ruby/iseq.c

2492 строки
68 KiB
C
Исходник Обычный вид История

/**********************************************************************
iseq.c -
$Author$
created at: 2006-07-11(Tue) 09:00:03 +0900
Copyright (C) 2006 Koichi Sasada
**********************************************************************/
#include "internal.h"
#include "ruby/util.h"
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
#include "eval_intern.h"
#ifdef HAVE_DLADDR
# include <dlfcn.h>
#endif
/* #define RUBY_MARK_FREE_DEBUG 1 */
#include "gc.h"
#include "vm_core.h"
#include "iseq.h"
#include "insns.inc"
#include "insns_info.inc"
#define ISEQ_MAJOR_VERSION 2
#define ISEQ_MINOR_VERSION 2
VALUE rb_cISeq;
#define hidden_obj_p(obj) (!SPECIAL_CONST_P(obj) && !RBASIC(obj)->klass)
static inline VALUE
obj_resurrect(VALUE obj)
{
if (hidden_obj_p(obj)) {
switch (BUILTIN_TYPE(obj)) {
case T_STRING:
obj = rb_str_resurrect(obj);
break;
case T_ARRAY:
obj = rb_ary_resurrect(obj);
break;
}
}
return obj;
}
static void
compile_data_free(struct iseq_compile_data *compile_data)
{
if (compile_data) {
struct iseq_compile_data_storage *cur, *next;
cur = compile_data->storage_head;
while (cur) {
next = cur->next;
ruby_xfree(cur);
cur = next;
}
ruby_xfree(compile_data);
}
}
static void
iseq_free(void *ptr)
{
rb_iseq_t *iseq;
RUBY_FREE_ENTER("iseq");
if (ptr) {
* rewrite method/block parameter fitting logic to optimize keyword arguments/parameters and a splat argument. [Feature #10440] (Details are described in this ticket) Most of complex part is moved to vm_args.c. Now, ISeq#to_a does not catch up new instruction format. * vm_core.h: change iseq data structures. * introduce rb_call_info_kw_arg_t to represent keyword arguments. * add rb_call_info_t::kw_arg. * rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num. * rename rb_iseq_t::arg_keywords to arg_keyword_num. * rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits. to represent keyword bitmap parameter index. This bitmap parameter shows that which keyword parameters are given or not given (0 for given). It is refered by `checkkeyword' instruction described bellow. * rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest to represent keyword rest parameter index. * add rb_iseq_t::arg_keyword_default_values to represent default keyword values. * rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE to represent (ci->flag & (SPLAT|BLOCKARG)) && ci->blockiseq == NULL && ci->kw_arg == NULL. * vm_insnhelper.c, vm_args.c: rewrite with refactoring. * rewrite splat argument code. * rewrite keyword arguments/parameters code. * merge method and block parameter fitting code into one code base. * vm.c, vm_eval.c: catch up these changes. * compile.c (new_callinfo): callinfo requires kw_arg parameter. * compile.c (compile_array_): check the last argument Hash object or not. If Hash object and all keys are Symbol literals, they are compiled to keyword arguments. * insns.def (checkkeyword): add new instruction. This instruction check the availability of corresponding keyword. For example, a method "def foo k1: 'v1'; end" is cimpiled to the following instructions. 0000 checkkeyword 2, 0 # check k1 is given. 0003 branchif 9 # if given, jump to address #9 0005 putstring "v1" 0007 setlocal_OP__WC__0 3 # k1 = 'v1' 0009 trace 8 0011 putnil 0012 trace 16 0014 leave * insns.def (opt_send_simple): removed and add new instruction "opt_send_without_block". * parse.y (new_args_tail_gen): reorder variables. Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)" has parameter variables "k1, kr1, k2, &b, internal_id, krest", but this patch reorders to "kr1, k1, k2, internal_id, krest, &b". (locate a block variable at last) * parse.y (vtable_pop): added. This function remove latest `n' variables from vtable. * iseq.c: catch up iseq data changes. * proc.c: ditto. * class.c (keyword_error): export as rb_keyword_error(). * common.mk: depend vm_args.c for vm.o. * hash.c (rb_hash_has_key): export. * internal.h: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 21:02:55 +03:00
int i;
iseq = ptr;
if (!iseq->orig) {
/* It's possible that strings are freed */
if (0) {
RUBY_GC_INFO("%s @ %s\n", RSTRING_PTR(iseq->location.label),
RSTRING_PTR(iseq->location.path));
}
RUBY_FREE_UNLESS_NULL(iseq->iseq_encoded);
RUBY_FREE_UNLESS_NULL(iseq->line_info_table);
RUBY_FREE_UNLESS_NULL(iseq->local_table);
RUBY_FREE_UNLESS_NULL(iseq->is_entries);
if (iseq->callinfo_entries) {
for (i=0; i<iseq->callinfo_size; i++) {
/* TODO: revisit callinfo data structure */
rb_call_info_kw_arg_t *kw_arg = iseq->callinfo_entries[i].kw_arg;
RUBY_FREE_UNLESS_NULL(kw_arg);
}
RUBY_FREE_UNLESS_NULL(iseq->callinfo_entries);
