ruby/vm_method.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2925 строки
92 KiB
C
Исходник Обычный вид История

/*
* This file is included by vm.c
*/
#include "id_table.h"
#include "yjit.h"
2023-03-07 10:17:25 +03:00
#include "rjit.h"
#define METHOD_DEBUG 0
static int vm_redefinition_check_flag(VALUE klass);
static void rb_vm_check_redefinition_opt_method(const rb_method_entry_t *me, VALUE klass);
static inline rb_method_entry_t *lookup_method_table(VALUE klass, ID id);
#define object_id idObject_id
#define added idMethod_added
#define singleton_added idSingleton_method_added
#define removed idMethod_removed
#define singleton_removed idSingleton_method_removed
#define undefined idMethod_undefined
#define singleton_undefined idSingleton_method_undefined
#define ruby_running (GET_VM()->running)
/* int ruby_running = 0; */
static enum rb_id_table_iterator_result
vm_ccs_dump_i(ID mid, VALUE val, void *data)
{
const struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)val;
2020-12-18 22:29:58 +03:00
fprintf(stderr, " | %s (len:%d) ", rb_id2name(mid), ccs->len);
rp(ccs->cme);
for (int i=0; i<ccs->len; i++) {
2020-12-18 22:29:58 +03:00
fprintf(stderr, " | [%d]\t", i); vm_ci_dump(ccs->entries[i].ci);
rp_m( " | \t", ccs->entries[i].cc);
}
return ID_TABLE_CONTINUE;
}
static void
vm_ccs_dump(VALUE klass, ID target_mid)
{
struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass);
if (cc_tbl) {
VALUE ccs;
if (target_mid) {
if (rb_id_table_lookup(cc_tbl, target_mid, &ccs)) {
fprintf(stderr, " [CCTB] %p\n", (void *)cc_tbl);
vm_ccs_dump_i(target_mid, ccs, NULL);
}
}
else {
fprintf(stderr, " [CCTB] %p\n", (void *)cc_tbl);
rb_id_table_foreach(cc_tbl, vm_ccs_dump_i, (void *)target_mid);
}
}
}
static enum rb_id_table_iterator_result
vm_cme_dump_i(ID mid, VALUE val, void *data)
{
ID target_mid = (ID)data;
if (target_mid == 0 || mid == target_mid) {
rp_m(" > ", val);
}
return ID_TABLE_CONTINUE;
}
static VALUE
vm_mtbl_dump(VALUE klass, ID target_mid)
{
fprintf(stderr, "# vm_mtbl\n");
while (klass) {
rp_m(" -> ", klass);
VALUE me;
if (RCLASS_M_TBL(klass)) {
if (target_mid != 0) {
if (rb_id_table_lookup(RCLASS_M_TBL(klass), target_mid, &me)) {
rp_m(" [MTBL] ", me);
}
}
else {
fprintf(stderr, " ## RCLASS_M_TBL (%p)\n", (void *)RCLASS_M_TBL(klass));
rb_id_table_foreach(RCLASS_M_TBL(klass), vm_cme_dump_i, NULL);
}
}
else {
fprintf(stderr, " MTBL: NULL\n");
}
if (RCLASS_CALLABLE_M_TBL(klass)) {
if (target_mid != 0) {
if (rb_id_table_lookup(RCLASS_CALLABLE_M_TBL(klass), target_mid, &me)) {
rp_m(" [CM**] ", me);
}
}
else {
fprintf(stderr, " ## RCLASS_CALLABLE_M_TBL\n");
rb_id_table_foreach(RCLASS_CALLABLE_M_TBL(klass), vm_cme_dump_i, NULL);
}
}
if (RCLASS_CC_TBL(klass)) {
vm_ccs_dump(klass, target_mid);
}
klass = RCLASS_SUPER(klass);
}
return Qnil;
}
void
rb_vm_mtbl_dump(const char *msg, VALUE klass, ID target_mid)
{
fprintf(stderr, "[%s] ", msg);
vm_mtbl_dump(klass, target_mid);
}
static inline void
vm_cme_invalidate(rb_callable_method_entry_t *cme)
{
VM_ASSERT(IMEMO_TYPE_P(cme, imemo_ment), "cme: %d", imemo_type((VALUE)cme));
VM_ASSERT(callable_method_entry_p(cme));
METHOD_ENTRY_INVALIDATED_SET(cme);
RB_DEBUG_COUNTER_INC(cc_cme_invalidate);
2021-03-18 02:07:20 +03:00
Rust YJIT In December 2021, we opened an [issue] to solicit feedback regarding the porting of the YJIT codebase from C99 to Rust. There were some reservations, but this project was given the go ahead by Ruby core developers and Matz. Since then, we have successfully completed the port of YJIT to Rust. The new Rust version of YJIT has reached parity with the C version, in that it passes all the CRuby tests, is able to run all of the YJIT benchmarks, and performs similarly to the C version (because it works the same way and largely generates the same machine code). We've even incorporated some design improvements, such as a more fine-grained constant invalidation mechanism which we expect will make a big difference in Ruby on Rails applications. Because we want to be careful, YJIT is guarded behind a configure option: ```shell ./configure --enable-yjit # Build YJIT in release mode ./configure --enable-yjit=dev # Build YJIT in dev/debug mode ``` By default, YJIT does not get compiled and cargo/rustc is not required. If YJIT is built in dev mode, then `cargo` is used to fetch development dependencies, but when building in release, `cargo` is not required, only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer. The YJIT command-line options remain mostly unchanged, and more details about the build process are documented in `doc/yjit/yjit.md`. The CI tests have been updated and do not take any more resources than before. The development history of the Rust port is available at the following commit for interested parties: https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be Our hope is that Rust YJIT will be compiled and included as a part of system packages and compiled binaries of the Ruby 3.2 release. We do not anticipate any major problems as Rust is well supported on every platform which YJIT supports, but to make sure that this process works smoothly, we would like to reach out to those who take care of building systems packages before the 3.2 release is shipped and resolve any issues that may come up. [issue]: https://bugs.ruby-lang.org/issues/18481 Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com> Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com> Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
rb_yjit_cme_invalidate(cme);
2023-03-07 10:17:25 +03:00
rb_rjit_cme_invalidate(cme);
}
static int
rb_clear_constant_cache_for_id_i(st_data_t ic, st_data_t idx, st_data_t arg)
{
((IC) ic)->entry = NULL;
return ST_CONTINUE;
}
// Here for backward compat.
void rb_clear_constant_cache(void) {}
void
rb_clear_constant_cache_for_id(ID id)
{
VALUE lookup_result;
rb_vm_t *vm = GET_VM();
if (rb_id_table_lookup(vm->constant_cache, id, &lookup_result)) {
st_table *ics = (st_table *)lookup_result;
st_foreach(ics, rb_clear_constant_cache_for_id_i, (st_data_t) NULL);
ruby_vm_constant_cache_invalidations += ics->num_entries;
}
Rust YJIT In December 2021, we opened an [issue] to solicit feedback regarding the porting of the YJIT codebase from C99 to Rust. There were some reservations, but this project was given the go ahead by Ruby core developers and Matz. Since then, we have successfully completed the port of YJIT to Rust. The new Rust version of YJIT has reached parity with the C version, in that it passes all the CRuby tests, is able to run all of the YJIT benchmarks, and performs similarly to the C version (because it works the same way and largely generates the same machine code). We've even incorporated some design improvements, such as a more fine-grained constant invalidation mechanism which we expect will make a big difference in Ruby on Rails applications. Because we want to be careful, YJIT is guarded behind a configure option: ```shell ./configure --enable-yjit # Build YJIT in release mode ./configure --enable-yjit=dev # Build YJIT in dev/debug mode ``` By default, YJIT does not get compiled and cargo/rustc is not required. If YJIT is built in dev mode, then `cargo` is used to fetch development dependencies, but when building in release, `cargo` is not required, only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer. The YJIT command-line options remain mostly unchanged, and more details about the build process are documented in `doc/yjit/yjit.md`. The CI tests have been updated and do not take any more resources than before. The development history of the Rust port is available at the following commit for interested parties: https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be Our hope is that Rust YJIT will be compiled and included as a part of system packages and compiled binaries of the Ruby 3.2 release. We do not anticipate any major problems as Rust is well supported on every platform which YJIT supports, but to make sure that this process works smoothly, we would like to reach out to those who take care of building systems packages before the 3.2 release is shipped and resolve any issues that may come up. [issue]: https://bugs.ruby-lang.org/issues/18481 Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com> Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com> Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
rb_yjit_constant_state_changed(id);
2023-03-07 10:17:25 +03:00
rb_rjit_constant_state_changed(id);
}
static void
invalidate_negative_cache(ID mid)
{
VALUE cme;
rb_vm_t *vm = GET_VM();
if (rb_id_table_lookup(vm->negative_cme_table, mid, &cme)) {
rb_id_table_delete(vm->negative_cme_table, mid);
vm_cme_invalidate((rb_callable_method_entry_t *)cme);
RB_DEBUG_COUNTER_INC(cc_invalidate_negative);
}
}
const rb_method_entry_t * rb_method_entry_clone(const rb_method_entry_t *src_me);
2020-07-19 17:13:21 +03:00
static const rb_callable_method_entry_t *complemented_callable_method_entry(VALUE klass, ID id);
static const rb_callable_method_entry_t *lookup_overloaded_cme(const rb_callable_method_entry_t *cme);
static void
clear_method_cache_by_id_in_class(VALUE klass, ID mid)
{
VM_ASSERT(RB_TYPE_P(klass, T_CLASS) || RB_TYPE_P(klass, T_ICLASS));
if (rb_objspace_garbage_object_p(klass)) return;
RB_VM_LOCK_ENTER();
2021-01-26 19:49:57 +03:00
if (LIKELY(RCLASS_SUBCLASSES(klass) == NULL)) {
// no subclasses
// check only current class
struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass);
VALUE ccs_data;
// invalidate CCs
if (cc_tbl && rb_id_table_lookup(cc_tbl, mid, &ccs_data)) {
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_data;
rb_yjit_cme_invalidate((rb_callable_method_entry_t *)ccs->cme);
2023-03-07 10:17:25 +03:00
rb_rjit_cme_invalidate((rb_callable_method_entry_t *)ccs->cme);
if (NIL_P(ccs->cme->owner)) invalidate_negative_cache(mid);
rb_vm_ccs_free(ccs);
rb_id_table_delete(cc_tbl, mid);
RB_DEBUG_COUNTER_INC(cc_invalidate_leaf_ccs);
}
// remove from callable_m_tbl, if exists
struct rb_id_table *cm_tbl;
if ((cm_tbl = RCLASS_CALLABLE_M_TBL(klass)) != NULL) {
VALUE cme;
2023-10-19 20:54:35 +03:00
if (rb_yjit_enabled_p && rb_id_table_lookup(cm_tbl, mid, &cme)) {
rb_yjit_cme_invalidate((rb_callable_method_entry_t *)cme);
}
if (rb_rjit_enabled && rb_id_table_lookup(cm_tbl, mid, &cme)) {
2023-03-07 10:17:25 +03:00
rb_rjit_cme_invalidate((rb_callable_method_entry_t *)cme);
2023-02-04 09:42:13 +03:00
}
rb_id_table_delete(cm_tbl, mid);
RB_DEBUG_COUNTER_INC(cc_invalidate_leaf_callable);
}
RB_DEBUG_COUNTER_INC(cc_invalidate_leaf);
}
else {
2020-07-19 17:13:21 +03:00
const rb_callable_method_entry_t *cme = complemented_callable_method_entry(klass, mid);
if (cme) {
// invalidate cme if found to invalidate the inline method cache.
if (METHOD_ENTRY_CACHED(cme)) {
if (METHOD_ENTRY_COMPLEMENTED(cme)) {
// do nothing
}
else {
// invalidate cc by invalidating cc->cme
VALUE owner = cme->owner;
VM_ASSERT(BUILTIN_TYPE(owner) == T_CLASS);
VALUE klass_housing_cme;
if (cme->def->type == VM_METHOD_TYPE_REFINED && !cme->def->body.refined.orig_me) {
klass_housing_cme = owner;
}
else {
klass_housing_cme = RCLASS_ORIGIN(owner);
}
// replace the cme that will be invalid
VM_ASSERT(lookup_method_table(klass_housing_cme, mid) == (const rb_method_entry_t *)cme);
const rb_method_entry_t *new_cme = rb_method_entry_clone((const rb_method_entry_t *)cme);
rb_method_table_insert(klass_housing_cme, RCLASS_M_TBL(klass_housing_cme), mid, new_cme);
}
vm_cme_invalidate((rb_callable_method_entry_t *)cme);
RB_DEBUG_COUNTER_INC(cc_invalidate_tree_cme);
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
// In case of refinement ME, also invalidate the wrapped ME that
// could be cached at some callsite and is unreachable from any
// RCLASS_CC_TBL.
