreter state in branch_stub_hit() and then exits with a new snippet called `code_for_exit_from_stub` that returns `Qundef` from the YJIT native stack frame. As this change adds another place where we regenerate code from `branch_t`, extract the logic for it into a new function and call it regenerate_branch(). While we are at it, make the branch shrinking code path in branch_stub_hit() more explicit. This new functionality is hard to test without full support for out of memory conditions. To verify this change, I ran `RUBY_YJIT_ENABLE=1 make check -j12` with the following patch to stress test the new code path: ```diff diff --git a/yjit_core.c b/yjit_core.c index 4ab63d9806..5788b8c5ed 100644 --- a/yjit_core.c +++ b/yjit_core.c @@ -878,8 +878,12 @@ branch_stub_hit(branch_t *branch, const uint32_t target_idx, rb_execution_contex cb_set_write_ptr(cb, branch->end_addr); } +if (rand() < RAND_MAX/2) { // Compile the new block version p_block = gen_block_version(target, target_ctx, ec); +}else{ + p_block = NULL; +} if (!p_block && branch_modified) { // We couldn't generate a new block for the branch, but we modified the branch. ``` We can enable the new test along with other OOM tests once full support lands. Other small changes: * yjit_utils.c (print_str): Update to work with new native frame shape. Follow up for 8fa0ee4d404. * yjit_iface.c (rb_yjit_init): Run yjit_init_core() after yjit_init_codegen() so `cb` and `ocb` are available.
2021-11-27 02:00:42 +03:00
yjit_init_core();
// YJIT Ruby module
mYjit = rb_define_module_under(rb_cRubyVM, "YJIT");
rb_define_module_function(mYjit, "blocks_for", yjit_blocks_for, 1);
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
// YJIT::Block (block version, code block)
cYjitBlock = rb_define_class_under(mYjit, "Block", rb_cObject);
rb_undef_alloc_func(cYjitBlock);
rb_define_method(cYjitBlock, "address", block_address, 0);
rb_define_method(cYjitBlock, "id", block_id, 0);
rb_define_method(cYjitBlock, "code", block_code, 0);
rb_define_method(cYjitBlock, "iseq_start_index", iseq_start_index, 0);
rb_define_method(cYjitBlock, "iseq_end_index", iseq_end_index, 0);
rb_define_method(cYjitBlock, "outgoing_ids", outgoing_ids, 0);
Expose methods for inspecting Micro JIT code blocks This commit adds a module `UJIT`. The module allows you to insert the initial Micro JIT instruction in to an arbitrary iseq like this: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump ``` After the initial jump is added, we can make Micro JIT do some work: ```ruby 100.times { foo(0) } ``` The `UJIT` module also exposes a method for finding all compiled blocks for a given iseq, like this: ```ruby blocks = UJIT.blocks_for(iseq) ``` We can sort the blocks by address and use the Crabstone gem (which is a wrapper around `capstone`) to disassemble the generated code. Here is the full code example: ```ruby def foo(x) if x < 1 "less than one" else "something else" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) UJIT.insert(iseq) # Add initial jump 100.times { foo(0) } blocks = UJIT.blocks_for(iseq) # brew install capstone # gem install crabstone require "crabstone" cs = Crabstone::Disassembler.new(Crabstone::ARCH_X86, Crabstone::MODE_64) puts iseq.disasm blocks.sort_by(&:address).reverse.each do |block| puts "== ISEQ RANGE: #{block.iseq_start_index} -> #{block.iseq_end_index} ".ljust(80, "=") cs.disasm(block.code, 0).each do |i| printf( "\t0x%<address>x:\t%<instruction>s\t%<details>s\n", address: i.address, instruction: i.mnemonic, details: i.op_str ) end end ``` Here is the output: ``` $ ./ruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "less than one" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "something else" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 7 -> 7 ========================================================== 0x0: movabs rax, 0x7fcd014cd518 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fcd0180ac00 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffe0da 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffe0da 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffe0da 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: je 0x3ffe111 0x6c: jmp 0xffffffffffffffa3 ```
2021-01-20 21:50:13 +03:00
// YJIT disassembler interface
2021-10-01 14:17:09 +03:00
#ifdef HAVE_LIBCAPSTONE
cYjitDisasm = rb_define_class_under(mYjit, "Disasm", rb_cObject);
rb_define_alloc_func(cYjitDisasm, yjit_disasm_init);
rb_define_method(cYjitDisasm, "disasm", yjit_disasm, 2);
cYjitDisasmInsn = rb_struct_define_under(cYjitDisasm, "Insn", "address", "mnemonic", "op_str", NULL);
#if RUBY_DEBUG
cYjitCodeComment = rb_struct_define_under(cYjitDisasm, "Comment", "address", "comment", NULL);
#endif
2021-01-22 22:26:20 +03:00
#endif
Directly link libcapstone for easier development This lets us use libcapstone directly from miniruby so we don't need a Ruby Gem to to dev work. Example usage: ```ruby def foo(x) if x < 1 "wow" else "neat" end end iseq = RubyVM::InstructionSequence.of(method(:foo)) puts UJIT.disasm(iseq) 100.times { foo 1 } puts UJIT.disasm(iseq) ``` Then in the terminal ``` $ ./miniruby test.rb == disasm: #<ISeq:foo@test.rb:1 (1,0)-(7,3)> (catch: FALSE) local table (size: 1, argc: 1 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] x@0<Arg> 0000 getlocal_WC_0 x@0 ( 2)[LiCa] 0002 putobject_INT2FIX_1_ 0003 opt_lt <calldata!mid:<, argc:1, ARGS_SIMPLE> 0005 branchunless 10 0007 putstring "wow" ( 3)[Li] 0009 leave ( 7)[Re] 0010 putstring "neat" ( 5)[Li] 0012 leave ( 7)[Re] == ISEQ RANGE: 10 -> 10 ======================================================== 0x0: movabs rax, 0x7fe816e2d1a0 0xa: mov qword ptr [rdi], rax 0xd: mov r8, rax 0x10: mov r9, rax 0x13: mov r11, r12 0x16: jmp qword ptr [rax] == ISEQ RANGE: 0 -> 7 ========================================================== 0x0: mov rax, qword ptr [rdi + 0x20] 0x4: mov rax, qword ptr [rax - 0x18] 0x8: mov qword ptr [rdx], rax 0xb: mov qword ptr [rdx + 8], 3 0x13: movabs rax, 0x7fe817808200 0x1d: test byte ptr [rax + 0x3e6], 1 0x24: jne 0x3ffff7b 0x2a: test byte ptr [rdx], 1 0x2d: je 0x3ffff7b 0x33: test byte ptr [rdx + 8], 1 0x37: je 0x3ffff7b 0x3d: mov rax, qword ptr [rdx] 0x40: cmp rax, qword ptr [rdx + 8] 0x44: movabs rax, 0 0x4e: movabs rcx, 0x14 0x58: cmovl rax, rcx 0x5c: mov qword ptr [rdx], rax 0x5f: test qword ptr [rdx], -9 0x66: jne 0x3ffffd5 ``` Make sure to `brew install pkg-config capstone`
2021-01-22 21:43:26 +03:00
2021-03-18 02:07:20 +03:00
// Make dependency tables
method_lookup_dependency = st_init_numtable();
2021-03-18 02:07:20 +03:00
cme_validity_dependency = st_init_numtable();
// Initialize the GC hooks
struct yjit_root_struct *root;
VALUE yjit_root = TypedData_Make_Struct(0, struct yjit_root_struct, &yjit_root_type, root);
rb_gc_register_mark_object(yjit_root);
2021-11-05 04:32:55 +03:00
(void)yjit_get_cb;
(void)yjit_get_ocb;
(void)yjit_get_code_page;
}