* rewrite method/block parameter fitting logic to optimize keyword arguments/parameters and a splat argument. [Feature #10440] (Details are described in this ticket) Most of complex part is moved to vm_args.c. Now, ISeq#to_a does not catch up new instruction format. * vm_core.h: change iseq data structures. * introduce rb_call_info_kw_arg_t to represent keyword arguments. * add rb_call_info_t::kw_arg. * rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num. * rename rb_iseq_t::arg_keywords to arg_keyword_num. * rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits. to represent keyword bitmap parameter index. This bitmap parameter shows that which keyword parameters are given or not given (0 for given). It is refered by `checkkeyword' instruction described bellow. * rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest to represent keyword rest parameter index. * add rb_iseq_t::arg_keyword_default_values to represent default keyword values. * rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE to represent (ci->flag & (SPLAT|BLOCKARG)) && ci->blockiseq == NULL && ci->kw_arg == NULL. * vm_insnhelper.c, vm_args.c: rewrite with refactoring. * rewrite splat argument code. * rewrite keyword arguments/parameters code. * merge method and block parameter fitting code into one code base. * vm.c, vm_eval.c: catch up these changes. * compile.c (new_callinfo): callinfo requires kw_arg parameter. * compile.c (compile_array_): check the last argument Hash object or not. If Hash object and all keys are Symbol literals, they are compiled to keyword arguments. * insns.def (checkkeyword): add new instruction. This instruction check the availability of corresponding keyword. For example, a method "def foo k1: 'v1'; end" is cimpiled to the following instructions. 0000 checkkeyword 2, 0 # check k1 is given. 0003 branchif 9 # if given, jump to address #9 0005 putstring "v1" 0007 setlocal_OP__WC__0 3 # k1 = 'v1' 0009 trace 8 0011 putnil 0012 trace 16 0014 leave * insns.def (opt_send_simple): removed and add new instruction "opt_send_without_block". * parse.y (new_args_tail_gen): reorder variables. Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)" has parameter variables "k1, kr1, k2, &b, internal_id, krest", but this patch reorders to "kr1, k1, k2, internal_id, krest, &b". (locate a block variable at last) * parse.y (vtable_pop): added. This function remove latest `n' variables from vtable. * iseq.c: catch up iseq data changes. * proc.c: ditto. * class.c (keyword_error): export as rb_keyword_error(). * common.mk: depend vm_args.c for vm.o. * hash.c (rb_hash_has_key): export. * internal.h: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 21:02:55 +03:00
}
RUBY_FREE_UNLESS_NULL(iseq->catch_table);
RUBY_FREE_UNLESS_NULL(iseq->param.opt_table);
if (iseq->param.keyword != NULL) {
RUBY_FREE_UNLESS_NULL(iseq->param.keyword->default_values);
RUBY_FREE_UNLESS_NULL(iseq->param.keyword);
}
compile_data_free(iseq->compile_data);
RUBY_FREE_UNLESS_NULL(iseq->iseq);
}
ruby_xfree(ptr);
}
RUBY_FREE_LEAVE("iseq");
}
static void
iseq_mark(void *ptr)
{
RUBY_MARK_ENTER("iseq");
if (ptr) {
rb_iseq_t *iseq = ptr;
RUBY_GC_INFO("%s @ %s\n", RSTRING_PTR(iseq->location.label), RSTRING_PTR(iseq->location.path));
RUBY_MARK_UNLESS_NULL(iseq->mark_ary);
RUBY_MARK_UNLESS_NULL(iseq->location.label);
RUBY_MARK_UNLESS_NULL(iseq->location.base_label);
RUBY_MARK_UNLESS_NULL(iseq->location.path);
RUBY_MARK_UNLESS_NULL(iseq->location.absolute_path);
RUBY_MARK_UNLESS_NULL((VALUE)iseq->cref_stack);
RUBY_MARK_UNLESS_NULL(iseq->klass);
RUBY_MARK_UNLESS_NULL(iseq->coverage);
RUBY_MARK_UNLESS_NULL(iseq->orig);
if (iseq->compile_data != 0) {
struct iseq_compile_data *const compile_data = iseq->compile_data;
RUBY_MARK_UNLESS_NULL(compile_data->mark_ary);
RUBY_MARK_UNLESS_NULL(compile_data->err_info);
RUBY_MARK_UNLESS_NULL(compile_data->catch_table_ary);
}
}
RUBY_MARK_LEAVE("iseq");
}
static size_t
iseq_memsize(const void *ptr)
{
size_t size = sizeof(rb_iseq_t);
const rb_iseq_t *iseq;
if (ptr) {
iseq = ptr;
if (!iseq->orig) {
size += iseq->iseq_size * sizeof(VALUE);
size += iseq->line_info_size * sizeof(struct iseq_line_info_entry);
size += iseq->local_table_size * sizeof(ID);
if (iseq->catch_table) {
size += iseq_catch_table_bytes(iseq->catch_table->size);
}
size += (iseq->param.opt_num + 1) * sizeof(VALUE);
if (iseq->param.keyword != NULL) {
size += sizeof(struct rb_iseq_param_keyword);
size += sizeof(VALUE) * (iseq->param.keyword->num - iseq->param.keyword->required_num);
}
size += iseq->is_size * sizeof(union iseq_inline_storage_entry);
size += iseq->callinfo_size * sizeof(rb_call_info_t);
if (iseq->compile_data) {
struct iseq_compile_data_storage *cur;