if (cme->def->type == VM_METHOD_TYPE_REFINED && cme->def->body.refined.orig_me) {
vm_cme_invalidate((rb_callable_method_entry_t *)cme->def->body.refined.orig_me);
}
if (cme->def->iseq_overload) {
rb_callable_method_entry_t *monly_cme = (rb_callable_method_entry_t *)lookup_overloaded_cme(cme);
if (monly_cme) {
vm_cme_invalidate(monly_cme);
}
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
}
}
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
// invalidate complement tbl
if (METHOD_ENTRY_COMPLEMENTED(cme)) {
VALUE defined_class = cme->defined_class;
struct rb_id_table *cm_tbl = RCLASS_CALLABLE_M_TBL(defined_class);
VM_ASSERT(cm_tbl != NULL);
int r = rb_id_table_delete(cm_tbl, mid);
VM_ASSERT(r == TRUE); (void)r;
RB_DEBUG_COUNTER_INC(cc_invalidate_tree_callable);
}
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
RB_DEBUG_COUNTER_INC(cc_invalidate_tree);
}
else {
invalidate_negative_cache(mid);
}
}
RB_VM_LOCK_LEAVE();
}
static void
clear_iclass_method_cache_by_id(VALUE iclass, VALUE d)
{
VM_ASSERT(RB_TYPE_P(iclass, T_ICLASS));
ID mid = (ID)d;
clear_method_cache_by_id_in_class(iclass, mid);
}
static void
clear_iclass_method_cache_by_id_for_refinements(VALUE klass, VALUE d)
{
if (RB_TYPE_P(klass, T_ICLASS)) {
ID mid = (ID)d;
clear_method_cache_by_id_in_class(klass, mid);
}
}
void
rb_clear_method_cache(VALUE klass_or_module, ID mid)
{
if (RB_TYPE_P(klass_or_module, T_MODULE)) {
VALUE module = klass_or_module; // alias
if (FL_TEST(module, RMODULE_IS_REFINEMENT)) {
VALUE refined_class = rb_refinement_module_get_refined_class(module);
rb_clear_method_cache(refined_class, mid);
rb_class_foreach_subclass(refined_class, clear_iclass_method_cache_by_id_for_refinements, mid);
}
rb_class_foreach_subclass(module, clear_iclass_method_cache_by_id, mid);
}
else {
clear_method_cache_by_id_in_class(klass_or_module, mid);
}
}
static int
use inline cache for refinements From Ruby 3.0, refined method invocations are slow because resolved methods are not cached by inline cache because of conservertive strategy. However, `using` clears all caches so that it seems safe to cache resolved method entries. This patch caches resolved method entries in inline cache and clear all of inline method caches when `using` is called. fix [Bug #18572] ```ruby # without refinements class C def foo = :C end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } _END__ user system total real master 0.362859 0.002544 0.365403 ( 0.365424) modified 0.357251 0.000000 0.357251 ( 0.357258) ``` ```ruby # with refinment but without using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } __END__ user system total real master 0.957182 0.000000 0.957182 ( 0.957212) modified 0.359228 0.000000 0.359228 ( 0.359238) ``` ```ruby # with using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 using R obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} }
2023-07-31 10:17:55 +03:00
invalidate_all_refinement_cc(void *vstart, void *vend, size_t stride, void *data)
{
VALUE v = (VALUE)vstart;
for (; v != (VALUE)vend; v += stride) {
void *ptr = asan_poisoned_object_p(v);
asan_unpoison_object(v, false);
use inline cache for refinements From Ruby 3.0, refined method invocations are slow because resolved methods are not cached by inline cache because of conservertive strategy. However, `using` clears all caches so that it seems safe to cache resolved method entries. This patch caches resolved method entries in inline cache and clear all of inline method caches when `using` is called. fix [Bug #18572] ```ruby # without refinements class C def foo = :C end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } _END__ user system total real master 0.362859 0.002544 0.365403 ( 0.365424) modified 0.357251 0.000000 0.357251 ( 0.357258) ``` ```ruby # with refinment but without using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } __END__ user system total real master 0.957182 0.000000 0.957182 ( 0.957212) modified 0.359228 0.000000 0.359228 ( 0.359238) ``` ```ruby # with using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 using R obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} }
2023-07-31 10:17:55 +03:00
if (RBASIC(v)->flags) { // liveness check
use inline cache for refinements From Ruby 3.0, refined method invocations are slow because resolved methods are not cached by inline cache because of conservertive strategy. However, `using` clears all caches so that it seems safe to cache resolved method entries. This patch caches resolved method entries in inline cache and clear all of inline method caches when `using` is called. fix [Bug #18572] ```ruby # without refinements class C def foo = :C end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } _END__ user system total real master 0.362859 0.002544 0.365403 ( 0.365424) modified 0.357251 0.000000 0.357251 ( 0.357258) ``` ```ruby # with refinment but without using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } __END__ user system total real master 0.957182 0.000000 0.957182 ( 0.957212) modified 0.359228 0.000000 0.359228 ( 0.359238) ``` ```ruby # with using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 using R obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} }
2023-07-31 10:17:55 +03:00
if (imemo_type_p(v, imemo_callcache)) {
const struct rb_callcache *cc = (const struct rb_callcache *)v;
if (vm_cc_refinement_p(cc) && cc->klass) {
vm_cc_invalidate(cc);
}
}
}
if (ptr) {
asan_poison_object(v);
}
}
return 0; // continue to iteration
}
void
use inline cache for refinements From Ruby 3.0, refined method invocations are slow because resolved methods are not cached by inline cache because of conservertive strategy. However, `using` clears all caches so that it seems safe to cache resolved method entries. This patch caches resolved method entries in inline cache and clear all of inline method caches when `using` is called. fix [Bug #18572] ```ruby # without refinements class C def foo = :C end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } _END__ user system total real master 0.362859 0.002544 0.365403 ( 0.365424) modified 0.357251 0.000000 0.357251 ( 0.357258) ``` ```ruby # with refinment but without using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } __END__ user system total real master 0.957182 0.000000 0.957182 ( 0.957212) modified 0.359228 0.000000 0.359228 ( 0.359238) ``` ```ruby # with using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 using R obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} }
2023-07-31 10:17:55 +03:00
rb_clear_all_refinement_method_cache(void)
{
use inline cache for refinements From Ruby 3.0, refined method invocations are slow because resolved methods are not cached by inline cache because of conservertive strategy. However, `using` clears all caches so that it seems safe to cache resolved method entries. This patch caches resolved method entries in inline cache and clear all of inline method caches when `using` is called. fix [Bug #18572] ```ruby # without refinements class C def foo = :C end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } _END__ user system total real master 0.362859 0.002544 0.365403 ( 0.365424) modified 0.357251 0.000000 0.357251 ( 0.357258) ``` ```ruby # with refinment but without using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} } __END__ user system total real master 0.957182 0.000000 0.957182 ( 0.957212) modified 0.359228 0.000000 0.359228 ( 0.359238) ``` ```ruby # with using class C def foo = :C end module R refine C do def foo = :R end end N = 1_000_000 using R obj = C.new require 'benchmark' Benchmark.bm{|x| x.report{N.times{ obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; obj.foo; }} }
2023-07-31 10:17:55 +03:00
rb_objspace_each_objects(invalidate_all_refinement_cc, NULL);
2021-03-18 02:07:20 +03:00
rb_yjit_invalidate_all_method_lookup_assumptions();
}
void
rb_method_table_insert(VALUE klass, struct rb_id_table *table, ID method_id, const rb_method_entry_t *me)
{
VALUE table_owner = klass;
if (RB_TYPE_P(klass, T_ICLASS) && !RICLASS_OWNS_M_TBL_P(klass)) {
table_owner = RBASIC(table_owner)->klass;
}
VM_ASSERT(RB_TYPE_P(table_owner, T_CLASS) || RB_TYPE_P(table_owner, T_ICLASS) || RB_TYPE_P(table_owner, T_MODULE));
VM_ASSERT(table == RCLASS_M_TBL(table_owner));
rb_id_table_insert(table, method_id, (VALUE)me);
RB_OBJ_WRITTEN(table_owner, Qundef, (VALUE)me);
}
// rb_f_notimplement has an extra trailing argument to distinguish it from other methods
// at compile-time to override arity to be -1. But the trailing argument introduces a
// signature mismatch between caller and callee, so rb_define_method family inserts a
// method entry with rb_f_notimplement_internal, which has canonical arity=-1 signature,
// instead of rb_f_notimplement.
NORETURN(static VALUE rb_f_notimplement_internal(int argc, const VALUE *argv, VALUE obj));
static VALUE
rb_f_notimplement_internal(int argc, const VALUE *argv, VALUE obj)
{
rb_notimplement();
* encoding.c (rb_enc_codepoint_len): Use UNREACHABLE to avoid "control reaches end of non-void function" warnings. [ruby-trunk - Bug #6066] * re.c (name_to_backref_number): ditto. * object.c (rb_Float): ditto. * io.c (io_readpartial): ditto. * io.c (io_read_nonblock): ditto. * pack.c (rb_uv_to_utf8): ditto. * proc.c (rb_method_entry_arity): ditto. * vm_method.c (rb_f_notimplement): ditto. * struct.c (rb_struct_aset_id): ditto. * class.c (rb_scan_args): ditto. * process.c (rlimit_resource_type): ditto. * process.c (rlimit_resource_value): ditto. * process.c (p_uid_switch): ditto. * process.c (p_gid_switch): ditto. * ext/digest/digest.c (rb_digest_instance_update): ditto. * ext/digest/digest.c (rb_digest_instance_finish): ditto. * ext/digest/digest.c (rb_digest_instance_reset): ditto. * ext/digest/digest.c (rb_digest_instance_block_length): ditto. * ext/bigdecimal/bigdecimal.c (BigDecimalCmp): ditto. * ext/dl/handle.c (rb_dlhandle_close): ditto. * ext/tk/tcltklib.c (pending_exception_check0): ditto. * ext/tk/tcltklib.c (pending_exception_check1): ditto. * ext/tk/tcltklib.c (ip_cancel_eval_core): ditto. * ext/tk/tcltklib.c (lib_get_reltype_name): ditto. * ext/tk/tcltklib.c (create_dummy_encoding_for_tk_core): ditto. * ext/tk/tkutil/tkutil.c (tk_hash_kv): ditto. * ext/openssl/ossl_ssl.c (ossl_ssl_session_reused): ditto. * ext/openssl/ossl_pkey_ec.c (ossl_ec_key_dsa_verify_asn1): ditto. * ext/openssl/ossl_pkey_ec.c (ossl_ec_point_is_at_infinit): ditto. * ext/openssl/ossl_pkey_ec.c (ossl_ec_point_is_on_curve): ditto. * ext/fiddle/conversions.c (generic_to_value): ditto. * ext/socket/raddrinfo.c (rsock_io_socket_addrinfo): ditto. * ext/socket/socket.c (sock_s_getnameinfo): ditto. * ext/ripper/eventids2.c (ripper_token2eventid): ditto. * cont.c (return_fiber): ditto. * dmydln.c (dln_load): ditto. * vm_insnhelper.c (vm_search_normal_superclass): ditto. * bignum.c (big_fdiv): ditto. * marshal.c (r_symlink): ditto. * marshal.c (r_symbol): ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@35321 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-04-14 03:45:37 +04:00
UNREACHABLE_RETURN(Qnil);
}
VALUE
rb_f_notimplement(int argc, const VALUE *argv, VALUE obj, VALUE marker)
{
rb_f_notimplement_internal(argc, argv, obj);
}
static void
rb_define_notimplement_method_id(VALUE mod, ID id, rb_method_visibility_t visi)
{
rb_add_method(mod, id, VM_METHOD_TYPE_NOTIMPLEMENTED, (void *)1, visi);
}
void
rb_add_method_cfunc(VALUE klass, ID mid, VALUE (*func)(ANYARGS), int argc, rb_method_visibility_t visi)
{
if (argc < -2 || 15 < argc) rb_raise(rb_eArgError, "arity out of range: %d for -2..15", argc);
if (func != (VALUE(*)(ANYARGS))rb_f_notimplement) {
rb_method_cfunc_t opt;
opt.func = func;
opt.argc = argc;
rb_add_method(klass, mid, VM_METHOD_TYPE_CFUNC, &opt, visi);
}
else {
rb_define_notimplement_method_id(klass, mid, visi);
}
}
void
rb_add_method_optimized(VALUE klass, ID mid, enum method_optimized_type opt_type, unsigned int index, rb_method_visibility_t visi)
{
rb_method_optimized_t opt = {
.type = opt_type,
.index = index,
};
rb_add_method(klass, mid, VM_METHOD_TYPE_OPTIMIZED, &opt, visi);
}
static void
rb_method_definition_release(rb_method_definition_t *def)
{
if (def != NULL) {
const int reference_count = def->reference_count;
def->reference_count--;
VM_ASSERT(reference_count >= 0);
if (def->reference_count == 0) {
if (METHOD_DEBUG) fprintf(stderr, "-%p-%s:%d (remove)\n", (void *)def,
rb_id2name(def->original_id), def->reference_count);
if (def->type == VM_METHOD_TYPE_BMETHOD && def->body.bmethod.hooks) {
xfree(def->body.bmethod.hooks);
}
xfree(def);
}
else {
if (METHOD_DEBUG) fprintf(stderr, "-%p-%s:%d->%d (dec)\n", (void *)def, rb_id2name(def->original_id),
reference_count, def->reference_count);
}
}
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
}
static void delete_overloaded_cme(const rb_callable_method_entry_t *cme);
void
rb_free_method_entry(const rb_method_entry_t *me)
{
if (me->def && me->def->iseq_overload) {
delete_overloaded_cme((const rb_callable_method_entry_t *)me);
}
rb_method_definition_release(me->def);
}
static inline rb_method_entry_t *search_method(VALUE klass, ID id, VALUE *defined_class_ptr);
mjit_compile.c: merge initial JIT compiler which has been developed by Takashi Kokubun <takashikkbn@gmail> as YARV-MJIT. Many of its bugs are fixed by wanabe <s.wanabe@gmail.com>. This JIT compiler is designed to be a safe migration path to introduce JIT compiler to MRI. So this commit does not include any bytecode changes or dynamic instruction modifications, which are done in original MJIT. This commit even strips off some aggressive optimizations from YARV-MJIT, and thus it's slower than YARV-MJIT too. But it's still fairly faster than Ruby 2.5 in some benchmarks (attached below). Note that this JIT compiler passes `make test`, `make test-all`, `make test-spec` without JIT, and even with JIT. Not only it's perfectly safe with JIT disabled because it does not replace VM instructions unlike MJIT, but also with JIT enabled it stably runs Ruby applications including Rails applications. I'm expecting this version as just "initial" JIT compiler. I have many optimization ideas which are skipped for initial merging, and you may easily replace this JIT compiler with a faster one by just replacing mjit_compile.c. `mjit_compile` interface is designed for the purpose. common.mk: update dependencies for mjit_compile.c. internal.h: declare `rb_vm_insn_addr2insn` for MJIT. vm.c: exclude some definitions if `-DMJIT_HEADER` is provided to compiler. This avoids to include some functions which take a long time to compile, e.g. vm_exec_core. Some of the purpose is achieved in transform_mjit_header.rb (see `IGNORED_FUNCTIONS`) but others are manually resolved for now. Load mjit_helper.h for MJIT header. mjit_helper.h: New. This is a file used only by JIT-ed code. I'll refactor `mjit_call_cfunc` later. vm_eval.c: add some #ifdef switches to skip compiling some functions like Init_vm_eval. win32/mkexports.rb: export thread/ec functions, which are used by MJIT. include/ruby/defines.h: add MJIT_FUNC_EXPORTED macro alis to clarify that a function is exported only for MJIT. array.c: export a function used by MJIT. bignum.c: ditto. class.c: ditto. compile.c: ditto. error.c: ditto. gc.c: ditto. hash.c: ditto. iseq.c: ditto. numeric.c: ditto. object.c: ditto. proc.c: ditto. re.c: ditto. st.c: ditto. string.c: ditto. thread.c: ditto. variable.c: ditto. vm_backtrace.c: ditto. vm_insnhelper.c: ditto. vm_method.c: ditto. I would like to improve maintainability of function exports, but I believe this way is acceptable as initial merging if we clarify the new exports are for MJIT (so that we can use them as TODO list to fix) and add unit tests to detect unresolved symbols. I'll add unit tests of JIT compilations in succeeding commits. Author: Takashi Kokubun <takashikkbn@gmail.com> Contributor: wanabe <s.wanabe@gmail.com> Part of [Feature #14235] --- * Known issues * Code generated by gcc is faster than clang. The benchmark may be worse in macOS. Following benchmark result is provided by gcc w/ Linux. * Performance is decreased when Google Chrome is running * JIT can work on MinGW, but it doesn't improve performance at least in short running benchmark. * Currently it doesn't perform well with Rails. We'll try to fix this before release. --- * Benchmark reslts Benchmarked with: Intel 4.0GHz i7-4790K with 16GB memory under x86-64 Ubuntu 8 Cores - 2.0.0-p0: Ruby 2.0.0-p0 - r62186: Ruby trunk (early 2.6.0), before MJIT changes - JIT off: On this commit, but without `--jit` option - JIT on: On this commit, and with `--jit` option ** Optcarrot fps Benchmark: https://github.com/mame/optcarrot | |2.0.0-p0 |r62186 |JIT off |JIT on | |:--------|:--------|:--------|:--------|:--------| |fps |37.32 |51.46 |51.31 |58.88 | |vs 2.0.0 |1.00x |1.38x |1.37x |1.58x | ** MJIT benchmarks Benchmark: https://github.com/benchmark-driver/mjit-benchmarks (Original: https://github.com/vnmakarov/ruby/tree/rtl_mjit_branch/MJIT-benchmarks) | |2.0.0-p0 |r62186 |JIT off |JIT on | |:----------|:--------|:--------|:--------|:--------| |aread |1.00 |1.09 |1.07 |2.19 | |aref |1.00 |1.13 |1.11 |2.22 | |aset |1.00 |1.50 |1.45 |2.64 | |awrite |1.00 |1.17 |1.13 |2.20 | |call |1.00 |1.29 |1.26 |2.02 | |const2 |1.00 |1.10 |1.10 |2.19 | |const |1.00 |1.11 |1.10 |2.19 | |fannk |1.00 |1.04 |1.02 |1.00 | |fib |1.00 |1.32 |1.31 |1.84 | |ivread |1.00 |1.13 |1.12 |2.43 | |ivwrite |1.00 |1.23 |1.21 |2.40 | |mandelbrot |1.00 |1.13 |1.16 |1.28 | |meteor |1.00 |2.97 |2.92 |3.17 | |nbody |1.00 |1.17 |1.15 |1.49 | |nest-ntimes|1.00 |1.22 |1.20 |1.39 | |nest-while |1.00 |1.10 |1.10 |1.37 | |norm |1.00 |1.18 |1.16 |1.24 | |nsvb |1.00 |1.16 |1.16 |1.17 | |red-black |1.00 |1.02 |0.99 |1.12 | |sieve |1.00 |1.30 |1.28 |1.62 | |trees |1.00 |1.14 |1.13 |1.19 | |while |1.00 |1.12 |1.11 |2.41 | ** Discourse's script/bench.rb Benchmark: https://github.com/discourse/discourse/blob/v1.8.7/script/bench.rb NOTE: Rails performance was somehow a little degraded with JIT for now. We should fix this. (At least I know opt_aref is performing badly in JIT and I have an idea to fix it. Please wait for the fix.) *** JIT off Your Results: (note for timings- percentile is first, duration is second in millisecs) categories_admin: 50: 17 75: 18 90: 22 99: 29 home_admin: 50: 21 75: 21 90: 27 99: 40 topic_admin: 50: 17 75: 18 90: 22 99: 32 categories: 50: 35 75: 41 90: 43 99: 77 home: 50: 39 75: 46 90: 49 99: 95 topic: 50: 46 75: 52 90: 56 99: 101 *** JIT on Your Results: (note for timings- percentile is first, duration is second in millisecs) categories_admin: 50: 19 75: 21 90: 25 99: 33 home_admin: 50: 24 75: 26 90: 30 99: 35 topic_admin: 50: 19 75: 20 90: 25 99: 30 categories: 50: 40 75: 44 90: 48 99: 76 home: 50: 42 75: 48 90: 51 99: 89 topic: 50: 49 75: 55 90: 58 99: 99 git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@62197 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-02-04 14:22:28 +03:00
