2021-10-06 23:34:16 +03:00
|
|
|
#ifndef YJIT_H
|
|
|
|
#define YJIT_H 1
|
2021-03-07 02:46:56 +03:00
|
|
|
//
|
|
|
|
// This file contains definitions YJIT exposes to the CRuby codebase
|
|
|
|
//
|
|
|
|
|
2021-09-08 19:01:39 +03:00
|
|
|
#include "ruby/internal/config.h"
|
|
|
|
#include "ruby_assert.h" // for RUBY_DEBUG
|
2021-03-25 01:07:26 +03:00
|
|
|
#include "vm_core.h"
|
2021-03-07 02:46:56 +03:00
|
|
|
#include "method.h"
|
|
|
|
|
2021-10-06 23:34:16 +03:00
|
|
|
// YJIT_STATS controls whether to support runtime counters in generated code
|
|
|
|
// and in the interpreter.
|
2021-09-08 19:01:39 +03:00
|
|
|
#ifndef YJIT_STATS
|
|
|
|
# define YJIT_STATS RUBY_DEBUG
|
2021-03-07 02:46:56 +03:00
|
|
|
#endif
|
|
|
|
|
2022-11-14 07:35:35 +03:00
|
|
|
#if USE_YJIT && !defined(MJIT_HEADER) // MJIT and YJIT can't be enabled simultaneously
|
2021-12-14 03:08:01 +03:00
|
|
|
|
2022-08-16 22:51:16 +03:00
|
|
|
// We generate x86 or arm64 assembly
|
|
|
|
#if defined(_WIN32) ? defined(_M_AMD64) : (defined(__x86_64__) || defined(__aarch64__))
|
2022-08-15 20:05:12 +03:00
|
|
|
// x86_64 platforms without mingw/msys or x64-mswin
|
Rust YJIT
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
|
|
|
#else
|
2022-08-15 20:05:12 +03:00
|
|
|
# error YJIT unsupported platform
|
Rust YJIT
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
|
|
|
#endif
|
2021-10-01 14:17:09 +03:00
|
|
|
|
Rust YJIT
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
|
|
|
// Expose these as declarations since we are building YJIT.
|
2021-10-25 21:53:22 +03:00
|
|
|
bool rb_yjit_enabled_p(void);
|
2021-03-07 02:46:56 +03:00
|
|
|
unsigned rb_yjit_call_threshold(void);
|
2021-03-18 02:07:20 +03:00
|
|
|
void rb_yjit_invalidate_all_method_lookup_assumptions(void);
|
Rust YJIT
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
|
|
|
void rb_yjit_cme_invalidate(rb_callable_method_entry_t *cme);
|
2021-03-07 02:46:56 +03:00
|
|
|
void rb_yjit_collect_vm_usage_insn(int insn);
|
2021-04-07 22:51:50 +03:00
|
|
|
void rb_yjit_collect_binding_alloc(void);
|
|
|
|
void rb_yjit_collect_binding_set(void);
|
2021-07-07 21:15:40 +03:00
|
|
|
bool rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec);
|
Rust YJIT
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
|
|
|
void rb_yjit_init(void);
|
|
|
|
void rb_yjit_bop_redefined(int redefined_flag, enum ruby_basic_operators bop);
|
|
|
|
void rb_yjit_constant_state_changed(ID id);
|
|
|
|
void rb_yjit_iseq_mark(void *payload);
|
|
|
|
void rb_yjit_iseq_update_references(void *payload);
|
|
|
|
void rb_yjit_iseq_free(void *payload);
|
2021-03-07 02:46:56 +03:00
|
|
|
void rb_yjit_before_ractor_spawn(void);
|
New constant caching insn: opt_getconstant_path
Previously YARV bytecode implemented constant caching by having a pair
of instructions, opt_getinlinecache and opt_setinlinecache, wrapping a
series of getconstant calls (with putobject providing supporting
arguments).
This commit replaces that pattern with a new instruction,
opt_getconstant_path, handling both getting/setting the inline cache and
fetching the constant on a cache miss.
This is implemented by storing the full constant path as a
null-terminated array of IDs inside of the IC structure. idNULL is used
to signal an absolute constant reference.
$ ./miniruby --dump=insns -e '::Foo::Bar::Baz'
== disasm: #<ISeq:<main>@-e:1 (1,0)-(1,13)> (catch: FALSE)
0000 opt_getconstant_path <ic:0 ::Foo::Bar::Baz> ( 1)[Li]
0002 leave
The motivation for this is that we had increasingly found the need to
disassemble the instructions between the opt_getinlinecache and
opt_setinlinecache in order to determine the constant we are fetching,
or otherwise store metadata.
This disassembly was done:
* In opt_setinlinecache, to register the IC against the constant names
it is using for granular invalidation.
* In rb_iseq_free, to unregister the IC from the invalidation table.
* In YJIT to find the position of a opt_getinlinecache instruction to
invalidate it when the cache is populated
* In YJIT to register the constant names being used for invalidation.
With this change we no longe need disassemly for these (in fact
rb_iseq_each is now unused), as the list of constant names being
referenced is held in the IC. This should also make it possible to make
more optimizations in the future.