cur = iseq->compile_data->storage_head;
while (cur) {
size += cur->size + SIZEOF_ISEQ_COMPILE_DATA_STORAGE;
cur = cur->next;
}
size += sizeof(struct iseq_compile_data);
}
if (iseq->iseq) {
size += iseq->iseq_size * sizeof(VALUE);
}
}
}
return size;
}
static const rb_data_type_t iseq_data_type = {
"iseq",
{
iseq_mark,
iseq_free,
iseq_memsize,
}, /* functions */
0, 0,
RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_PROMOTED1 /* start from age == 2 */ | RUBY_TYPED_WB_PROTECTED
};
static VALUE
iseq_alloc(VALUE klass)
{
rb_iseq_t *iseq;
return TypedData_Make_Struct(klass, rb_iseq_t, &iseq_data_type, iseq);
}
static rb_iseq_location_t *
iseq_location_setup(rb_iseq_t *iseq, VALUE path, VALUE absolute_path, VALUE name, VALUE first_lineno)
{
rb_iseq_location_t *loc = &iseq->location;
RB_OBJ_WRITE(iseq->self, &loc->path, path);
if (RTEST(absolute_path) && rb_str_cmp(path, absolute_path) == 0) {
RB_OBJ_WRITE(iseq->self, &loc->absolute_path, path);
}
else {
RB_OBJ_WRITE(iseq->self, &loc->absolute_path, absolute_path);
}
RB_OBJ_WRITE(iseq->self, &loc->label, name);
RB_OBJ_WRITE(iseq->self, &loc->base_label, name);
loc->first_lineno = first_lineno;
return loc;
}
#define ISEQ_SET_CREF(iseq, cref) RB_OBJ_WRITE((iseq)->self, &(iseq)->cref_stack, (cref))
static void
set_relation(rb_iseq_t *iseq, const VALUE parent)
{
const VALUE type = iseq->type;
rb_thread_t *th = GET_THREAD();
rb_iseq_t *piseq;
/* set class nest stack */
if (type == ISEQ_TYPE_TOP) {
/* toplevel is private */
RB_OBJ_WRITE(iseq->self, &iseq->cref_stack, NEW_CREF(rb_cObject));
iseq->cref_stack->nd_refinements = Qnil;
iseq->cref_stack->nd_visi = NOEX_PRIVATE;
if (th->top_wrapper) {
NODE *cref = NEW_CREF(th->top_wrapper);
cref->nd_refinements = Qnil;
cref->nd_visi = NOEX_PRIVATE;
RB_OBJ_WRITE(cref, &cref->nd_next, iseq->cref_stack);
ISEQ_SET_CREF(iseq, cref);
}
iseq->local_iseq = iseq;
}
else if (type == ISEQ_TYPE_METHOD || type == ISEQ_TYPE_CLASS) {
ISEQ_SET_CREF(iseq, NEW_CREF(0)); /* place holder */
iseq->cref_stack->nd_refinements = Qnil;
iseq->local_iseq = iseq;
}
else if (RTEST(parent)) {
GetISeqPtr(parent, piseq);
ISEQ_SET_CREF(iseq, piseq->cref_stack);
iseq->local_iseq = piseq->local_iseq;
}
if (RTEST(parent)) {
GetISeqPtr(parent, piseq);
iseq->parent_iseq = piseq;
}
if (type == ISEQ_TYPE_MAIN) {
iseq->local_iseq = iseq;
}
}
void
rb_iseq_add_mark_object(rb_iseq_t *iseq, VALUE obj)
{
if (!RTEST(iseq->mark_ary)) {
RB_OBJ_WRITE(iseq->self, &iseq->mark_ary, rb_ary_tmp_new(3));
* include/ruby/ruby.h: constify RBasic::klass and add RBASIC_CLASS(obj) macro which returns a class of `obj'. This change is a part of RGENGC branch [ruby-trunk - Feature #8339]. * object.c: add new function rb_obj_reveal(). This function reveal interal (hidden) object by rb_obj_hide(). Note that do not change class before and after hiding. Only permitted example is: klass = RBASIC_CLASS(obj); rb_obj_hide(obj); .... rb_obj_reveal(obj, klass); TODO: API design. rb_obj_reveal() should be replaced with others. TODO: modify constified variables using cast may be harmful for compiler's analysis and optimizaton. Any idea to prohibt inserting RBasic::klass directly? If rename RBasic::klass and force to use RBASIC_CLASS(obj), then all codes such as `RBASIC(obj)->klass' will be compilation error. Is it acceptable? (We have similar experience at Ruby 1.9, for example "RARRAY(ary)->ptr" to "RARRAY_PTR(ary)". * internal.h: add some macros. * RBASIC_CLEAR_CLASS(obj) clear RBasic::klass to make it internal object. * RBASIC_SET_CLASS(obj, cls) set RBasic::klass. * RBASIC_SET_CLASS_RAW(obj, cls) same as RBASIC_SET_CLASS without write barrier (planned). * RCLASS_SET_SUPER(a, b) set super class of a. * array.c, class.c, compile.c, encoding.c, enum.c, error.c, eval.c, file.c, gc.c, hash.c, io.c, iseq.c, marshal.c, object.c, parse.y, proc.c, process.c, random.c, ruby.c, sprintf.c, string.c, thread.c, transcode.c, vm.c, vm_eval.c, win32/file.c: Use above macros and functions to access RBasic::klass. * ext/coverage/coverage.c, ext/readline/readline.c, ext/socket/ancdata.c, ext/socket/init.c, * ext/zlib/zlib.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40691 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-05-13 14:49:11 +04:00
RBASIC_CLEAR_CLASS(iseq->mark_ary);
}
rb_ary_push(iseq->mark_ary, obj);
}
static VALUE
prepare_iseq_build(rb_iseq_t *iseq,
VALUE name, VALUE path, VALUE absolute_path, VALUE first_lineno,
VALUE parent, enum iseq_type type,
const rb_compile_option_t *option)
{
iseq->type = type;
RB_OBJ_WRITE(iseq->self, &iseq->klass, 0);
set_relation(iseq, parent);
name = rb_fstring(name);
path = rb_fstring(path);