extern int rb_method_definition_eq(const rb_method_definition_t *d1, const rb_method_definition_t *d2);
static VALUE
(*call_cfunc_invoker_func(int argc))(VALUE recv, int argc, const VALUE *, VALUE (*func)(ANYARGS))
{
if (!GET_THREAD()->ext_config.ractor_safe) {
switch (argc) {
case -2: return &call_cfunc_m2;
case -1: return &call_cfunc_m1;
case 0: return &call_cfunc_0;
case 1: return &call_cfunc_1;
case 2: return &call_cfunc_2;
case 3: return &call_cfunc_3;
case 4: return &call_cfunc_4;
case 5: return &call_cfunc_5;
case 6: return &call_cfunc_6;
case 7: return &call_cfunc_7;
case 8: return &call_cfunc_8;
case 9: return &call_cfunc_9;
case 10: return &call_cfunc_10;
case 11: return &call_cfunc_11;
case 12: return &call_cfunc_12;
case 13: return &call_cfunc_13;
case 14: return &call_cfunc_14;
case 15: return &call_cfunc_15;
default:
rb_bug("unsupported length: %d", argc);
}
}
else {
switch (argc) {
case -2: return &ractor_safe_call_cfunc_m2;
case -1: return &ractor_safe_call_cfunc_m1;
case 0: return &ractor_safe_call_cfunc_0;
case 1: return &ractor_safe_call_cfunc_1;
case 2: return &ractor_safe_call_cfunc_2;
case 3: return &ractor_safe_call_cfunc_3;
case 4: return &ractor_safe_call_cfunc_4;
case 5: return &ractor_safe_call_cfunc_5;
case 6: return &ractor_safe_call_cfunc_6;
case 7: return &ractor_safe_call_cfunc_7;
case 8: return &ractor_safe_call_cfunc_8;
case 9: return &ractor_safe_call_cfunc_9;
case 10: return &ractor_safe_call_cfunc_10;
case 11: return &ractor_safe_call_cfunc_11;
case 12: return &ractor_safe_call_cfunc_12;
case 13: return &ractor_safe_call_cfunc_13;
case 14: return &ractor_safe_call_cfunc_14;
case 15: return &ractor_safe_call_cfunc_15;
default:
rb_bug("unsupported length: %d", argc);
}
}
}
static void
setup_method_cfunc_struct(rb_method_cfunc_t *cfunc, VALUE (*func)(ANYARGS), int argc)
{
cfunc->func = func;
cfunc->argc = argc;
cfunc->invoker = call_cfunc_invoker_func(argc);
}
static rb_method_definition_t *
method_definition_addref(rb_method_definition_t *def, bool complemented)
{
if (!complemented && def->reference_count > 0) def->aliased = true;
def->reference_count++;
if (METHOD_DEBUG) fprintf(stderr, "+%p-%s:%d\n", (void *)def, rb_id2name(def->original_id), def->reference_count);
return def;
}
2023-03-07 08:34:31 +03:00
void
rb_method_definition_set(const rb_method_entry_t *me, rb_method_definition_t *def, void *opts)
{
rb_method_definition_release(me->def);
*(rb_method_definition_t **)&me->def = method_definition_addref(def, METHOD_ENTRY_COMPLEMENTED(me));
if (!ruby_running) add_opt_method_entry(me);
if (opts != NULL) {
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
{
rb_method_iseq_t *iseq_body = (rb_method_iseq_t *)opts;
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
const rb_iseq_t *iseq = iseq_body->iseqptr;
rb_cref_t *method_cref, *cref = iseq_body->cref;
/* setup iseq first (before invoking GC) */
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
RB_OBJ_WRITE(me, &def->body.iseq.iseqptr, iseq);
if (ISEQ_BODY(iseq)->mandatory_only_iseq) def->iseq_overload = 1;
if (0) vm_cref_dump("rb_method_definition_create", cref);
2022-07-21 19:23:58 +03:00
if (cref) {
method_cref = cref;
}
else {
method_cref = vm_cref_new_toplevel(GET_EC()); /* TODO: can we reuse? */
}
2022-07-21 19:23:58 +03:00
RB_OBJ_WRITE(me, &def->body.iseq.cref, method_cref);
return;
}
case VM_METHOD_TYPE_CFUNC:
{
rb_method_cfunc_t *cfunc = (rb_method_cfunc_t *)opts;
setup_method_cfunc_struct(UNALIGNED_MEMBER_PTR(def, body.cfunc), cfunc->func, cfunc->argc);
return;
}
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
{
const rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp;
int line;
2022-07-21 19:23:58 +03:00
def->body.attr.id = (ID)(VALUE)opts;
2022-07-21 19:23:58 +03:00
cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
2022-07-21 19:23:58 +03:00
if (cfp && (line = rb_vm_get_sourceline(cfp))) {
VALUE location = rb_ary_new3(2, rb_iseq_path(cfp->iseq), INT2FIX(line));
RB_OBJ_WRITE(me, &def->body.attr.location, rb_ary_freeze(location));
}
else {
VM_ASSERT(def->body.attr.location == 0);
}
return;
}
case VM_METHOD_TYPE_BMETHOD:
RB_OBJ_WRITE(me, &def->body.bmethod.proc, (VALUE)opts);
RB_OBJ_WRITE(me, &def->body.bmethod.defined_ractor, rb_ractor_self(GET_RACTOR()));
return;
case VM_METHOD_TYPE_NOTIMPLEMENTED:
setup_method_cfunc_struct(UNALIGNED_MEMBER_PTR(def, body.cfunc), (VALUE(*)(ANYARGS))rb_f_notimplement_internal, -1);
return;
case VM_METHOD_TYPE_OPTIMIZED:
def->body.optimized = *(rb_method_optimized_t *)opts;
return;
case VM_METHOD_TYPE_REFINED:
{
RB_OBJ_WRITE(me, &def->body.refined.orig_me, (rb_method_entry_t *)opts);
return;
}
case VM_METHOD_TYPE_ALIAS:
RB_OBJ_WRITE(me, &def->body.alias.original_me, (rb_method_entry_t *)opts);
return;
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_MISSING:
return;
}
}
}
static void
method_definition_reset(const rb_method_entry_t *me)
{
rb_method_definition_t *def = me->def;
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
2015-07-22 01:52:59 +03:00
RB_OBJ_WRITTEN(me, Qundef, def->body.iseq.iseqptr);
RB_OBJ_WRITTEN(me, Qundef, def->body.iseq.cref);
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
break;
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
RB_OBJ_WRITTEN(me, Qundef, def->body.attr.location);
break;
case VM_METHOD_TYPE_BMETHOD:
RB_OBJ_WRITTEN(me, Qundef, def->body.bmethod.proc);
RB_OBJ_WRITTEN(me, Qundef, def->body.bmethod.defined_ractor);
Support targetting TracePoint [Feature #15289] * vm_trace.c (rb_tracepoint_enable_for_target): support targetting TracePoint. [Feature #15289] Tragetting TracePoint is only enabled on specified method, proc and so on, example: `tp.enable(target: code)`. `code` should be consisted of InstructionSeuqnece (iseq) (RubyVM::InstructionSeuqnece.of(code) should not return nil) If code is a tree of iseq, TracePoint is enabled on all of iseqs in a tree. Enabled tragetting TracePoints can not enabled again with and without target. * vm_core.h (rb_iseq_t): introduce `rb_iseq_t::local_hooks` to store local hooks. `rb_iseq_t::aux::trace_events` is renamed to `global_trace_events` to contrast with `local_hooks`. * vm_core.h (rb_hook_list_t): add `rb_hook_list_t::running` to represent how many Threads/Fibers are used this list. If this field is 0, nobody using this hooks and we can delete it. This is why we can remove code from cont.c. * vm_core.h (rb_vm_t): because of above change, we can eliminate `rb_vm_t::trace_running` field. Also renamed from `rb_vm_t::event_hooks` to `global_hooks`. * vm_core.h, vm.c (ruby_vm_event_enabled_global_flags): renamed from `ruby_vm_event_enabled_flags. * vm_core.h, vm.c (ruby_vm_event_local_num): added to count enabled targetting TracePoints. * vm_core.h, vm_trace.c (rb_exec_event_hooks): accepts hook list. * vm_core.h (rb_vm_global_hooks): added for convinience. * method.h (rb_method_bmethod_t): added to maintain Proc and `rb_hook_list_t` for bmethod (defined by define_method). * prelude.rb (TracePoint#enable): extracet a keyword parameter (because it is easy than writing in C). It calls `TracePoint#__enable` internal method written in C. * vm_insnhelper.c (vm_trace): check also iseq->local_hooks. * vm.c (invoke_bmethod): check def->body.bmethod.hooks. * vm.c (hook_before_rewind): check iseq->local_hooks and def->body.bmethod.hooks before rewind by exception. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66003 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-11-26 21:16:39 +03:00
/* give up to check all in a list */
if (def->body.bmethod.hooks) rb_gc_writebarrier_remember((VALUE)me);
break;
case VM_METHOD_TYPE_REFINED:
RB_OBJ_WRITTEN(me, Qundef, def->body.refined.orig_me);
break;
case VM_METHOD_TYPE_ALIAS:
RB_OBJ_WRITTEN(me, Qundef, def->body.alias.original_me);
break;
case VM_METHOD_TYPE_CFUNC:
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_MISSING:
case VM_METHOD_TYPE_OPTIMIZED:
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
break;
}
}
2023-03-07 08:34:31 +03:00
rb_method_definition_t *
rb_method_definition_create(rb_method_type_t type, ID mid)
{
rb_method_definition_t *def;
def = ZALLOC(rb_method_definition_t);
def->type = type;
def->original_id = mid;
static uintptr_t method_serial = 1;
def->method_serial = method_serial++;
return def;
}
static rb_method_entry_t *
rb_method_entry_alloc(ID called_id, VALUE owner, VALUE defined_class, rb_method_definition_t *def, bool complement)
{
if (def) method_definition_addref(def, complement);
rb_method_entry_t *me = (rb_method_entry_t *)rb_imemo_new(imemo_ment, (VALUE)def, (VALUE)called_id, owner, defined_class);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
return me;
}
static VALUE
filter_defined_class(VALUE klass)
{
switch (BUILTIN_TYPE(klass)) {
case T_CLASS:
return klass;
case T_MODULE:
return 0;
case T_ICLASS:
break;
2020-04-08 09:13:37 +03:00
default:
break;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
}
rb_bug("filter_defined_class: %s", rb_obj_info(klass));
}
rb_method_entry_t *
rb_method_entry_create(ID called_id, VALUE klass, rb_method_visibility_t visi, rb_method_definition_t *def)
{
rb_method_entry_t *me = rb_method_entry_alloc(called_id, klass, filter_defined_class(klass), def, false);
METHOD_ENTRY_FLAGS_SET(me, visi, ruby_running ? FALSE : TRUE);
if (def != NULL) method_definition_reset(me);
return me;
}
// Return a cloned ME that's not invalidated (MEs are disposable for caching).
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
const rb_method_entry_t *
rb_method_entry_clone(const rb_method_entry_t *src_me)
{
rb_method_entry_t *me = rb_method_entry_alloc(src_me->called_id, src_me->owner, src_me->defined_class, src_me->def, METHOD_ENTRY_COMPLEMENTED(src_me));
METHOD_ENTRY_FLAGS_COPY(me, src_me);
// Also clone inner ME in case of refinement ME
if (src_me->def &&
src_me->def->type == VM_METHOD_TYPE_REFINED &&
src_me->def->body.refined.orig_me) {
const rb_method_entry_t *orig_me = src_me->def->body.refined.orig_me;
VM_ASSERT(orig_me->def->type != VM_METHOD_TYPE_REFINED);
rb_method_entry_t *orig_clone = rb_method_entry_alloc(orig_me->called_id,
orig_me->owner, orig_me->defined_class, orig_me->def, METHOD_ENTRY_COMPLEMENTED(orig_me));
METHOD_ENTRY_FLAGS_COPY(orig_clone, orig_me);
// Clone definition, since writing a VALUE to a shared definition
// can create reference edges we can't run WBs for.
rb_method_definition_t *clone_def =
rb_method_definition_create(VM_METHOD_TYPE_REFINED, src_me->called_id);
rb_method_definition_set(me, clone_def, orig_clone);
}
return me;
}
2023-03-07 08:34:31 +03:00
const rb_callable_method_entry_t *
rb_method_entry_complement_defined_class(const rb_method_entry_t *src_me, ID called_id, VALUE defined_class)
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
{
rb_method_definition_t *def = src_me->def;
rb_method_entry_t *me;
const rb_method_entry_t *refined_orig_me = NULL;
if (!src_me->defined_class &&
def->type == VM_METHOD_TYPE_REFINED &&
def->body.refined.orig_me) {
const rb_method_entry_t *orig_me =
rb_method_entry_clone(def->body.refined.orig_me);
RB_OBJ_WRITE((VALUE)orig_me, &orig_me->defined_class, defined_class);
refined_orig_me = orig_me;
def = NULL;
}
me = rb_method_entry_alloc(called_id, src_me->owner, defined_class, def, true);
METHOD_ENTRY_FLAGS_COPY(me, src_me);
METHOD_ENTRY_COMPLEMENTED_SET(me);
if (!def) {
def = rb_method_definition_create(VM_METHOD_TYPE_REFINED, called_id);
rb_method_definition_set(me, def, (void *)refined_orig_me);
}
VM_ASSERT(RB_TYPE_P(me->owner, T_MODULE));
return (rb_callable_method_entry_t *)me;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
}
void
rb_method_entry_copy(rb_method_entry_t *dst, const rb_method_entry_t *src)
{
rb_method_definition_release(dst->def);
*(rb_method_definition_t **)&dst->def = method_definition_addref(src->def, METHOD_ENTRY_COMPLEMENTED(src));
method_definition_reset(dst);
dst->called_id = src->called_id;
RB_OBJ_WRITE((VALUE)dst, &dst->owner, src->owner);
RB_OBJ_WRITE((VALUE)dst, &dst->defined_class, src->defined_class);
METHOD_ENTRY_FLAGS_COPY(dst, src);
}
static void
make_method_entry_refined(VALUE owner, rb_method_entry_t *me)
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
{
if (me->def->type == VM_METHOD_TYPE_REFINED) {
return;
}
else {
rb_method_definition_t *def;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
rb_vm_check_redefinition_opt_method(me, me->owner);
struct rb_method_entry_struct *orig_me =
rb_method_entry_alloc(me->called_id, me->owner,
me->defined_class ? me->defined_class : owner,
me->def,
true);
METHOD_ENTRY_FLAGS_COPY(orig_me, me);
def = rb_method_definition_create(VM_METHOD_TYPE_REFINED, me->called_id);
rb_method_definition_set(me, def, orig_me);
METHOD_ENTRY_VISI_SET(me, METHOD_VISI_PUBLIC);
}
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
}
static inline rb_method_entry_t *
lookup_method_table(VALUE klass, ID id)
{
st_data_t body;
struct rb_id_table *m_tbl = RCLASS_M_TBL(klass);
if (rb_id_table_lookup(m_tbl, id, &body)) {
return (rb_method_entry_t *) body;
}
else {
return 0;
}
}
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
void
rb_add_refined_method_entry(VALUE refined_class, ID mid)
{
rb_method_entry_t *me = lookup_method_table(refined_class, mid);
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
if (me) {
make_method_entry_refined(refined_class, me);
rb_clear_method_cache(refined_class, mid);
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
}
else {
rb_add_method(refined_class, mid, VM_METHOD_TYPE_REFINED, 0, METHOD_VISI_PUBLIC);
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
}
}
static void
check_override_opt_method_i(VALUE klass, VALUE arg)
{
ID mid = (ID)arg;
const rb_method_entry_t *me, *newme;
if (vm_redefinition_check_flag(klass)) {
me = lookup_method_table(RCLASS_ORIGIN(klass), mid);
if (me) {
newme = rb_method_entry(klass, mid);
if (newme != me) rb_vm_check_redefinition_opt_method(me, me->owner);
}
}
rb_class_foreach_subclass(klass, check_override_opt_method_i, (VALUE)mid);
}
static void
check_override_opt_method(VALUE klass, VALUE mid)
{
if (rb_vm_check_optimizable_mid(mid)) {
check_override_opt_method_i(klass, mid);
}
}
/*
* klass->method_table[mid] = method_entry(defined_class, visi, def)
*
* If def is given (!= NULL), then just use it and ignore original_id and otps.