This may also reduce the size of iseqs, as previously each segment
required 32 bytes (on 64-bit platforms) for each constant segment. This
implementation only stores one ID per-segment.
There should be no significant performance change between this and the
previous implementation. Previously opt_getinlinecache was a "leaf"
instruction, but it included a jump (almost always to a separate cache
line). Now opt_getconstant_path is a non-leaf (it may
raise/autoload/call const_missing) but it does not jump. These seem to
even out.
2022-08-10 20:35:48 +03:00
|
|
|
void rb_yjit_constant_ic_update(const rb_iseq_t *const iseq, IC ic, unsigned insn_idx);
|
2021-10-02 01:38:39 +03:00
|
|
|
void rb_yjit_tracing_invalidate_all(void);
|
2021-03-07 02:46:56 +03:00
|
|
|
|
Rust YJIT
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
|
|
|
#else
|
2022-08-15 20:05:12 +03:00
|
|
|
// !USE_YJIT
|
Rust YJIT
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
|
|
|
// In these builds, YJIT could never be turned on. Provide dummy implementations.
|
|
|
|
|
|
|
|
static inline bool rb_yjit_enabled_p(void) { return false; }
|
|
|
|
static inline unsigned rb_yjit_call_threshold(void) { return UINT_MAX; }
|
|
|
|
static inline void rb_yjit_invalidate_all_method_lookup_assumptions(void) {}
|
|
|
|
static inline void rb_yjit_cme_invalidate(rb_callable_method_entry_t *cme) {}
|
|
|
|
static inline void rb_yjit_collect_vm_usage_insn(int insn) {}
|
|
|
|
static inline void rb_yjit_collect_binding_alloc(void) {}
|
|
|
|
static inline void rb_yjit_collect_binding_set(void) {}
|
|
|
|
static inline bool rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec) { return false; }
|
|
|
|
static inline void rb_yjit_init(void) {}
|
|
|
|
static inline void rb_yjit_bop_redefined(int redefined_flag, enum ruby_basic_operators bop) {}
|
|
|
|
static inline void rb_yjit_constant_state_changed(ID id) {}
|
|
|
|
static inline void rb_yjit_iseq_mark(void *payload) {}
|
|
|
|
static inline void rb_yjit_iseq_update_references(void *payload) {}
|
|
|
|
static inline void rb_yjit_iseq_free(void *payload) {}
|
|
|
|
static inline void rb_yjit_before_ractor_spawn(void) {}
|
New constant caching insn: opt_getconstant_path
Previously YARV bytecode implemented constant caching by having a pair
of instructions, opt_getinlinecache and opt_setinlinecache, wrapping a
series of getconstant calls (with putobject providing supporting
arguments).
This commit replaces that pattern with a new instruction,
opt_getconstant_path, handling both getting/setting the inline cache and
fetching the constant on a cache miss.
This is implemented by storing the full constant path as a
null-terminated array of IDs inside of the IC structure. idNULL is used
to signal an absolute constant reference.
$ ./miniruby --dump=insns -e '::Foo::Bar::Baz'
== disasm: #<ISeq:<main>@-e:1 (1,0)-(1,13)> (catch: FALSE)
0000 opt_getconstant_path <ic:0 ::Foo::Bar::Baz> ( 1)[Li]
0002 leave
The motivation for this is that we had increasingly found the need to
disassemble the instructions between the opt_getinlinecache and
opt_setinlinecache in order to determine the constant we are fetching,
or otherwise store metadata.
This disassembly was done:
* In opt_setinlinecache, to register the IC against the constant names
it is using for granular invalidation.
* In rb_iseq_free, to unregister the IC from the invalidation table.
* In YJIT to find the position of a opt_getinlinecache instruction to
invalidate it when the cache is populated
* In YJIT to register the constant names being used for invalidation.
With this change we no longe need disassemly for these (in fact
rb_iseq_each is now unused), as the list of constant names being
referenced is held in the IC. This should also make it possible to make
more optimizations in the future.
This may also reduce the size of iseqs, as previously each segment
required 32 bytes (on 64-bit platforms) for each constant segment. This
implementation only stores one ID per-segment.
There should be no significant performance change between this and the
previous implementation. Previously opt_getinlinecache was a "leaf"
instruction, but it included a jump (almost always to a separate cache
line). Now opt_getconstant_path is a non-leaf (it may
raise/autoload/call const_missing) but it does not jump. These seem to
even out.
2022-08-10 20:35:48 +03:00
|
|
|
static inline void rb_yjit_constant_ic_update(const rb_iseq_t *const iseq, IC ic, unsigned insn_idx) {}
|
Rust YJIT
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
|
|
|
static inline void rb_yjit_tracing_invalidate_all(void) {}
|
|
|
|
|
2022-08-15 20:05:12 +03:00
|
|
|
#endif // #if USE_YJIT
|
Rust YJIT
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
https://github.com/Shopify/ruby/commit/1fd9573d8b4b65219f1c2407f30a0a60e537f8be
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
2022-04-19 21:40:21 +03:00
|
|
|
|
2021-03-07 02:46:56 +03:00
|
|
|
#endif // #ifndef YJIT_H
|