if (RTEST(absolute_path)) absolute_path = rb_fstring(absolute_path);
iseq_location_setup(iseq, path, absolute_path, name, first_lineno);
if (iseq != iseq->local_iseq) {
RB_OBJ_WRITE(iseq->self, &iseq->location.base_label, iseq->local_iseq->location.label);
}
iseq->defined_method_id = 0;
RB_OBJ_WRITE(iseq->self, &iseq->mark_ary, 0);
iseq->compile_data = ZALLOC(struct iseq_compile_data);
RB_OBJ_WRITE(iseq->self, &iseq->compile_data->err_info, Qnil);
RB_OBJ_WRITE(iseq->self, &iseq->compile_data->mark_ary, rb_ary_tmp_new(3));
iseq->compile_data->storage_head = iseq->compile_data->storage_current =
(struct iseq_compile_data_storage *)
ALLOC_N(char, INITIAL_ISEQ_COMPILE_DATA_STORAGE_BUFF_SIZE +
SIZEOF_ISEQ_COMPILE_DATA_STORAGE);
RB_OBJ_WRITE(iseq->self, &iseq->compile_data->catch_table_ary, rb_ary_new());
iseq->compile_data->storage_head->pos = 0;
iseq->compile_data->storage_head->next = 0;
iseq->compile_data->storage_head->size =
INITIAL_ISEQ_COMPILE_DATA_STORAGE_BUFF_SIZE;
iseq->compile_data->option = option;
iseq->compile_data->last_coverable_line = -1;
RB_OBJ_WRITE(iseq->self, &iseq->coverage, Qfalse);
if (!GET_THREAD()->parse_in_eval) {
VALUE coverages = rb_get_coverages();
if (RTEST(coverages)) {
RB_OBJ_WRITE(iseq->self, &iseq->coverage, rb_hash_lookup(coverages, path));
if (NIL_P(iseq->coverage)) RB_OBJ_WRITE(iseq->self, &iseq->coverage, Qfalse);
}
}
return Qtrue;
}
static VALUE
cleanup_iseq_build(rb_iseq_t *iseq)
{
struct iseq_compile_data *data = iseq->compile_data;
VALUE err = data->err_info;
iseq->compile_data = 0;
compile_data_free(data);
if (RTEST(err)) {
rb_funcall2(err, rb_intern("set_backtrace"), 1, &iseq->location.path);
rb_exc_raise(err);
}
return Qtrue;
}
static rb_compile_option_t COMPILE_OPTION_DEFAULT = {
OPT_INLINE_CONST_CACHE, /* int inline_const_cache; */
OPT_PEEPHOLE_OPTIMIZATION, /* int peephole_optimization; */
OPT_TAILCALL_OPTIMIZATION, /* int tailcall_optimization */
OPT_SPECIALISED_INSTRUCTION, /* int specialized_instruction; */
OPT_OPERANDS_UNIFICATION, /* int operands_unification; */
OPT_INSTRUCTIONS_UNIFICATION, /* int instructions_unification; */
OPT_STACK_CACHING, /* int stack_caching; */
OPT_TRACE_INSTRUCTION, /* int trace_instruction */
};
static const rb_compile_option_t COMPILE_OPTION_FALSE = {0};
static void
make_compile_option(rb_compile_option_t *option, VALUE opt)
{
if (opt == Qnil) {
*option = COMPILE_OPTION_DEFAULT;
}
else if (opt == Qfalse) {
*option = COMPILE_OPTION_FALSE;
}
else if (opt == Qtrue) {
int i;
for (i = 0; i < (int)(sizeof(rb_compile_option_t) / sizeof(int)); ++i)
((int *)option)[i] = 1;
}
else if (CLASS_OF(opt) == rb_cHash) {
*option = COMPILE_OPTION_DEFAULT;
#define SET_COMPILE_OPTION(o, h, mem) \
{ VALUE flag = rb_hash_aref((h), ID2SYM(rb_intern(#mem))); \
if (flag == Qtrue) { (o)->mem = 1; } \
else if (flag == Qfalse) { (o)->mem = 0; } \
}
#define SET_COMPILE_OPTION_NUM(o, h, mem) \
{ VALUE num = rb_hash_aref(opt, ID2SYM(rb_intern(#mem))); \
if (!NIL_P(num)) (o)->mem = NUM2INT(num); \
}
SET_COMPILE_OPTION(option, opt, inline_const_cache);
SET_COMPILE_OPTION(option, opt, peephole_optimization);
SET_COMPILE_OPTION(option, opt, tailcall_optimization);
SET_COMPILE_OPTION(option, opt, specialized_instruction);
SET_COMPILE_OPTION(option, opt, operands_unification);
SET_COMPILE_OPTION(option, opt, instructions_unification);
SET_COMPILE_OPTION(option, opt, stack_caching);
SET_COMPILE_OPTION(option, opt, trace_instruction);
SET_COMPILE_OPTION_NUM(option, opt, debug_level);
#undef SET_COMPILE_OPTION
#undef SET_COMPILE_OPTION_NUM
}
else {
rb_raise(rb_eTypeError, "Compile option must be Hash/true/false/nil");
}
}
static VALUE
make_compile_option_value(rb_compile_option_t *option)
{
VALUE opt = rb_hash_new();
#define SET_COMPILE_OPTION(o, h, mem) \
rb_hash_aset((h), ID2SYM(rb_intern(#mem)), (o)->mem ? Qtrue : Qfalse)
#define SET_COMPILE_OPTION_NUM(o, h, mem) \
rb_hash_aset((h), ID2SYM(rb_intern(#mem)), INT2NUM((o)->mem))
{
SET_COMPILE_OPTION(option, opt, inline_const_cache);
SET_COMPILE_OPTION(option, opt, peephole_optimization);
SET_COMPILE_OPTION(option, opt, tailcall_optimization);
SET_COMPILE_OPTION(option, opt, specialized_instruction);
SET_COMPILE_OPTION(option, opt, operands_unification);
SET_COMPILE_OPTION(option, opt, instructions_unification);
SET_COMPILE_OPTION(option, opt, stack_caching);
SET_COMPILE_OPTION(option, opt, trace_instruction);
SET_COMPILE_OPTION_NUM(option, opt, debug_level);
}
#undef SET_COMPILE_OPTION
#undef SET_COMPILE_OPTION_NUM
return opt;
}
VALUE
rb_iseq_new(NODE *node, VALUE name, VALUE path, VALUE absolute_path,
VALUE parent, enum iseq_type type)
{
return rb_iseq_new_with_opt(node, name, path, absolute_path, INT2FIX(0), parent, type,