* If not given, then make a new def with original_id and opts.
*/
static rb_method_entry_t *
rb_method_entry_make(VALUE klass, ID mid, VALUE defined_class, rb_method_visibility_t visi,
rb_method_type_t type, rb_method_definition_t *def, ID original_id, void *opts)
{
rb_method_entry_t *me;
struct rb_id_table *mtbl;
st_data_t data;
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
int make_refined = 0;
Ensure origins for all included, prepended, and refined modules This fixes various issues when a module is included in or prepended to a module or class, and then refined, or refined and then included or prepended to a module or class. Implement by renaming ensure_origin to rb_ensure_origin, making it non-static, and calling it when refining a module. Fix Module#initialize_copy to handle origins correctly. Previously, Module#initialize_copy did not handle origins correctly. For example, this code: ```ruby module B; end class A def b; 2 end prepend B end a = A.dup.new class A def b; 1 end end p a.b ``` Printed 1 instead of 2. This is because the super chain for a.singleton_class was: ``` a.singleton_class A.dup B(iclass) B(iclass origin) A(origin) # not A.dup(origin) ``` The B iclasses would not be modified, so the includer entry would be still be set to A and not A.dup. This modifies things so that if the class/module has an origin, all iclasses between the class/module and the origin are duplicated and have the correct includer entry set, and the correct origin is created. This requires other changes to make sure all tests still pass: * rb_undef_methods_from doesn't automatically handle classes with origins, so pass it the origin for Comparable when undefing methods in Complex. This fixed a failure in the Complex tests. * When adding a method, the method cache was not cleared correctly if klass has an origin. Clear the method cache for the klass before switching to the origin of klass. This fixed failures in the autoload tests related to overridding require, without breaking the optimization tests. Also clear the method cache for both the module and origin when removing a method. * Module#include? is fixed to skip origin iclasses. * Refinements are fixed to use the origin class of the module that has an origin. * RCLASS_REFINED_BY_ANY is removed as it was only used in a single place and is no longer needed. * Marshal#dump is fixed to skip iclass origins. * rb_method_entry_make is fixed to handled overridden optimized methods for modules that have origins. Fixes [Bug #16852]
2020-05-24 06:16:27 +03:00
VALUE orig_klass;
if (NIL_P(klass)) {
klass = rb_cObject;
}
Ensure origins for all included, prepended, and refined modules This fixes various issues when a module is included in or prepended to a module or class, and then refined, or refined and then included or prepended to a module or class. Implement by renaming ensure_origin to rb_ensure_origin, making it non-static, and calling it when refining a module. Fix Module#initialize_copy to handle origins correctly. Previously, Module#initialize_copy did not handle origins correctly. For example, this code: ```ruby module B; end class A def b; 2 end prepend B end a = A.dup.new class A def b; 1 end end p a.b ``` Printed 1 instead of 2. This is because the super chain for a.singleton_class was: ``` a.singleton_class A.dup B(iclass) B(iclass origin) A(origin) # not A.dup(origin) ``` The B iclasses would not be modified, so the includer entry would be still be set to A and not A.dup. This modifies things so that if the class/module has an origin, all iclasses between the class/module and the origin are duplicated and have the correct includer entry set, and the correct origin is created. This requires other changes to make sure all tests still pass: * rb_undef_methods_from doesn't automatically handle classes with origins, so pass it the origin for Comparable when undefing methods in Complex. This fixed a failure in the Complex tests. * When adding a method, the method cache was not cleared correctly if klass has an origin. Clear the method cache for the klass before switching to the origin of klass. This fixed failures in the autoload tests related to overridding require, without breaking the optimization tests. Also clear the method cache for both the module and origin when removing a method. * Module#include? is fixed to skip origin iclasses. * Refinements are fixed to use the origin class of the module that has an origin. * RCLASS_REFINED_BY_ANY is removed as it was only used in a single place and is no longer needed. * Marshal#dump is fixed to skip iclass origins. * rb_method_entry_make is fixed to handled overridden optimized methods for modules that have origins. Fixes [Bug #16852]
2020-05-24 06:16:27 +03:00
orig_klass = klass;
if (!FL_TEST(klass, FL_SINGLETON) &&
type != VM_METHOD_TYPE_NOTIMPLEMENTED &&
type != VM_METHOD_TYPE_ZSUPER) {
switch (mid) {
case idInitialize:
case idInitialize_copy:
case idInitialize_clone:
case idInitialize_dup:
case idRespond_to_missing:
visi = METHOD_VISI_PRIVATE;
}
}
if (type != VM_METHOD_TYPE_REFINED) {
rb_class_modify_check(klass);
}
if (RB_TYPE_P(klass, T_MODULE) && FL_TEST(klass, RMODULE_IS_REFINEMENT)) {
VALUE refined_class = rb_refinement_module_get_refined_class(klass);
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
rb_add_refined_method_entry(refined_class, mid);
}
if (type == VM_METHOD_TYPE_REFINED) {
rb_method_entry_t *old_me = lookup_method_table(RCLASS_ORIGIN(klass), mid);
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
if (old_me) rb_vm_check_redefinition_opt_method(old_me, klass);
}
else {
klass = RCLASS_ORIGIN(klass);
Ensure origins for all included, prepended, and refined modules This fixes various issues when a module is included in or prepended to a module or class, and then refined, or refined and then included or prepended to a module or class. Implement by renaming ensure_origin to rb_ensure_origin, making it non-static, and calling it when refining a module. Fix Module#initialize_copy to handle origins correctly. Previously, Module#initialize_copy did not handle origins correctly. For example, this code: ```ruby module B; end class A def b; 2 end prepend B end a = A.dup.new class A def b; 1 end end p a.b ``` Printed 1 instead of 2. This is because the super chain for a.singleton_class was: ``` a.singleton_class A.dup B(iclass) B(iclass origin) A(origin) # not A.dup(origin) ``` The B iclasses would not be modified, so the includer entry would be still be set to A and not A.dup. This modifies things so that if the class/module has an origin, all iclasses between the class/module and the origin are duplicated and have the correct includer entry set, and the correct origin is created. This requires other changes to make sure all tests still pass: * rb_undef_methods_from doesn't automatically handle classes with origins, so pass it the origin for Comparable when undefing methods in Complex. This fixed a failure in the Complex tests. * When adding a method, the method cache was not cleared correctly if klass has an origin. Clear the method cache for the klass before switching to the origin of klass. This fixed failures in the autoload tests related to overridding require, without breaking the optimization tests. Also clear the method cache for both the module and origin when removing a method. * Module#include? is fixed to skip origin iclasses. * Refinements are fixed to use the origin class of the module that has an origin. * RCLASS_REFINED_BY_ANY is removed as it was only used in a single place and is no longer needed. * Marshal#dump is fixed to skip iclass origins. * rb_method_entry_make is fixed to handled overridden optimized methods for modules that have origins. Fixes [Bug #16852]
2020-05-24 06:16:27 +03:00
if (klass != orig_klass) {
rb_clear_method_cache(orig_klass, mid);
}
}
mtbl = RCLASS_M_TBL(klass);
/* check re-definition */
if (rb_id_table_lookup(mtbl, mid, &data)) {
rb_method_entry_t *old_me = (rb_method_entry_t *)data;
rb_method_definition_t *old_def = old_me->def;
2022-07-21 19:23:58 +03:00
if (rb_method_definition_eq(old_def, def)) return old_me;
rb_vm_check_redefinition_opt_method(old_me, klass);
2022-07-21 19:23:58 +03:00
if (old_def->type == VM_METHOD_TYPE_REFINED) make_refined = 1;
2022-07-21 19:23:58 +03:00
if (RTEST(ruby_verbose) &&
type != VM_METHOD_TYPE_UNDEF &&
(old_def->aliased == false) &&
(!old_def->no_redef_warning) &&
!make_refined &&
old_def->type != VM_METHOD_TYPE_UNDEF &&
old_def->type != VM_METHOD_TYPE_ZSUPER &&
old_def->type != VM_METHOD_TYPE_ALIAS) {
const rb_iseq_t *iseq = 0;
2022-07-21 19:23:58 +03:00
rb_warning("method redefined; discarding old %"PRIsVALUE, rb_id2str(mid));
switch (old_def->type) {
case VM_METHOD_TYPE_ISEQ:
iseq = def_iseq_ptr(old_def);
break;
case VM_METHOD_TYPE_BMETHOD:
iseq = rb_proc_get_iseq(old_def->body.bmethod.proc, 0);
break;
default:
break;
}
if (iseq) {
rb_compile_warning(RSTRING_PTR(rb_iseq_path(iseq)),
ISEQ_BODY(iseq)->location.first_lineno,
"previous definition of %"PRIsVALUE" was here",
rb_id2str(old_def->original_id));
}
}
}
/* create method entry */
me = rb_method_entry_create(mid, defined_class, visi, NULL);
if (def == NULL) {
def = rb_method_definition_create(type, original_id);
}
rb_method_definition_set(me, def, opts);
rb_clear_method_cache(klass, mid);
/* check mid */
if (klass == rb_cObject) {
switch (mid) {
case idInitialize:
case idRespond_to_missing:
case idMethodMissing:
case idRespond_to:
rb_warn("redefining Object#%s may cause infinite loop", rb_id2name(mid));
}
}
/* check mid */
if (mid == object_id || mid == id__send__) {
if (type == VM_METHOD_TYPE_ISEQ && search_method(klass, mid, 0)) {
rb_warn("redefining '%s' may cause serious problems", rb_id2name(mid));
}
}
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
if (make_refined) {
make_method_entry_refined(klass, me);
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
}
rb_method_table_insert(klass, mtbl, mid, me);
VM_ASSERT(me->def != NULL);
/* check optimized method override by a prepended module */
Ensure origins for all included, prepended, and refined modules This fixes various issues when a module is included in or prepended to a module or class, and then refined, or refined and then included or prepended to a module or class. Implement by renaming ensure_origin to rb_ensure_origin, making it non-static, and calling it when refining a module. Fix Module#initialize_copy to handle origins correctly. Previously, Module#initialize_copy did not handle origins correctly. For example, this code: ```ruby module B; end class A def b; 2 end prepend B end a = A.dup.new class A def b; 1 end end p a.b ``` Printed 1 instead of 2. This is because the super chain for a.singleton_class was: ``` a.singleton_class A.dup B(iclass) B(iclass origin) A(origin) # not A.dup(origin) ``` The B iclasses would not be modified, so the includer entry would be still be set to A and not A.dup. This modifies things so that if the class/module has an origin, all iclasses between the class/module and the origin are duplicated and have the correct includer entry set, and the correct origin is created. This requires other changes to make sure all tests still pass: * rb_undef_methods_from doesn't automatically handle classes with origins, so pass it the origin for Comparable when undefing methods in Complex. This fixed a failure in the Complex tests. * When adding a method, the method cache was not cleared correctly if klass has an origin. Clear the method cache for the klass before switching to the origin of klass. This fixed failures in the autoload tests related to overridding require, without breaking the optimization tests. Also clear the method cache for both the module and origin when removing a method. * Module#include? is fixed to skip origin iclasses. * Refinements are fixed to use the origin class of the module that has an origin. * RCLASS_REFINED_BY_ANY is removed as it was only used in a single place and is no longer needed. * Marshal#dump is fixed to skip iclass origins. * rb_method_entry_make is fixed to handled overridden optimized methods for modules that have origins. Fixes [Bug #16852]
2020-05-24 06:16:27 +03:00
if (RB_TYPE_P(orig_klass, T_MODULE)) {
check_override_opt_method(klass, (VALUE)mid);
}
return me;
}
static rb_method_entry_t *rb_method_entry_alloc(ID called_id, VALUE owner, VALUE defined_class, rb_method_definition_t *def, bool refined);
static st_table *
overloaded_cme_table(void)
{
VM_ASSERT(GET_VM()->overloaded_cme_table != NULL);
return GET_VM()->overloaded_cme_table;
}
#if VM_CHECK_MODE > 0
static int
vm_dump_overloaded_cme_table(st_data_t key, st_data_t val, st_data_t dmy)
{
fprintf(stderr, "key: "); rp(key);
fprintf(stderr, "val: "); rp(val);
return ST_CONTINUE;
}
void
rb_vm_dump_overloaded_cme_table(void)
{
fprintf(stderr, "== rb_vm_dump_overloaded_cme_table\n");
st_foreach(overloaded_cme_table(), vm_dump_overloaded_cme_table, 0);
}
#endif
static int
lookup_overloaded_cme_i(st_data_t *key, st_data_t *value, st_data_t data, int existing)
{
if (existing) {
const rb_callable_method_entry_t *cme = (const rb_callable_method_entry_t *)*key;
const rb_callable_method_entry_t *monly_cme = (const rb_callable_method_entry_t *)*value;
const rb_callable_method_entry_t **ptr = (const rb_callable_method_entry_t **)data;
if (rb_objspace_garbage_object_p((VALUE)cme) ||
rb_objspace_garbage_object_p((VALUE)monly_cme)) {
*ptr = NULL;
return ST_DELETE;
}
else {
*ptr = monly_cme;
}
}
return ST_STOP;
}
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
static const rb_callable_method_entry_t *
lookup_overloaded_cme(const rb_callable_method_entry_t *cme)
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
{
ASSERT_vm_locking();
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
const rb_callable_method_entry_t *monly_cme = NULL;
st_update(overloaded_cme_table(), (st_data_t)cme, lookup_overloaded_cme_i, (st_data_t)&monly_cme);
return monly_cme;
}
#if VM_CHECK_MODE > 0
2023-03-07 08:34:31 +03:00
const rb_callable_method_entry_t *
rb_vm_lookup_overloaded_cme(const rb_callable_method_entry_t *cme)
{
return lookup_overloaded_cme(cme);
}
#endif
static void
delete_overloaded_cme(const rb_callable_method_entry_t *cme)
{
2022-04-07 13:19:13 +03:00
st_data_t cme_data = (st_data_t)cme;
ASSERT_vm_locking();
2022-04-07 13:19:13 +03:00
st_delete(overloaded_cme_table(), &cme_data, NULL);
}
static const rb_callable_method_entry_t *
get_overloaded_cme(const rb_callable_method_entry_t *cme)
{
const rb_callable_method_entry_t *monly_cme = lookup_overloaded_cme(cme);
if (monly_cme && !METHOD_ENTRY_INVALIDATED(monly_cme)) {
return monly_cme;
}
else {
// create
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
rb_method_definition_t *def = rb_method_definition_create(VM_METHOD_TYPE_ISEQ, cme->def->original_id);
rb_method_entry_t *me = rb_method_entry_alloc(cme->called_id,
cme->owner,
cme->defined_class,
def,
false);
RB_OBJ_WRITE(me, &def->body.iseq.cref, cme->def->body.iseq.cref);
RB_OBJ_WRITE(me, &def->body.iseq.iseqptr, ISEQ_BODY(cme->def->body.iseq.iseqptr)->mandatory_only_iseq);
ASSERT_vm_locking();
st_insert(overloaded_cme_table(), (st_data_t)cme, (st_data_t)me);
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
METHOD_ENTRY_VISI_SET(me, METHOD_ENTRY_VISI(cme));
return (rb_callable_method_entry_t *)me;
}
}
const rb_callable_method_entry_t *
rb_check_overloaded_cme(const rb_callable_method_entry_t *cme, const struct rb_callinfo * const ci)
{
if (UNLIKELY(cme->def->iseq_overload) &&
(vm_ci_flag(ci) & (VM_CALL_ARGS_SIMPLE)) &&
(int)vm_ci_argc(ci) == ISEQ_BODY(method_entry_iseqptr(cme))->param.lead_num) {
VM_ASSERT(cme->def->type == VM_METHOD_TYPE_ISEQ); // iseq_overload is marked only on ISEQ methods
cme = get_overloaded_cme(cme);
VM_ASSERT(cme != NULL);
METHOD_ENTRY_CACHED_SET((struct rb_callable_method_entry_struct *)cme);
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
}
return cme;
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
}
#define CALL_METHOD_HOOK(klass, hook, mid) do { \
const VALUE arg = ID2SYM(mid); \
VALUE recv_class = (klass); \
ID hook_id = (hook); \
if (FL_TEST((klass), FL_SINGLETON)) { \
recv_class = RCLASS_ATTACHED_OBJECT((klass)); \
hook_id = singleton_##hook; \
} \
rb_funcallv(recv_class, hook_id, 1, &arg); \
} while (0)
static void
method_added(VALUE klass, ID mid)
{
if (ruby_running) {
CALL_METHOD_HOOK(klass, added, mid);
}
}
void
rb_add_method(VALUE klass, ID mid, rb_method_type_t type, void *opts, rb_method_visibility_t visi)
{
rb_method_entry_make(klass, mid, klass, visi, type, NULL, mid, opts);
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
if (type != VM_METHOD_TYPE_UNDEF && type != VM_METHOD_TYPE_REFINED) {
method_added(klass, mid);
}
}
2023-03-07 08:34:31 +03:00
void
2015-07-22 01:52:59 +03:00
rb_add_method_iseq(VALUE klass, ID mid, const rb_iseq_t *iseq, rb_cref_t *cref, rb_method_visibility_t visi)
{
struct { /* should be same fields with rb_method_iseq_struct */
const rb_iseq_t *iseqptr;
rb_cref_t *cref;
} iseq_body;
iseq_body.iseqptr = iseq;
iseq_body.cref = cref;
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
rb_add_method(klass, mid, VM_METHOD_TYPE_ISEQ, &iseq_body, visi);
}
static rb_method_entry_t *
method_entry_set(VALUE klass, ID mid, const rb_method_entry_t *me,
rb_method_visibility_t visi, VALUE defined_class)
{
rb_method_entry_t *newme = rb_method_entry_make(klass, mid, defined_class, visi,
me->def->type, me->def, 0, NULL);
if (newme == me) {
me->def->no_redef_warning = TRUE;
}
method_added(klass, mid);
return newme;
}
rb_method_entry_t *
rb_method_entry_set(VALUE klass, ID mid, const rb_method_entry_t *me, rb_method_visibility_t visi)
{
return method_entry_set(klass, mid, me, visi, klass);
}
#define UNDEF_ALLOC_FUNC ((rb_alloc_func_t)-1)
void
rb_define_alloc_func(VALUE klass, VALUE (*func)(VALUE))
{
Check_Type(klass, T_CLASS);
if (FL_TEST_RAW(klass, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "can't define an allocator for a singleton class");
}
RCLASS_SET_ALLOCATOR(klass, func);
}
void
rb_undef_alloc_func(VALUE klass)
{
rb_define_alloc_func(klass, UNDEF_ALLOC_FUNC);
}
rb_alloc_func_t
rb_get_alloc_func(VALUE klass)
{
Check_Type(klass, T_CLASS);
for (; klass; klass = RCLASS_SUPER(klass)) {
2021-01-26 19:29:09 +03:00
rb_alloc_func_t allocator = RCLASS_ALLOCATOR(klass);
if (allocator == UNDEF_ALLOC_FUNC) break;
if (allocator) return allocator;
}
return 0;
}
const rb_method_entry_t *
rb_method_entry_at(VALUE klass, ID id)
{
return lookup_method_table(klass, id);
}
static inline rb_method_entry_t*
search_method0(VALUE klass, ID id, VALUE *defined_class_ptr, bool skip_refined)
{
rb_method_entry_t *me = NULL;
RB_DEBUG_COUNTER_INC(mc_search);
for (; klass; klass = RCLASS_SUPER(klass)) {
RB_DEBUG_COUNTER_INC(mc_search_super);
if ((me = lookup_method_table(klass, id)) != 0) {
if (!skip_refined || me->def->type != VM_METHOD_TYPE_REFINED ||
me->def->body.refined.orig_me) {
break;
}
}
}
if (defined_class_ptr) *defined_class_ptr = klass;
if (me == NULL) RB_DEBUG_COUNTER_INC(mc_search_notfound);
VM_ASSERT(me == NULL || !METHOD_ENTRY_INVALIDATED(me));
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
return me;
}
static inline rb_method_entry_t*
search_method(VALUE klass, ID id, VALUE *defined_class_ptr)
{
return search_method0(klass, id, defined_class_ptr, false);
}
static rb_method_entry_t *
search_method_protect(VALUE klass, ID id, VALUE *defined_class_ptr)
{
rb_method_entry_t *me = search_method(klass, id, defined_class_ptr);
if (!UNDEFINED_METHOD_ENTRY_P(me)) {
return me;
}
else {
return NULL;
}
}
2023-03-07 08:34:31 +03:00
const rb_method_entry_t *
rb_method_entry(VALUE klass, ID id)
{
return search_method_protect(klass, id, NULL);
}
static inline const rb_callable_method_entry_t *
prepare_callable_method_entry(VALUE defined_class, ID id, const rb_method_entry_t * const me, int create)
{
struct rb_id_table *mtbl;
const rb_callable_method_entry_t *cme;
VALUE cme_data;
if (me) {
if (me->defined_class == 0) {
RB_DEBUG_COUNTER_INC(mc_cme_complement);
VM_ASSERT(RB_TYPE_P(defined_class, T_ICLASS) || RB_TYPE_P(defined_class, T_MODULE));
VM_ASSERT(me->defined_class == 0);
mtbl = RCLASS_CALLABLE_M_TBL(defined_class);
if (mtbl && rb_id_table_lookup(mtbl, id, &cme_data)) {
cme = (rb_callable_method_entry_t *)cme_data;
RB_DEBUG_COUNTER_INC(mc_cme_complement_hit);
VM_ASSERT(callable_method_entry_p(cme));
VM_ASSERT(!METHOD_ENTRY_INVALIDATED(cme));
}
else if (create) {
if (!mtbl) {
mtbl = RCLASS_EXT(defined_class)->callable_m_tbl = rb_id_table_create(0);
}
cme = rb_method_entry_complement_defined_class(me, me->called_id, defined_class);
rb_id_table_insert(mtbl, id, (VALUE)cme);
RB_OBJ_WRITTEN(defined_class, Qundef, (VALUE)cme);
VM_ASSERT(callable_method_entry_p(cme));
}
else {
return NULL;
}
}
else {
cme = (const rb_callable_method_entry_t *)me;
VM_ASSERT(callable_method_entry_p(cme));
VM_ASSERT(!METHOD_ENTRY_INVALIDATED(cme));
}
return cme;
}
else {
return NULL;
}
}
static const rb_callable_method_entry_t *
2020-07-19 17:13:21 +03:00
complemented_callable_method_entry(VALUE klass, ID id)
{
VALUE defined_class;
rb_method_entry_t *me = search_method(klass, id, &defined_class);
return prepare_callable_method_entry(defined_class, id, me, FALSE);
}
static const rb_callable_method_entry_t *
cached_callable_method_entry(VALUE klass, ID mid)
{
ASSERT_vm_locking();
struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass);
VALUE ccs_data;
if (cc_tbl && rb_id_table_lookup(cc_tbl, mid, &ccs_data)) {
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_data;
VM_ASSERT(vm_ccs_p(ccs));
if (LIKELY(!METHOD_ENTRY_INVALIDATED(ccs->cme))) {
VM_ASSERT(ccs->cme->called_id == mid);
RB_DEBUG_COUNTER_INC(ccs_found);
return ccs->cme;
}
else {
rb_vm_ccs_free(ccs);
rb_id_table_delete(cc_tbl, mid);
}
}
RB_DEBUG_COUNTER_INC(ccs_not_found);
return NULL;
}
static void
cache_callable_method_entry(VALUE klass, ID mid, const rb_callable_method_entry_t *cme)
{
ASSERT_vm_locking();
VM_ASSERT(cme != NULL);
struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass);
VALUE ccs_data;
if (!cc_tbl) {
cc_tbl = RCLASS_CC_TBL(klass) = rb_id_table_create(2);
}
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
if (rb_id_table_lookup(cc_tbl, mid, &ccs_data)) {
#if VM_CHECK_MODE > 0
struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_data;
VM_ASSERT(ccs->cme == cme);
#endif
}
else {
vm_ccs_create(klass, cc_tbl, mid, cme);
}
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
}
static const rb_callable_method_entry_t *
negative_cme(ID mid)
{
rb_vm_t *vm = GET_VM();
const rb_callable_method_entry_t *cme;
VALUE cme_data;
if (rb_id_table_lookup(vm->negative_cme_table, mid, &cme_data)) {
cme = (rb_callable_method_entry_t *)cme_data;
}
else {
cme = (rb_callable_method_entry_t *)rb_method_entry_alloc(mid, Qnil, Qnil, NULL, false);
rb_id_table_insert(vm->negative_cme_table, mid, (VALUE)cme);
}
VM_ASSERT(cme != NULL);
return cme;
}
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
static const rb_callable_method_entry_t *
callable_method_entry_or_negative(VALUE klass, ID mid, VALUE *defined_class_ptr)
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
{
const rb_callable_method_entry_t *cme;
VM_ASSERT(RB_TYPE_P(klass, T_CLASS) || RB_TYPE_P(klass, T_ICLASS));
RB_VM_LOCK_ENTER();
{
cme = cached_callable_method_entry(klass, mid);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
if (cme) {
if (defined_class_ptr != NULL) *defined_class_ptr = cme->defined_class;
}
else {
VALUE defined_class;
rb_method_entry_t *me = search_method(klass, mid, &defined_class);
if (defined_class_ptr) *defined_class_ptr = defined_class;
if (me != NULL) {
cme = prepare_callable_method_entry(defined_class, mid, me, TRUE);
}
else {
cme = negative_cme(mid);
}
cache_callable_method_entry(klass, mid, cme);
}
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
}
RB_VM_LOCK_LEAVE();
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
return cme;
}
// This is exposed for YJIT so that we can make assumptions that methods are
// not defined.