&COMPILE_OPTION_DEFAULT);
}
VALUE
rb_iseq_new_top(NODE *node, VALUE name, VALUE path, VALUE absolute_path, VALUE parent)
{
return rb_iseq_new_with_opt(node, name, path, absolute_path, INT2FIX(0), parent, ISEQ_TYPE_TOP,
&COMPILE_OPTION_DEFAULT);
}
VALUE
rb_iseq_new_main(NODE *node, VALUE path, VALUE absolute_path)
{
rb_thread_t *th = GET_THREAD();
VALUE parent = th->base_block->iseq->self;
return rb_iseq_new_with_opt(node, rb_str_new2("<main>"), path, absolute_path, INT2FIX(0),
parent, ISEQ_TYPE_MAIN, &COMPILE_OPTION_DEFAULT);
}
VALUE
rb_iseq_new_with_opt(NODE *node, VALUE name, VALUE path, VALUE absolute_path,
VALUE first_lineno, VALUE parent, enum iseq_type type,
const rb_compile_option_t *option)
{
/* TODO: argument check */
rb_iseq_t *iseq;
VALUE self = iseq_alloc(rb_cISeq);
GetISeqPtr(self, iseq);
iseq->self = self;
prepare_iseq_build(iseq, name, path, absolute_path, first_lineno, parent,
type, option);
rb_iseq_compile_node(self, node);
cleanup_iseq_build(iseq);
return self;
}
#define CHECK_ARRAY(v) rb_convert_type((v), T_ARRAY, "Array", "to_ary")
#define CHECK_HASH(v) rb_convert_type((v), T_HASH, "Hash", "to_hash")
#define CHECK_STRING(v) rb_convert_type((v), T_STRING, "String", "to_str")
#define CHECK_SYMBOL(v) rb_convert_type((v), T_SYMBOL, "Symbol", "to_sym")
static inline VALUE CHECK_INTEGER(VALUE v) {(void)NUM2LONG(v); return v;}
static enum iseq_type
iseq_type_from_sym(VALUE type)
{
const ID id_top = rb_intern("top");
const ID id_method = rb_intern("method");
const ID id_block = rb_intern("block");
const ID id_class = rb_intern("class");
const ID id_rescue = rb_intern("rescue");
const ID id_ensure = rb_intern("ensure");
const ID id_eval = rb_intern("eval");
const ID id_main = rb_intern("main");
const ID id_defined_guard = rb_intern("defined_guard");
/* ensure all symbols are static or pinned down before
* conversion */
const ID typeid = rb_check_id(&type);
if (typeid == id_top) return ISEQ_TYPE_TOP;
if (typeid == id_method) return ISEQ_TYPE_METHOD;
if (typeid == id_block) return ISEQ_TYPE_BLOCK;
if (typeid == id_class) return ISEQ_TYPE_CLASS;
if (typeid == id_rescue) return ISEQ_TYPE_RESCUE;
if (typeid == id_ensure) return ISEQ_TYPE_ENSURE;
if (typeid == id_eval) return ISEQ_TYPE_EVAL;
if (typeid == id_main) return ISEQ_TYPE_MAIN;
if (typeid == id_defined_guard) return ISEQ_TYPE_DEFINED_GUARD;
return (enum iseq_type)-1;
}
static VALUE
iseq_load(VALUE self, VALUE data, VALUE parent, VALUE opt)
{
VALUE iseqval = iseq_alloc(self);
VALUE magic, version1, version2, format_type, misc;
VALUE name, path, absolute_path, first_lineno;
VALUE type, body, locals, params, exception;
st_data_t iseq_type;
rb_iseq_t *iseq;
rb_compile_option_t option;
int i = 0;
/* [magic, major_version, minor_version, format_type, misc,
* label, path, first_lineno,
* type, locals, args, exception_table, body]
*/
data = CHECK_ARRAY(data);
magic = CHECK_STRING(rb_ary_entry(data, i++));
version1 = CHECK_INTEGER(rb_ary_entry(data, i++));
version2 = CHECK_INTEGER(rb_ary_entry(data, i++));
format_type = CHECK_INTEGER(rb_ary_entry(data, i++));
misc = CHECK_HASH(rb_ary_entry(data, i++));
((void)magic, (void)version1, (void)version2, (void)format_type);
name = CHECK_STRING(rb_ary_entry(data, i++));
path = CHECK_STRING(rb_ary_entry(data, i++));
absolute_path = rb_ary_entry(data, i++);
absolute_path = NIL_P(absolute_path) ? Qnil : CHECK_STRING(absolute_path);
first_lineno = CHECK_INTEGER(rb_ary_entry(data, i++));
type = CHECK_SYMBOL(rb_ary_entry(data, i++));
locals = CHECK_ARRAY(rb_ary_entry(data, i++));
params = CHECK_HASH(rb_ary_entry(data, i++));
exception = CHECK_ARRAY(rb_ary_entry(data, i++));
body = CHECK_ARRAY(rb_ary_entry(data, i++));
GetISeqPtr(iseqval, iseq);
iseq->self = iseqval;
iseq->local_iseq = iseq;
iseq_type = iseq_type_from_sym(type);
if (iseq_type == (enum iseq_type)-1) {
rb_raise(rb_eTypeError, "unsupport type: :%"PRIsVALUE, rb_sym2str(type));
}
if (parent == Qnil) {
parent = 0;
}
make_compile_option(&option, opt);
prepare_iseq_build(iseq, name, path, absolute_path, first_lineno,
parent, (enum iseq_type)iseq_type, &option);
rb_iseq_build_from_ary(iseq, misc, locals, params, exception, body);
cleanup_iseq_build(iseq);
return iseqval;
}
static VALUE
caller_location(VALUE *path, VALUE *absolute_path)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(th, th->cfp);
if (cfp) {
int line = rb_vm_get_sourceline(cfp);
*path = cfp->iseq->location.path;
*absolute_path = cfp->iseq->location.absolute_path;
return INT2FIX(line);
}
else {
*path = rb_str_new2("<compiled>");
*absolute_path = *path;
return INT2FIX(1);
}
}
VALUE
rb_method_for_self_aref(VALUE name, VALUE arg, rb_insn_func_t func)
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
{
VALUE iseqval = iseq_alloc(rb_cISeq);
rb_iseq_t *iseq;
VALUE path, absolute_path;
VALUE lineno = caller_location(&path, &absolute_path);
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
VALUE parent = 0;
VALUE misc, locals, params, exception, body, send_arg;
GetISeqPtr(iseqval, iseq);
iseq->self = iseqval;
iseq->local_iseq = iseq;
prepare_iseq_build(iseq, rb_sym2str(name), path, absolute_path,
lineno, parent,
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
ISEQ_TYPE_METHOD, &COMPILE_OPTION_DEFAULT);
misc = params = rb_hash_new(); /* empty */
locals = exception = rb_ary_tmp_new(0); /* empty */
body = rb_ary_tmp_new(5);
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
#define S(s) ID2SYM(rb_intern(#s))
#define ADD(a) rb_ary_push(body, rb_obj_hide(a))
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
/* def name; self[arg]; end */
ADD(lineno);
ADD(rb_ary_new3(2, S(putobject), arg));
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
#if SIZEOF_VALUE <= SIZEOF_LONG
send_arg = LONG2NUM((SIGNED_VALUE)func);
#else
send_arg = LL2NUM((SIGNED_VALUE)func);
#endif
send_arg = rb_ary_new3(2, S(opt_call_c_function), send_arg);
ADD(send_arg);
ADD(rb_ary_new3(1, S(leave)));
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
#undef S
#undef ADD
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
rb_iseq_build_from_ary(iseq, misc, locals, params, exception, body);
cleanup_iseq_build(iseq);
rb_ary_clear(body);
rb_ary_clear(send_arg);
return iseqval;
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
}
VALUE
rb_method_for_self_aset(VALUE name, VALUE arg, rb_insn_func_t func)
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
{
VALUE iseqval = iseq_alloc(rb_cISeq);
rb_iseq_t *iseq;
VALUE path, absolute_path;
VALUE lineno = caller_location(&path, &absolute_path);
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
VALUE parent = 0;
VALUE misc, locals, params, exception, body, send_arg;
GetISeqPtr(iseqval, iseq);
iseq->self = iseqval;
iseq->local_iseq = iseq;
prepare_iseq_build(iseq, rb_sym2str(name), path, absolute_path,
lineno, parent,
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
ISEQ_TYPE_METHOD, &COMPILE_OPTION_DEFAULT);
/* def name=(val); self[arg] = val; end */
#define S(s) ID2SYM(rb_intern(#s))
#define ADD(a) rb_ary_push(body, rb_obj_hide(a))
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
misc = rb_hash_new(); /* empty */
locals = rb_obj_hide(rb_ary_new3(1, S(val)));
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
params = rb_hash_new();
exception = rb_ary_tmp_new(0); /* empty */
body = rb_ary_tmp_new(6);
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
rb_hash_aset(params, S(lead_num), INT2FIX(1));
ADD(lineno);
ADD(rb_ary_new3(3, S(getlocal), INT2FIX(2), INT2FIX(0)));
ADD(rb_ary_new3(2, S(putobject), arg));
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
#if SIZEOF_VALUE <= SIZEOF_LONG
send_arg = LONG2NUM((SIGNED_VALUE)func);
#else
send_arg = LL2NUM((SIGNED_VALUE)func);
#endif
send_arg = rb_ary_new3(2, S(opt_call_c_function), send_arg);
ADD(send_arg);
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
ADD(rb_ary_new3(1, S(pop)));
ADD(rb_ary_new3(1, S(leave)));
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
#undef S
#undef ADD
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
rb_iseq_build_from_ary(iseq, misc, locals, params, exception, body);
cleanup_iseq_build(iseq);
rb_ary_clear(body);
rb_ary_clear(send_arg);
return iseqval;
struct: avoid all O(n) behavior on access This avoids O(n) on lookups with structs over 10 members. This also avoids O(n) behavior on all assignments on Struct members. Members 0..9 still use existing C methods to read in O(1) time Benchmark results: vm2_struct_big_aref_hi* 1.305 vm2_struct_big_aref_lo* 1.157 vm2_struct_big_aset* 3.306 vm2_struct_small_aref* 1.015 vm2_struct_small_aset* 3.273 Note: I chose use loading instructions from an array instead of writing directly to linked-lists in compile.c for ease-of-maintainability. We may move the method definitions to prelude.rb-like files in the future. I have also tested this patch with the following patch to disable the C ref_func methods and ensured the test suite and rubyspec works --- a/struct.c +++ b/struct.c @@ -209,7 +209,7 @@ setup_struct(VALUE nstr, VALUE members) ID id = SYM2ID(ptr_members[i]); VALUE off = LONG2NUM(i); - if (i < N_REF_FUNC) { + if (0 && i < N_REF_FUNC) { rb_define_method_id(nstr, id, ref_func[i], 0); } else { * iseq.c (rb_method_for_self_aref, rb_method_for_self_aset): new methods to generate bytecode for struct.c [Feature #10575] * struct.c (rb_struct_ref, rb_struct_set): remove (define_aref_method, define_aset_method): new functions (setup_struct): use new functions * test/ruby/test_struct.rb: add test for struct >10 members * benchmark/bm_vm2_struct_big_aref_hi.rb: new benchmark * benchmark/bm_vm2_struct_big_aref_lo.rb: ditto * benchmark/bm_vm2_struct_big_aset.rb: ditto * benchmark/bm_vm2_struct_small_aref.rb: ditto * benchmark/bm_vm2_struct_small_aset.rb: ditto git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48748 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-12-09 18:43:49 +03:00