const rb_callable_method_entry_t *
2022-12-02 17:43:53 +03:00
rb_callable_method_entry_or_negative(VALUE klass, ID mid)
{
return callable_method_entry_or_negative(klass, mid, NULL);
}
static const rb_callable_method_entry_t *
2022-12-02 17:43:53 +03:00
callable_method_entry(VALUE klass, ID mid, VALUE *defined_class_ptr)
{
const rb_callable_method_entry_t *cme;
cme = callable_method_entry_or_negative(klass, mid, defined_class_ptr);
return !UNDEFINED_METHOD_ENTRY_P(cme) ? cme : NULL;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
}
2023-03-07 08:34:31 +03:00
const rb_callable_method_entry_t *
rb_callable_method_entry(VALUE klass, ID mid)
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
{
return callable_method_entry(klass, mid, NULL);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
}
static const rb_method_entry_t *resolve_refined_method(VALUE refinements, const rb_method_entry_t *me, VALUE *defined_class_ptr);
static const rb_method_entry_t *
method_entry_resolve_refinement(VALUE klass, ID id, int with_refinement, VALUE *defined_class_ptr)
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
{
const rb_method_entry_t *me = search_method_protect(klass, id, defined_class_ptr);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
if (me) {
if (me->def->type == VM_METHOD_TYPE_REFINED) {
if (with_refinement) {
const rb_cref_t *cref = rb_vm_cref();
VALUE refinements = cref ? CREF_REFINEMENTS(cref) : Qnil;
me = resolve_refined_method(refinements, me, defined_class_ptr);
}
else {
me = resolve_refined_method(Qnil, me, defined_class_ptr);
}
if (UNDEFINED_METHOD_ENTRY_P(me)) me = NULL;
}
}
return me;
}
2023-03-07 08:34:31 +03:00
const rb_method_entry_t *
rb_method_entry_with_refinements(VALUE klass, ID id, VALUE *defined_class_ptr)
{
return method_entry_resolve_refinement(klass, id, TRUE, defined_class_ptr);
}
static const rb_callable_method_entry_t *
2023-09-20 02:34:50 +03:00
callable_method_entry_refinements0(VALUE klass, ID id, VALUE *defined_class_ptr, bool with_refinements,
const rb_callable_method_entry_t *cme)
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
{
if (cme == NULL || LIKELY(cme->def->type != VM_METHOD_TYPE_REFINED)) {
return cme;
}
else {
VALUE defined_class, *dcp = defined_class_ptr ? defined_class_ptr : &defined_class;
const rb_method_entry_t *me = method_entry_resolve_refinement(klass, id, with_refinements, dcp);
return prepare_callable_method_entry(*dcp, id, me, TRUE);
}
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
}
static const rb_callable_method_entry_t *
2021-09-30 22:36:00 +03:00
callable_method_entry_refinements(VALUE klass, ID id, VALUE *defined_class_ptr, bool with_refinements)
{
const rb_callable_method_entry_t *cme = callable_method_entry(klass, id, defined_class_ptr);
2023-09-20 02:34:50 +03:00
return callable_method_entry_refinements0(klass, id, defined_class_ptr, with_refinements, cme);
}
2023-03-07 08:34:31 +03:00
const rb_callable_method_entry_t *
rb_callable_method_entry_with_refinements(VALUE klass, ID id, VALUE *defined_class_ptr)
{
2021-09-30 22:36:00 +03:00
return callable_method_entry_refinements(klass, id, defined_class_ptr, true);
}
static const rb_callable_method_entry_t *
callable_method_entry_without_refinements(VALUE klass, ID id, VALUE *defined_class_ptr)
{
2021-09-30 22:36:00 +03:00
return callable_method_entry_refinements(klass, id, defined_class_ptr, false);
}
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
const rb_method_entry_t *
rb_method_entry_without_refinements(VALUE klass, ID id, VALUE *defined_class_ptr)
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
{
return method_entry_resolve_refinement(klass, id, FALSE, defined_class_ptr);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
}
2023-03-07 08:34:31 +03:00
const rb_callable_method_entry_t *
rb_callable_method_entry_without_refinements(VALUE klass, ID id, VALUE *defined_class_ptr)
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
{
VALUE defined_class, *dcp = defined_class_ptr ? defined_class_ptr : &defined_class;
const rb_method_entry_t *me = method_entry_resolve_refinement(klass, id, FALSE, dcp);
return prepare_callable_method_entry(*dcp, id, me, TRUE);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
}
static const rb_method_entry_t *
resolve_refined_method(VALUE refinements, const rb_method_entry_t *me, VALUE *defined_class_ptr)
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
{
while (me && me->def->type == VM_METHOD_TYPE_REFINED) {
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
VALUE refinement;
const rb_method_entry_t *tmp_me;
VALUE super;
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
refinement = find_refinement(refinements, me->owner);
if (!NIL_P(refinement)) {
tmp_me = search_method_protect(refinement, me->called_id, defined_class_ptr);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
if (tmp_me && tmp_me->def->type != VM_METHOD_TYPE_REFINED) {
return tmp_me;
}
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
}
tmp_me = me->def->body.refined.orig_me;
if (tmp_me) {
if (defined_class_ptr) *defined_class_ptr = tmp_me->defined_class;
return tmp_me;
}
super = RCLASS_SUPER(me->owner);
if (!super) {
return 0;
}
me = search_method_protect(super, me->called_id, defined_class_ptr);
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
}
return me;
}
const rb_method_entry_t *
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me)
{
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
return resolve_refined_method(refinements, me, NULL);
}
const rb_callable_method_entry_t *
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me)
{
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
VALUE defined_class = me->defined_class;
const rb_method_entry_t *resolved_me = resolve_refined_method(refinements, (const rb_method_entry_t *)me, &defined_class);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
if (resolved_me && resolved_me->defined_class == 0) {
return rb_method_entry_complement_defined_class(resolved_me, me->called_id, defined_class);
}
else {
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
return (const rb_callable_method_entry_t *)resolved_me;
}
}
static void
remove_method(VALUE klass, ID mid)
{
VALUE data;
rb_method_entry_t *me = 0;
VALUE self = klass;
rb_class_modify_check(klass);
klass = RCLASS_ORIGIN(klass);
if (mid == object_id || mid == id__send__ || mid == idInitialize) {
rb_warn("removing '%s' may cause serious problems", rb_id2name(mid));
}
if (!rb_id_table_lookup(RCLASS_M_TBL(klass), mid, &data) ||
!(me = (rb_method_entry_t *)data) ||
(!me->def || me->def->type == VM_METHOD_TYPE_UNDEF) ||
UNDEFINED_REFINED_METHOD_P(me->def)) {
rb_name_err_raise("method '%1$s' not defined in %2$s",
klass, ID2SYM(mid));
}
Ensure origins for all included, prepended, and refined modules This fixes various issues when a module is included in or prepended to a module or class, and then refined, or refined and then included or prepended to a module or class. Implement by renaming ensure_origin to rb_ensure_origin, making it non-static, and calling it when refining a module. Fix Module#initialize_copy to handle origins correctly. Previously, Module#initialize_copy did not handle origins correctly. For example, this code: ```ruby module B; end class A def b; 2 end prepend B end a = A.dup.new class A def b; 1 end end p a.b ``` Printed 1 instead of 2. This is because the super chain for a.singleton_class was: ``` a.singleton_class A.dup B(iclass) B(iclass origin) A(origin) # not A.dup(origin) ``` The B iclasses would not be modified, so the includer entry would be still be set to A and not A.dup. This modifies things so that if the class/module has an origin, all iclasses between the class/module and the origin are duplicated and have the correct includer entry set, and the correct origin is created. This requires other changes to make sure all tests still pass: * rb_undef_methods_from doesn't automatically handle classes with origins, so pass it the origin for Comparable when undefing methods in Complex. This fixed a failure in the Complex tests. * When adding a method, the method cache was not cleared correctly if klass has an origin. Clear the method cache for the klass before switching to the origin of klass. This fixed failures in the autoload tests related to overridding require, without breaking the optimization tests. Also clear the method cache for both the module and origin when removing a method. * Module#include? is fixed to skip origin iclasses. * Refinements are fixed to use the origin class of the module that has an origin. * RCLASS_REFINED_BY_ANY is removed as it was only used in a single place and is no longer needed. * Marshal#dump is fixed to skip iclass origins. * rb_method_entry_make is fixed to handled overridden optimized methods for modules that have origins. Fixes [Bug #16852]
2020-05-24 06:16:27 +03:00
if (klass != self) {
rb_clear_method_cache(self, mid);
}
rb_clear_method_cache(klass, mid);
rb_id_table_delete(RCLASS_M_TBL(klass), mid);
rb_vm_check_redefinition_opt_method(me, klass);
if (me->def->type == VM_METHOD_TYPE_REFINED) {
rb_add_refined_method_entry(klass, mid);
}
CALL_METHOD_HOOK(self, removed, mid);
}
void
rb_remove_method_id(VALUE klass, ID mid)
{
remove_method(klass, mid);
}
void
rb_remove_method(VALUE klass, const char *name)
{
remove_method(klass, rb_intern(name));
}
/*
* call-seq:
* remove_method(symbol) -> self
* remove_method(string) -> self
*
* Removes the method identified by _symbol_ from the current
* class. For an example, see Module#undef_method.
* String arguments are converted to symbols.
*/
static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID id = rb_check_id(&v);
if (!id) {
rb_name_err_raise("method '%1$s' not defined in %2$s",
mod, v);
}
remove_method(mod, id);
}
return mod;
}
static void
rb_export_method(VALUE klass, ID name, rb_method_visibility_t visi)
{
rb_method_entry_t *me;
VALUE defined_class;
VALUE origin_class = RCLASS_ORIGIN(klass);
me = search_method0(origin_class, name, &defined_class, true);
if (!me && RB_TYPE_P(klass, T_MODULE)) {
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
me = search_method(rb_cObject, name, &defined_class);
}
if (UNDEFINED_METHOD_ENTRY_P(me) ||
UNDEFINED_REFINED_METHOD_P(me->def)) {
rb_print_undef(klass, name, METHOD_VISI_UNDEF);
}
if (METHOD_ENTRY_VISI(me) != visi) {
rb_vm_check_redefinition_opt_method(me, klass);
if (klass == defined_class || origin_class == defined_class) {
if (me->def->type == VM_METHOD_TYPE_REFINED) {
// Refinement method entries should always be public because the refinement
// search is always performed.
if (me->def->body.refined.orig_me) {
METHOD_ENTRY_VISI_SET((rb_method_entry_t *)me->def->body.refined.orig_me, visi);
}
}
else {
METHOD_ENTRY_VISI_SET(me, visi);
}
rb_clear_method_cache(klass, name);
}
else {
rb_add_method(klass, name, VM_METHOD_TYPE_ZSUPER, 0, visi);
}
}
}
#define BOUND_PRIVATE 0x01
#define BOUND_RESPONDS 0x02
static int
method_boundp(VALUE klass, ID id, int ex)
{
const rb_callable_method_entry_t *cme;
VM_ASSERT(RB_TYPE_P(klass, T_CLASS) || RB_TYPE_P(klass, T_ICLASS));
if (ex & BOUND_RESPONDS) {
cme = rb_callable_method_entry_with_refinements(klass, id, NULL);
}
else {
cme = callable_method_entry_without_refinements(klass, id, NULL);
}
if (cme != NULL) {
2020-06-03 02:40:11 +03:00
if (ex & ~BOUND_RESPONDS) {
switch (METHOD_ENTRY_VISI(cme)) {
2020-06-03 02:40:11 +03:00
case METHOD_VISI_PRIVATE:
return 0;
case METHOD_VISI_PROTECTED:
if (ex & BOUND_RESPONDS) return 0;
default:
break;
}
}
if (cme->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
if (ex & BOUND_RESPONDS) return 2;
return 0;
}
return 1;
}
return 0;
}
// deprecated
int
rb_method_boundp(VALUE klass, ID id, int ex)
{
return method_boundp(klass, id, ex);
}
static void
vm_cref_set_visibility(rb_method_visibility_t method_visi, int module_func)
{
rb_scope_visibility_t *scope_visi = (rb_scope_visibility_t *)&rb_vm_cref()->scope_visi;
scope_visi->method_visi = method_visi;
scope_visi->module_func = module_func;
}
void
rb_scope_visibility_set(rb_method_visibility_t visi)
{
vm_cref_set_visibility(visi, FALSE);
}
static void
scope_visibility_check(void)
{
/* Check for public/protected/private/module_function called inside a method */
2021-06-01 10:15:51 +03:00
rb_control_frame_t *cfp = GET_EC()->cfp+1;
if (cfp && cfp->iseq && ISEQ_BODY(cfp->iseq)->type == ISEQ_TYPE_METHOD) {
rb_warn("calling %s without arguments inside a method may not have the intended effect",
rb_id2name(rb_frame_this_func()));
}
}
static void
rb_scope_module_func_set(void)
{
scope_visibility_check();
vm_cref_set_visibility(METHOD_VISI_PRIVATE, TRUE);
}
const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase);
void
rb_attr(VALUE klass, ID id, int read, int write, int ex)
{
ID attriv;
rb_method_visibility_t visi;
const rb_execution_context_t *ec = GET_EC();
const rb_cref_t *cref = rb_vm_cref_in_context(klass, klass);
if (!ex || !cref) {
visi = METHOD_VISI_PUBLIC;
}
else {
switch (vm_scope_visibility_get(ec)) {
case METHOD_VISI_PRIVATE:
if (vm_scope_module_func_check(ec)) {
rb_warning("attribute accessor as module_function");
}
visi = METHOD_VISI_PRIVATE;
break;
case METHOD_VISI_PROTECTED:
visi = METHOD_VISI_PROTECTED;
break;
default:
visi = METHOD_VISI_PUBLIC;
break;
}
}
attriv = rb_intern_str(rb_sprintf("@%"PRIsVALUE, rb_id2str(id)));
if (read) {
rb_add_method(klass, id, VM_METHOD_TYPE_IVAR, (void *)attriv, visi);
}
if (write) {
rb_add_method(klass, rb_id_attrset(id), VM_METHOD_TYPE_ATTRSET, (void *)attriv, visi);
}
}
void
rb_undef(VALUE klass, ID id)
{
const rb_method_entry_t *me;
if (NIL_P(klass)) {
rb_raise(rb_eTypeError, "no class to undef method");
}
rb_class_modify_check(klass);
if (id == object_id || id == id__send__ || id == idInitialize) {
rb_warn("undefining '%s' may cause serious problems", rb_id2name(id));
}
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
me = search_method(klass, id, 0);
if (me && me->def->type == VM_METHOD_TYPE_REFINED) {
me = rb_resolve_refined_method(Qnil, me);
}
if (UNDEFINED_METHOD_ENTRY_P(me) ||
UNDEFINED_REFINED_METHOD_P(me->def)) {
rb_method_name_error(klass, rb_id2str(id));
}
rb_add_method(klass, id, VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_PUBLIC);
CALL_METHOD_HOOK(klass, undefined, id);
}
/*
* call-seq:
* undef_method(symbol) -> self
* undef_method(string) -> self
*
* Prevents the current class from responding to calls to the named
* method. Contrast this with <code>remove_method</code>, which deletes
* the method from the particular class; Ruby will still search
* superclasses and mixed-in modules for a possible receiver.
* String arguments are converted to symbols.
*
* class Parent
* def hello
* puts "In parent"
* end
* end
* class Child < Parent
* def hello
* puts "In child"
* end
* end
*
*
* c = Child.new
* c.hello
*
*
* class Child
* remove_method :hello # remove from child, still in parent
* end
* c.hello
*
*
* class Child
* undef_method :hello # prevent any calls to 'hello'
* end
* c.hello
*
* <em>produces:</em>
*
* In child
* In parent
* prog.rb:23: undefined method 'hello' for #<Child:0x401b3bb4> (NoMethodError)
*/
static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID id = rb_check_id(&v);
if (!id) {
rb_method_name_error(mod, v);
}
rb_undef(mod, id);
}
return mod;
}
static rb_method_visibility_t
check_definition_visibility(VALUE mod, int argc, VALUE *argv)
{
const rb_method_entry_t *me;
VALUE mid, include_super, lookup_mod = mod;
int inc_super;
ID id;
rb_scan_args(argc, argv, "11", &mid, &include_super);
id = rb_check_id(&mid);
if (!id) return METHOD_VISI_UNDEF;
if (argc == 1) {
inc_super = 1;
}
else {
inc_super = RTEST(include_super);
if (!inc_super) {
lookup_mod = RCLASS_ORIGIN(mod);
}
}
me = rb_method_entry_without_refinements(lookup_mod, id, NULL);
if (me) {
if (me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) return METHOD_VISI_UNDEF;
if (!inc_super && me->owner != mod) return METHOD_VISI_UNDEF;
return METHOD_ENTRY_VISI(me);
}
return METHOD_VISI_UNDEF;
}
/*
* call-seq:
* mod.method_defined?(symbol, inherit=true) -> true or false
* mod.method_defined?(string, inherit=true) -> true or false
*
* Returns +true+ if the named method is defined by
* _mod_. If _inherit_ is set, the lookup will also search _mod_'s
* ancestors. Public and protected methods are matched.
* String arguments are converted to symbols.
*
* module A
* def method1() end
* def protected_method1() end
* protected :protected_method1
* end
* class B
* def method2() end
* def private_method2() end
* private :private_method2
* end
* class C < B
* include A
* def method3() end
* end
*
* A.method_defined? :method1 #=> true
* C.method_defined? "method1" #=> true
* C.method_defined? "method2" #=> true
* C.method_defined? "method2", true #=> true
* C.method_defined? "method2", false #=> false
* C.method_defined? "method3" #=> true
* C.method_defined? "protected_method1" #=> true
* C.method_defined? "method4" #=> false
* C.method_defined? "private_method2" #=> false
*/
static VALUE
rb_mod_method_defined(int argc, VALUE *argv, VALUE mod)
{
rb_method_visibility_t visi = check_definition_visibility(mod, argc, argv);
2021-08-02 06:06:44 +03:00
return RBOOL(visi == METHOD_VISI_PUBLIC || visi == METHOD_VISI_PROTECTED);
}
static VALUE
check_definition(VALUE mod, int argc, VALUE *argv, rb_method_visibility_t visi)
{
2021-08-02 06:06:44 +03:00
return RBOOL(check_definition_visibility(mod, argc, argv) == visi);
}
/*
* call-seq:
* mod.public_method_defined?(symbol, inherit=true) -> true or false
* mod.public_method_defined?(string, inherit=true) -> true or false
*
* Returns +true+ if the named public method is defined by
* _mod_. If _inherit_ is set, the lookup will also search _mod_'s
* ancestors.
* String arguments are converted to symbols.
*
* module A
* def method1() end
* end
* class B
* protected
* def method2() end
* end
* class C < B
* include A
* def method3() end
* end
*
* A.method_defined? :method1 #=> true
* C.public_method_defined? "method1" #=> true
* C.public_method_defined? "method1", true #=> true
* C.public_method_defined? "method1", false #=> true
* C.public_method_defined? "method2" #=> false
* C.method_defined? "method2" #=> true
*/
static VALUE
rb_mod_public_method_defined(int argc, VALUE *argv, VALUE mod)
{
return check_definition(mod, argc, argv, METHOD_VISI_PUBLIC);
}
/*
* call-seq:
* mod.private_method_defined?(symbol, inherit=true) -> true or false
* mod.private_method_defined?(string, inherit=true) -> true or false
*
* Returns +true+ if the named private method is defined by
* _mod_. If _inherit_ is set, the lookup will also search _mod_'s
* ancestors.
* String arguments are converted to symbols.