}
/*
* :nodoc:
*/
static VALUE
iseq_s_load(int argc, VALUE *argv, VALUE self)
{
VALUE data, opt=Qnil;
rb_scan_args(argc, argv, "11", &data, &opt);
return iseq_load(self, data, 0, opt);
}
VALUE
* iseq.c (rb_iseq_load): renamed from ruby_iseq_load, since it is for C extensions or the ruby core. [ruby-core:21407] Index: compile.c =================================================================== --- compile.c (revision 21649) +++ compile.c (working copy) @@ -5078,5 +5078,5 @@ iseq_build_exception(rb_iseq_t *iseq, st } else { - eiseqval = ruby_iseq_load(ptr[1], iseq->self, Qnil); + eiseqval = rb_iseq_load(ptr[1], iseq->self, Qnil); } @@ -5162,5 +5162,5 @@ iseq_build_body(rb_iseq_t *iseq, LINK_AN if (op != Qnil) { if (TYPE(op) == T_ARRAY) { - argv[j] = ruby_iseq_load(op, iseq->self, Qnil); + argv[j] = rb_iseq_load(op, iseq->self, Qnil); } else if (CLASS_OF(op) == rb_cISeq) { Index: iseq.c =================================================================== --- iseq.c (revision 21649) +++ iseq.c (working copy) @@ -448,5 +448,5 @@ iseq_s_load(int argc, VALUE *argv, VALUE VALUE -ruby_iseq_load(VALUE data, VALUE parent, VALUE opt) +rb_iseq_load(VALUE data, VALUE parent, VALUE opt) { return iseq_load(rb_cISeq, data, parent, opt); Index: iseq.h =================================================================== --- iseq.h (revision 21649) +++ iseq.h (working copy) @@ -21,5 +21,5 @@ VALUE ruby_iseq_build_from_ary(rb_iseq_t /* iseq.c */ -VALUE ruby_iseq_load(VALUE data, VALUE parent, VALUE opt); +VALUE rb_iseq_load(VALUE data, VALUE parent, VALUE opt); struct st_table *ruby_insn_make_insn_table(void); git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@21650 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2009-01-18 22:05:15 +03:00
rb_iseq_load(VALUE data, VALUE parent, VALUE opt)
{
return iseq_load(rb_cISeq, data, parent, opt);
}
VALUE
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
rb_iseq_compile_with_option(VALUE src, VALUE file, VALUE absolute_path, VALUE line, rb_block_t *base_block, VALUE opt)
{
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
int state;
rb_thread_t *th = GET_THREAD();
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
rb_block_t *prev_base_block = th->base_block;
VALUE iseqval = Qundef;
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
th->base_block = base_block;
TH_PUSH_TAG(th);
if ((state = EXEC_TAG()) == 0) {
VALUE parser;
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
int ln = NUM2INT(line);
NODE *node;
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
rb_compile_option_t option;
StringValueCStr(file);
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
make_compile_option(&option, opt);
parser = rb_parser_new();
if (RB_TYPE_P((src), T_FILE))
node = rb_parser_compile_file_path(parser, file, src, ln);
else {
node = rb_parser_compile_string_path(parser, file, src, ln);
if (!node) {
rb_exc_raise(GET_THREAD()->errinfo); /* TODO: check err */
}
}
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
if (base_block && base_block->iseq) {
iseqval = rb_iseq_new_with_opt(node, base_block->iseq->location.label,
file, absolute_path, line, base_block->iseq->self,
ISEQ_TYPE_EVAL, &option);
}
else {
iseqval = rb_iseq_new_with_opt(node, rb_str_new2("<compiled>"), file, absolute_path, line, Qfalse,
ISEQ_TYPE_TOP, &option);
}
}
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
TH_POP_TAG();
th->base_block = prev_base_block;
if (state) {
JUMP_TAG(state);
}
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
return iseqval;
}
VALUE
rb_iseq_compile(VALUE src, VALUE file, VALUE line)
{
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
return rb_iseq_compile_with_option(src, file, Qnil, line, 0, Qnil);
}
VALUE
rb_iseq_compile_on_base(VALUE src, VALUE file, VALUE line, rb_block_t *base_block)
{
return rb_iseq_compile_with_option(src, file, Qnil, line, base_block, Qnil);
}
/*
* call-seq:
* InstructionSequence.compile(source[, file[, path[, line[, options]]]]) -> iseq
* InstructionSequence.new(source[, file[, path[, line[, options]]]]) -> iseq
*
* Takes +source+, a String of Ruby code and compiles it to an
* InstructionSequence.