*
* module A
* def method1() end
* end
* class B
* private
* def method2() end
* end
* class C < B
* include A
* def method3() end
* end
*
* A.method_defined? :method1 #=> true
* C.private_method_defined? "method1" #=> false
* C.private_method_defined? "method2" #=> true
* C.private_method_defined? "method2", true #=> true
* C.private_method_defined? "method2", false #=> false
* C.method_defined? "method2" #=> false
*/
static VALUE
rb_mod_private_method_defined(int argc, VALUE *argv, VALUE mod)
{
return check_definition(mod, argc, argv, METHOD_VISI_PRIVATE);
}
/*
* call-seq:
* mod.protected_method_defined?(symbol, inherit=true) -> true or false
* mod.protected_method_defined?(string, inherit=true) -> true or false
*
* Returns +true+ if the named protected method is defined
* _mod_. If _inherit_ is set, the lookup will also search _mod_'s
* ancestors.
* String arguments are converted to symbols.
*
* module A
* def method1() end
* end
* class B
* protected
* def method2() end
* end
* class C < B
* include A
* def method3() end
* end
*
* A.method_defined? :method1 #=> true
* C.protected_method_defined? "method1" #=> false
* C.protected_method_defined? "method2" #=> true
* C.protected_method_defined? "method2", true #=> true
* C.protected_method_defined? "method2", false #=> false
* C.method_defined? "method2" #=> true
*/
static VALUE
rb_mod_protected_method_defined(int argc, VALUE *argv, VALUE mod)
{
return check_definition(mod, argc, argv, METHOD_VISI_PROTECTED);
}
int
rb_method_entry_eq(const rb_method_entry_t *m1, const rb_method_entry_t *m2)
{
return rb_method_definition_eq(m1->def, m2->def);
}
static const rb_method_definition_t *
original_method_definition(const rb_method_definition_t *def)
{
again:
if (def) {
switch (def->type) {
case VM_METHOD_TYPE_REFINED:
if (def->body.refined.orig_me) {
def = def->body.refined.orig_me->def;
goto again;
}
break;
case VM_METHOD_TYPE_ALIAS:
def = def->body.alias.original_me->def;
goto again;
default:
break;
}
}
return def;
}
2023-03-07 08:34:31 +03:00
int
rb_method_definition_eq(const rb_method_definition_t *d1, const rb_method_definition_t *d2)
{
d1 = original_method_definition(d1);
d2 = original_method_definition(d2);
if (d1 == d2) return 1;
if (!d1 || !d2) return 0;
if (d1->type != d2->type) return 0;
switch (d1->type) {
case VM_METHOD_TYPE_ISEQ:
`Primitive.mandatory_only?` for fast path Compare with the C methods, A built-in methods written in Ruby is slower if only mandatory parameters are given because it needs to check the argumens and fill default values for optional and keyword parameters (C methods can check the number of parameters with `argc`, so there are no overhead). Passing mandatory arguments are common (optional arguments are exceptional, in many cases) so it is important to provide the fast path for such common cases. `Primitive.mandatory_only?` is a special builtin function used with `if` expression like that: ```ruby def self.at(time, subsec = false, unit = :microsecond, in: nil) if Primitive.mandatory_only? Primitive.time_s_at1(time) else Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end end ``` and it makes two ISeq, ``` def self.at(time, subsec = false, unit = :microsecond, in: nil) Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in)) end def self.at(time) Primitive.time_s_at1(time) end ``` and (2) is pointed by (1). Note that `Primitive.mandatory_only?` should be used only in a condition of an `if` statement and the `if` statement should be equal to the methdo body (you can not put any expression before and after the `if` statement). A method entry with `mandatory_only?` (`Time.at` on the above case) is marked as `iseq_overload`. When the method will be dispatch only with mandatory arguments (`Time.at(0)` for example), make another method entry with ISeq (2) as mandatory only method entry and it will be cached in an inline method cache. The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254 but it only checks mandatory parameters or more, because many cases only mandatory parameters are given. If we find other cases (optional or keyword parameters are used frequently and it hurts performance), we can extend the feature.
2021-11-12 20:12:20 +03:00
return d1->body.iseq.iseqptr == d2->body.iseq.iseqptr;
case VM_METHOD_TYPE_CFUNC:
return
d1->body.cfunc.func == d2->body.cfunc.func &&
d1->body.cfunc.argc == d2->body.cfunc.argc;
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
return d1->body.attr.id == d2->body.attr.id;
case VM_METHOD_TYPE_BMETHOD:
return RTEST(rb_equal(d1->body.bmethod.proc, d2->body.bmethod.proc));
case VM_METHOD_TYPE_MISSING:
return d1->original_id == d2->original_id;
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
case VM_METHOD_TYPE_UNDEF:
return 1;
case VM_METHOD_TYPE_OPTIMIZED:
return (d1->body.optimized.type == d2->body.optimized.type) &&
(d1->body.optimized.index == d2->body.optimized.index);
case VM_METHOD_TYPE_REFINED:
case VM_METHOD_TYPE_ALIAS:
break;
}
rb_bug("rb_method_definition_eq: unsupported type: %d", d1->type);
}
static st_index_t
rb_hash_method_definition(st_index_t hash, const rb_method_definition_t *def)
{
hash = rb_hash_uint(hash, def->type);
def = original_method_definition(def);
if (!def) return hash;
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
return rb_hash_uint(hash, (st_index_t)def->body.iseq.iseqptr);
case VM_METHOD_TYPE_CFUNC:
hash = rb_hash_uint(hash, (st_index_t)def->body.cfunc.func);
return rb_hash_uint(hash, def->body.cfunc.argc);
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
return rb_hash_uint(hash, def->body.attr.id);
case VM_METHOD_TYPE_BMETHOD:
Support targetting TracePoint [Feature #15289] * vm_trace.c (rb_tracepoint_enable_for_target): support targetting TracePoint. [Feature #15289] Tragetting TracePoint is only enabled on specified method, proc and so on, example: `tp.enable(target: code)`. `code` should be consisted of InstructionSeuqnece (iseq) (RubyVM::InstructionSeuqnece.of(code) should not return nil) If code is a tree of iseq, TracePoint is enabled on all of iseqs in a tree. Enabled tragetting TracePoints can not enabled again with and without target. * vm_core.h (rb_iseq_t): introduce `rb_iseq_t::local_hooks` to store local hooks. `rb_iseq_t::aux::trace_events` is renamed to `global_trace_events` to contrast with `local_hooks`. * vm_core.h (rb_hook_list_t): add `rb_hook_list_t::running` to represent how many Threads/Fibers are used this list. If this field is 0, nobody using this hooks and we can delete it. This is why we can remove code from cont.c. * vm_core.h (rb_vm_t): because of above change, we can eliminate `rb_vm_t::trace_running` field. Also renamed from `rb_vm_t::event_hooks` to `global_hooks`. * vm_core.h, vm.c (ruby_vm_event_enabled_global_flags): renamed from `ruby_vm_event_enabled_flags. * vm_core.h, vm.c (ruby_vm_event_local_num): added to count enabled targetting TracePoints. * vm_core.h, vm_trace.c (rb_exec_event_hooks): accepts hook list. * vm_core.h (rb_vm_global_hooks): added for convinience. * method.h (rb_method_bmethod_t): added to maintain Proc and `rb_hook_list_t` for bmethod (defined by define_method). * prelude.rb (TracePoint#enable): extracet a keyword parameter (because it is easy than writing in C). It calls `TracePoint#__enable` internal method written in C. * vm_insnhelper.c (vm_trace): check also iseq->local_hooks. * vm.c (invoke_bmethod): check def->body.bmethod.hooks. * vm.c (hook_before_rewind): check iseq->local_hooks and def->body.bmethod.hooks before rewind by exception. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66003 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-11-26 21:16:39 +03:00
return rb_hash_proc(hash, def->body.bmethod.proc);
case VM_METHOD_TYPE_MISSING:
return rb_hash_uint(hash, def->original_id);
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
case VM_METHOD_TYPE_UNDEF:
return hash;
case VM_METHOD_TYPE_OPTIMIZED:
hash = rb_hash_uint(hash, def->body.optimized.index);
return rb_hash_uint(hash, def->body.optimized.type);
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
case VM_METHOD_TYPE_REFINED:
case VM_METHOD_TYPE_ALIAS:
break; /* unreachable */
}
rb_bug("rb_hash_method_definition: unsupported method type (%d)", def->type);
2021-02-03 07:39:53 +03:00
}
st_index_t
rb_hash_method_entry(st_index_t hash, const rb_method_entry_t *me)
{
return rb_hash_method_definition(hash, me->def);
}
void
rb_alias(VALUE klass, ID alias_name, ID original_name)
{
const VALUE target_klass = klass;
VALUE defined_class;
const rb_method_entry_t *orig_me;
rb_method_visibility_t visi = METHOD_VISI_UNDEF;
if (NIL_P(klass)) {
rb_raise(rb_eTypeError, "no class to make alias");
}
rb_class_modify_check(klass);
again:
orig_me = search_method(klass, original_name, &defined_class);
if (orig_me && orig_me->def->type == VM_METHOD_TYPE_REFINED) {
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
orig_me = rb_resolve_refined_method(Qnil, orig_me);
}
if (UNDEFINED_METHOD_ENTRY_P(orig_me) ||
UNDEFINED_REFINED_METHOD_P(orig_me->def)) {
if ((!RB_TYPE_P(klass, T_MODULE)) ||
(orig_me = search_method(rb_cObject, original_name, &defined_class),
UNDEFINED_METHOD_ENTRY_P(orig_me))) {
rb_print_undef(klass, original_name, METHOD_VISI_UNDEF);
}
}
switch (orig_me->def->type) {
case VM_METHOD_TYPE_ZSUPER:
klass = RCLASS_SUPER(klass);
original_name = orig_me->def->original_id;
visi = METHOD_ENTRY_VISI(orig_me);
goto again;
case VM_METHOD_TYPE_ALIAS:
visi = METHOD_ENTRY_VISI(orig_me);
orig_me = orig_me->def->body.alias.original_me;
VM_ASSERT(orig_me->def->type != VM_METHOD_TYPE_ALIAS);
break;
default: break;
}
if (visi == METHOD_VISI_UNDEF) visi = METHOD_ENTRY_VISI(orig_me);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
if (orig_me->defined_class == 0) {
rb_method_entry_make(target_klass, alias_name, target_klass, visi,
VM_METHOD_TYPE_ALIAS, NULL, orig_me->called_id,
(void *)rb_method_entry_clone(orig_me));
method_added(target_klass, alias_name);
}
else {
rb_method_entry_t *alias_me;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
alias_me = method_entry_set(target_klass, alias_name, orig_me, visi, orig_me->owner);
RB_OBJ_WRITE(alias_me, &alias_me->owner, target_klass);
RB_OBJ_WRITE(alias_me, &alias_me->defined_class, orig_me->defined_class);
}
}
/*
* call-seq:
* alias_method(new_name, old_name) -> symbol
*
* Makes <i>new_name</i> a new copy of the method <i>old_name</i>. This can
* be used to retain access to methods that are overridden.
*
* module Mod
* alias_method :orig_exit, :exit #=> :orig_exit
* def exit(code=0)
* puts "Exiting with code #{code}"
* orig_exit(code)
* end
* end
* include Mod
* exit(99)
*
* <em>produces:</em>
*
* Exiting with code 99
*/
static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
ID oldid = rb_check_id(&oldname);
if (!oldid) {
rb_print_undef_str(mod, oldname);
}
VALUE id = rb_to_id(newname);
rb_alias(mod, id, oldid);
return ID2SYM(id);
}
static void
check_and_export_method(VALUE self, VALUE name, rb_method_visibility_t visi)
{
ID id = rb_check_id(&name);
if (!id) {
rb_print_undef_str(self, name);
}
rb_export_method(self, id, visi);
}
static void
set_method_visibility(VALUE self, int argc, const VALUE *argv, rb_method_visibility_t visi)
{
int i;
rb_check_frozen(self);
if (argc == 0) {
rb_warning("%"PRIsVALUE" with no argument is just ignored",
QUOTE_ID(rb_frame_callee()));
return;
}
VALUE v;
if (argc == 1 && (v = rb_check_array_type(argv[0])) != Qnil) {
long j;
for (j = 0; j < RARRAY_LEN(v); j++) {
check_and_export_method(self, RARRAY_AREF(v, j), visi);
}
}
else {
for (i = 0; i < argc; i++) {
check_and_export_method(self, argv[i], visi);
}
}
}
static VALUE
set_visibility(int argc, const VALUE *argv, VALUE module, rb_method_visibility_t visi)
{
if (argc == 0) {
scope_visibility_check();
rb_scope_visibility_set(visi);
return Qnil;
}
set_method_visibility(module, argc, argv, visi);
if (argc == 1) {
return argv[0];
}
return rb_ary_new_from_values(argc, argv);
}
/*
* call-seq:
* public -> nil
* public(method_name) -> method_name
* public(method_name, method_name, ...) -> array
* public(array) -> array
*
* With no arguments, sets the default visibility for subsequently
* defined methods to public. With arguments, sets the named methods to
* have public visibility.
* String arguments are converted to symbols.
2020-12-27 00:50:55 +03:00
* An Array of Symbols and/or Strings is also accepted.
* If a single argument is passed, it is returned.
* If no argument is passed, nil is returned.
* If multiple arguments are passed, the arguments are returned as an array.
*/
static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
return set_visibility(argc, argv, module, METHOD_VISI_PUBLIC);
}
/*
* call-seq:
* protected -> nil
* protected(method_name) -> method_name
* protected(method_name, method_name, ...) -> array
* protected(array) -> array
*
* With no arguments, sets the default visibility for subsequently
* defined methods to protected. With arguments, sets the named methods
* to have protected visibility.
* String arguments are converted to symbols.
2020-12-27 00:50:55 +03:00
* An Array of Symbols and/or Strings is also accepted.
* If a single argument is passed, it is returned.
* If no argument is passed, nil is returned.
* If multiple arguments are passed, the arguments are returned as an array.
*
* If a method has protected visibility, it is callable only where
* <code>self</code> of the context is the same as the method.
* (method definition or instance_eval). This behavior is different from
* Java's protected method. Usually <code>private</code> should be used.
*
* Note that a protected method is slow because it can't use inline cache.
*
* To show a private method on RDoc, use <code>:doc:</code> instead of this.
*/
static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
return set_visibility(argc, argv, module, METHOD_VISI_PROTECTED);
}
/*
* call-seq:
* private -> nil
* private(method_name) -> method_name
* private(method_name, method_name, ...) -> array
* private(array) -> array
*
* With no arguments, sets the default visibility for subsequently
* defined methods to private. With arguments, sets the named methods
* to have private visibility.
* String arguments are converted to symbols.
2020-12-27 00:50:55 +03:00
* An Array of Symbols and/or Strings is also accepted.
* If a single argument is passed, it is returned.
* If no argument is passed, nil is returned.
* If multiple arguments are passed, the arguments are returned as an array.
*
* module Mod
* def a() end
* def b() end
* private
* def c() end
* private :a
* end
* Mod.private_instance_methods #=> [:a, :c]
*
* Note that to show a private method on RDoc, use <code>:doc:</code>.
*/
static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
return set_visibility(argc, argv, module, METHOD_VISI_PRIVATE);
}
/*
* call-seq:
* ruby2_keywords(method_name, ...) -> nil
*
* For the given method names, marks the method as passing keywords through
* a normal argument splat. This should only be called on methods that
* accept an argument splat (<tt>*args</tt>) but not explicit keywords or
* a keyword splat. It marks the method such that if the method is called
* with keyword arguments, the final hash argument is marked with a special
* flag such that if it is the final element of a normal argument splat to
* another method call, and that method call does not include explicit
* keywords or a keyword splat, the final element is interpreted as keywords.
* In other words, keywords will be passed through the method to other
* methods.
*
* This should only be used for methods that delegate keywords to another
* method, and only for backwards compatibility with Ruby versions before 3.0.
* See https://www.ruby-lang.org/en/news/2019/12/12/separation-of-positional-and-keyword-arguments-in-ruby-3-0/
* for details on why +ruby2_keywords+ exists and when and how to use it.
*
* This method will probably be removed at some point, as it exists only
* for backwards compatibility. As it does not exist in Ruby versions before
* 2.7, check that the module responds to this method before calling it:
*
* module Mod
* def foo(meth, *args, &block)
* send(:"do_#{meth}", *args, &block)
* end
* ruby2_keywords(:foo) if respond_to?(:ruby2_keywords, true)
* end
*
* However, be aware that if the +ruby2_keywords+ method is removed, the
* behavior of the +foo+ method using the above approach will change so that
* the method does not pass through keywords.
*/
static VALUE
rb_mod_ruby2_keywords(int argc, VALUE *argv, VALUE module)
{
int i;
VALUE origin_class = RCLASS_ORIGIN(module);
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
rb_check_frozen(module);
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID name = rb_check_id(&v);
rb_method_entry_t *me;
VALUE defined_class;
if (!name) {
rb_print_undef_str(module, v);
}
me = search_method(origin_class, name, &defined_class);
if (!me && RB_TYPE_P(module, T_MODULE)) {
me = search_method(rb_cObject, name, &defined_class);
}
if (UNDEFINED_METHOD_ENTRY_P(me) ||
UNDEFINED_REFINED_METHOD_P(me->def)) {
rb_print_undef(module, name, METHOD_VISI_UNDEF);
}
if (module == defined_class || origin_class == defined_class) {
switch (me->def->type) {
case VM_METHOD_TYPE_ISEQ:
if (ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.has_rest &&
!ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.has_kw &&
!ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.has_kwrest) {
ISEQ_BODY(me->def->body.iseq.iseqptr)->param.flags.ruby2_keywords = 1;
rb_clear_method_cache(module, name);
}
else {
rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
}
break;
case VM_METHOD_TYPE_BMETHOD: {
VALUE procval = me->def->body.bmethod.proc;
if (vm_block_handler_type(procval) == block_handler_type_proc) {
procval = vm_proc_to_block_handler(VM_BH_TO_PROC(procval));
}
if (vm_block_handler_type(procval) == block_handler_type_iseq) {
const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(procval);
const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq);
if (ISEQ_BODY(iseq)->param.flags.has_rest &&
!ISEQ_BODY(iseq)->param.flags.has_kw &&
!ISEQ_BODY(iseq)->param.flags.has_kwrest) {
ISEQ_BODY(iseq)->param.flags.ruby2_keywords = 1;
rb_clear_method_cache(module, name);
}
else {
rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
}
break;
}
}
/* fallthrough */
default:
rb_warn("Skipping set of ruby2_keywords flag for %s (method not defined in Ruby)", rb_id2name(name));
break;
}
}
else {
rb_warn("Skipping set of ruby2_keywords flag for %s (can only set in method defining module)", rb_id2name(name));
}
}
return Qnil;
}
/*
* call-seq:
* mod.public_class_method(symbol, ...) -> mod
* mod.public_class_method(string, ...) -> mod
* mod.public_class_method(array) -> mod
*
* Makes a list of existing class methods public.
*
* String arguments are converted to symbols.
2020-12-27 00:50:55 +03:00
* An Array of Symbols and/or Strings is also accepted.
*/
static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PUBLIC);
return obj;
}
/*
* call-seq:
* mod.private_class_method(symbol, ...) -> mod
* mod.private_class_method(string, ...) -> mod
* mod.private_class_method(array) -> mod
*
* Makes existing class methods private. Often used to hide the default
* constructor <code>new</code>.
*
* String arguments are converted to symbols.
2020-12-27 00:50:55 +03:00
* An Array of Symbols and/or Strings is also accepted.
*
* class SimpleSingleton # Not thread safe
* private_class_method :new
* def SimpleSingleton.create(*args, &block)
* @me = new(*args, &block) if ! @me
* @me
* end
* end
*/
static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PRIVATE);
return obj;
}
/*
* call-seq:
* public
* public(symbol, ...)
* public(string, ...)
* public(array)
*
* With no arguments, sets the default visibility for subsequently
* defined methods to public. With arguments, sets the named methods to
* have public visibility.
*
* String arguments are converted to symbols.
2020-12-27 00:50:55 +03:00
* An Array of Symbols and/or Strings is also accepted.
*/
static VALUE
top_public(int argc, VALUE *argv, VALUE _)
{
return rb_mod_public(argc, argv, rb_cObject);
}
/*
* call-seq:
* private
* private(symbol, ...)
* private(string, ...)
* private(array)
*
* With no arguments, sets the default visibility for subsequently
* defined methods to private. With arguments, sets the named methods to
* have private visibility.
*
* String arguments are converted to symbols.
2020-12-27 00:50:55 +03:00
* An Array of Symbols and/or Strings is also accepted.
*/
static VALUE
top_private(int argc, VALUE *argv, VALUE _)
{
return rb_mod_private(argc, argv, rb_cObject);
}
/*
* call-seq:
* ruby2_keywords(method_name, ...) -> self
*
* For the given method names, marks the method as passing keywords through
* a normal argument splat. See Module#ruby2_keywords in detail.
*/
static VALUE
top_ruby2_keywords(int argc, VALUE *argv, VALUE module)
{
return rb_mod_ruby2_keywords(argc, argv, rb_cObject);
}
/*
* call-seq:
* module_function -> nil
* module_function(method_name) -> method_name
* module_function(method_name, method_name, ...) -> array
*
* Creates module functions for the named methods. These functions may
* be called with the module as a receiver, and also become available
* as instance methods to classes that mix in the module. Module
* functions are copies of the original, and so may be changed
* independently. The instance-method versions are made private. If
* used with no arguments, subsequently defined methods become module
* functions.
* String arguments are converted to symbols.
* If a single argument is passed, it is returned.
* If no argument is passed, nil is returned.
* If multiple arguments are passed, the arguments are returned as an array.
*
* module Mod
* def one
* "This is one"
* end
* module_function :one
* end
* class Cls
* include Mod
* def call_one
* one
* end
* end
* Mod.one #=> "This is one"
* c = Cls.new
* c.call_one #=> "This is one"
* module Mod
* def one
* "This is the new one"
* end
* end
* Mod.one #=> "This is one"
* c.call_one #=> "This is the new one"
*/
static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
int i;
ID id;
const rb_method_entry_t *me;
if (!RB_TYPE_P(module, T_MODULE)) {
rb_raise(rb_eTypeError, "module_function must be called for modules");
}
if (argc == 0) {
rb_scope_module_func_set();
return Qnil;
}
set_method_visibility(module, argc, argv, METHOD_VISI_PRIVATE);
for (i = 0; i < argc; i++) {
VALUE m = module;
2022-07-21 19:23:58 +03:00
id = rb_to_id(argv[i]);
for (;;) {
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
me = search_method(m, id, 0);
if (me == 0) {
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
me = search_method(rb_cObject, id, 0);
}
if (UNDEFINED_METHOD_ENTRY_P(me)) {
rb_print_undef(module, id, METHOD_VISI_UNDEF);
}
if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
break; /* normal case: need not to follow 'super' link */
}
m = RCLASS_SUPER(m);
if (!m)
break;
}
rb_method_entry_set(rb_singleton_class(module), id, me, METHOD_VISI_PUBLIC);
}
if (argc == 1) {
return argv[0];
}
return rb_ary_new_from_values(argc, argv);
}
#ifdef __GNUC__
#pragma push_macro("rb_method_basic_definition_p")
#undef rb_method_basic_definition_p
#endif
int
rb_method_basic_definition_p(VALUE klass, ID id)
{
const rb_callable_method_entry_t *cme;
if (!klass) return TRUE; /* hidden object cannot be overridden */
cme = rb_callable_method_entry(klass, id);
return (cme && METHOD_ENTRY_BASIC(cme)) ? TRUE : FALSE;
}
#ifdef __GNUC__
#pragma pop_macro("rb_method_basic_definition_p")
#endif
static VALUE
call_method_entry(rb_execution_context_t *ec, VALUE defined_class, VALUE obj, ID id,
const rb_callable_method_entry_t *cme, int argc, const VALUE *argv, int kw_splat)
{
VALUE passed_block_handler = vm_passed_block_handler(ec);
VALUE result = rb_vm_call_kw(ec, obj, id, argc, argv, cme, kw_splat);
vm_passed_block_handler_set(ec, passed_block_handler);
return result;
}
static VALUE
basic_obj_respond_to_missing(rb_execution_context_t *ec, VALUE klass, VALUE obj,
VALUE mid, VALUE priv)
{
VALUE defined_class, args[2];
const ID rtmid = idRespond_to_missing;
const rb_callable_method_entry_t *const cme = callable_method_entry(klass, rtmid, &defined_class);
if (!cme || METHOD_ENTRY_BASIC(cme)) return Qundef;
args[0] = mid;
args[1] = priv;
return call_method_entry(ec, defined_class, obj, rtmid, cme, 2, args, RB_NO_KEYWORDS);
}
static inline int
basic_obj_respond_to(rb_execution_context_t *ec, VALUE obj, ID id, int pub)
{
VALUE klass = CLASS_OF(obj);
VALUE ret;
switch (method_boundp(klass, id, pub|BOUND_RESPONDS)) {
case 2:
return FALSE;
case 0:
ret = basic_obj_respond_to_missing(ec, klass, obj, ID2SYM(id),
2022-01-01 09:41:00 +03:00
RBOOL(!pub));
2022-11-15 07:24:08 +03:00
return RTEST(ret) && !UNDEF_P(ret);
default:
return TRUE;
}
}
static int
vm_respond_to(rb_execution_context_t *ec, VALUE klass, VALUE obj, ID id, int priv)
{
VALUE defined_class;
const ID resid = idRespond_to;
const rb_callable_method_entry_t *const cme = callable_method_entry(klass, resid, &defined_class);
if (!cme) return -1;
if (METHOD_ENTRY_BASIC(cme)) {
return -1;
}
else {
int argc = 1;
VALUE args[2];
VALUE result;
args[0] = ID2SYM(id);
args[1] = Qtrue;
if (priv) {
argc = rb_method_entry_arity((const rb_method_entry_t *)cme);
if (argc > 2) {
rb_raise(rb_eArgError,
"respond_to? must accept 1 or 2 arguments (requires %d)",
argc);
}
if (argc != 1) {
argc = 2;
}
else if (!NIL_P(ruby_verbose)) {
VALUE location = rb_method_entry_location((const rb_method_entry_t *)cme);
rb_category_warn(RB_WARN_CATEGORY_DEPRECATED,
"%"PRIsVALUE"%c""respond_to?(:%"PRIsVALUE") uses"
" the deprecated method signature, which takes one parameter",
(FL_TEST(klass, FL_SINGLETON) ? obj : klass),
(FL_TEST(klass, FL_SINGLETON) ? '.' : '#'),
QUOTE_ID(id));
if (!NIL_P(location)) {
VALUE path = RARRAY_AREF(location, 0);
VALUE line = RARRAY_AREF(location, 1);
if (!NIL_P(path)) {
rb_category_compile_warn(RB_WARN_CATEGORY_DEPRECATED,
RSTRING_PTR(path), NUM2INT(line),
"respond_to? is defined here");
}
}
}
}
result = call_method_entry(ec, defined_class, obj, resid, cme, argc, args, RB_NO_KEYWORDS);
return RTEST(result);
}
}
int
rb_obj_respond_to(VALUE obj, ID id, int priv)
{
rb_execution_context_t *ec = GET_EC();
return rb_ec_obj_respond_to(ec, obj, id, priv);
}
int
rb_ec_obj_respond_to(rb_execution_context_t *ec, VALUE obj, ID id, int priv)
{
VALUE klass = CLASS_OF(obj);
int ret = vm_respond_to(ec, klass, obj, id, priv);
if (ret == -1) ret = basic_obj_respond_to(ec, obj, id, !priv);
return ret;
}
int
rb_respond_to(VALUE obj, ID id)
{
return rb_obj_respond_to(obj, id, FALSE);
}
/*
* call-seq:
* obj.respond_to?(symbol, include_all=false) -> true or false
* obj.respond_to?(string, include_all=false) -> true or false
*
* Returns +true+ if _obj_ responds to the given method. Private and
* protected methods are included in the search only if the optional
* second parameter evaluates to +true+.
*
* If the method is not implemented,
* as Process.fork on Windows, File.lchmod on GNU/Linux, etc.,
* false is returned.
*
* If the method is not defined, <code>respond_to_missing?</code>
* method is called and the result is returned.
*
* When the method name parameter is given as a string, the string is
* converted to a symbol.
*/
static VALUE
obj_respond_to(int argc, VALUE *argv, VALUE obj)
{
VALUE mid, priv;
ID id;
rb_execution_context_t *ec = GET_EC();
rb_scan_args(argc, argv, "11", &mid, &priv);
if (!(id = rb_check_id(&mid))) {
VALUE ret = basic_obj_respond_to_missing(ec, CLASS_OF(obj), obj,
rb_to_symbol(mid), priv);
2022-11-15 07:24:08 +03:00
if (UNDEF_P(ret)) ret = Qfalse;
return ret;
}
2021-08-02 06:06:44 +03:00
return RBOOL(basic_obj_respond_to(ec, obj, id, !RTEST(priv)));
}
/*
* call-seq:
* obj.respond_to_missing?(symbol, include_all) -> true or false
* obj.respond_to_missing?(string, include_all) -> true or false
*
* DO NOT USE THIS DIRECTLY.
*
* Hook method to return whether the _obj_ can respond to _id_ method
* or not.
*
* When the method name parameter is given as a string, the string is
* converted to a symbol.
*
* See #respond_to?, and the example of BasicObject.
*/
static VALUE
obj_respond_to_missing(VALUE obj, VALUE mid, VALUE priv)
{
return Qfalse;
}
void
Init_eval_method(void)
{
rb_define_method(rb_mKernel, "respond_to?", obj_respond_to, -1);
rb_define_method(rb_mKernel, "respond_to_missing?", obj_respond_to_missing, 2);
rb_define_method(rb_cModule, "remove_method", rb_mod_remove_method, -1);
rb_define_method(rb_cModule, "undef_method", rb_mod_undef_method, -1);
rb_define_method(rb_cModule, "alias_method", rb_mod_alias_method, 2);
rb_define_private_method(rb_cModule, "public", rb_mod_public, -1);
rb_define_private_method(rb_cModule, "protected", rb_mod_protected, -1);
rb_define_private_method(rb_cModule, "private", rb_mod_private, -1);
rb_define_private_method(rb_cModule, "module_function", rb_mod_modfunc, -1);
rb_define_private_method(rb_cModule, "ruby2_keywords", rb_mod_ruby2_keywords, -1);
rb_define_method(rb_cModule, "method_defined?", rb_mod_method_defined, -1);
rb_define_method(rb_cModule, "public_method_defined?", rb_mod_public_method_defined, -1);
rb_define_method(rb_cModule, "private_method_defined?", rb_mod_private_method_defined, -1);
rb_define_method(rb_cModule, "protected_method_defined?", rb_mod_protected_method_defined, -1);
rb_define_method(rb_cModule, "public_class_method", rb_mod_public_method, -1);
rb_define_method(rb_cModule, "private_class_method", rb_mod_private_method, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"public", top_public, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"private", top_private, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"ruby2_keywords", top_ruby2_keywords, -1);
{
#define REPLICATE_METHOD(klass, id) do { \
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
const rb_method_entry_t *me = rb_method_entry((klass), (id)); \
rb_method_entry_set((klass), (id), me, METHOD_ENTRY_VISI(me)); \
} while (0)
REPLICATE_METHOD(rb_eException, idMethodMissing);
REPLICATE_METHOD(rb_eException, idRespond_to);
REPLICATE_METHOD(rb_eException, idRespond_to_missing);
}
}