*
* Optionally takes +file+, +path+, and +line+ which describe the filename,
* absolute path and first line number of the ruby code in +source+ which are
* metadata attached to the returned +iseq+.
*
* +options+, which can be +true+, +false+ or a +Hash+, is used to
* modify the default behavior of the Ruby iseq compiler.
*
* For details regarding valid compile options see ::compile_option=.
*
* RubyVM::InstructionSequence.compile("a = 1 + 2")
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
*
*/
static VALUE
iseq_s_compile(int argc, VALUE *argv, VALUE self)
{
VALUE src, file = Qnil, path = Qnil, line = INT2FIX(1), opt = Qnil;
rb_secure(1);
rb_scan_args(argc, argv, "14", &src, &file, &path, &line, &opt);
if (NIL_P(file)) file = rb_str_new2("<compiled>");
if (NIL_P(line)) line = INT2FIX(1);
* iseq.c, vm_eval.c: set th->base_block properly. th->base_block is information for (a) parsing, (b) compiling and (c) setting up the frame to execute the program passed by `eval' method. For example, (1) parser need to know up-level variables to detect it is variable or method without paren. Befor (a), (b) and (c), VM set th->base_block by passed bindng (or previous frame information). After execute (a), (b) and (c), VM should clear th->base_block. However, if (a), (b) or (c) raises an exception, then th->base_block is not cleared. Problem is that the uncleared value th->balo_block is used for irrelevant iseq compilation. It causes SEGV or critical error. I tried to solve this problem: to clear them before exception, but finally I found out that it is difficult to do it (Ruby program can be run in many places). Because of this background, I set th->base_block before compiling iseq and restore it after compiling. Basically, th->base_block is dirty hack (similar to global variable) and this patch is also dirty. * bootstraptest/test_eval.rb: add a test for above. * internal.h: remove unused decl. * iseq.c (rb_iseq_compile_with_option): add base_block parameter. set th->base_block before compation and restore it after compilation. * ruby.c (require_libraries): pass 0 as base_block instead of setting th->base_block * tool/compile_prelude.rb (prelude_eval): apply above changes. * vm.c, vm_eval.c: ditto. * vm_core.h: add comments. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@36179 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-06-22 13:32:56 +04:00
return rb_iseq_compile_with_option(src, file, path, line, 0, opt);
}
/*
* call-seq:
* InstructionSequence.compile_file(file[, options]) -> iseq
*
* Takes +file+, a String with the location of a Ruby source file, reads,
* parses and compiles the file, and returns +iseq+, the compiled
* InstructionSequence with source location metadata set.
*
* Optionally takes +options+, which can be +true+, +false+ or a +Hash+, to
* modify the default behavior of the Ruby iseq compiler.
*
* For details regarding valid compile options see ::compile_option=.
*
* # /tmp/hello.rb
* puts "Hello, world!"
*
* # elsewhere
* RubyVM::InstructionSequence.compile_file("/tmp/hello.rb")
* #=> <RubyVM::InstructionSequence:<main>@/tmp/hello.rb>
*/
static VALUE
iseq_s_compile_file(int argc, VALUE *argv, VALUE self)
{
VALUE file, line = INT2FIX(1), opt = Qnil;
VALUE parser;
VALUE f;
NODE *node;
const char *fname;
rb_compile_option_t option;
rb_secure(1);
rb_scan_args(argc, argv, "11", &file, &opt);
FilePathValue(file);
fname = StringValueCStr(file);
f = rb_file_open_str(file, "r");
parser = rb_parser_new();
node = rb_parser_compile_file(parser, fname, f, NUM2INT(line));
rb_io_close(f);
make_compile_option(&option, opt);
return rb_iseq_new_with_opt(node, rb_str_new2("<main>"), file,
rb_realpath_internal(Qnil, file, 1), line, Qfalse,
ISEQ_TYPE_TOP, &option);
}
/*
* call-seq:
* InstructionSequence.compile_option = options
*
* Sets the default values for various optimizations in the Ruby iseq
* compiler.
*
* Possible values for +options+ include +true+, which enables all options,
* +false+ which disables all options, and +nil+ which leaves all options
* unchanged.
*
* You can also pass a +Hash+ of +options+ that you want to change, any
* options not present in the hash will be left unchanged.
*
* Possible option names (which are keys in +options+) which can be set to
* +true+ or +false+ include:
*
* * +:inline_const_cache+
* * +:instructions_unification+
* * +:operands_unification+
* * +:peephole_optimization+
* * +:specialized_instruction+
* * +:stack_caching+
* * +:tailcall_optimization+
* * +:trace_instruction+
*
* Additionally, +:debug_level+ can be set to an integer.
*
* These default options can be overwritten for a single run of the iseq
* compiler by passing any of the above values as the +options+ parameter to
* ::new, ::compile and ::compile_file.
*/
static VALUE
iseq_s_compile_option_set(VALUE self, VALUE opt)
{
rb_compile_option_t option;
rb_secure(1);
make_compile_option(&option, opt);
COMPILE_OPTION_DEFAULT = option;
return opt;
}
/*
* call-seq:
* InstructionSequence.compile_option -> options
*
* Returns a hash of default options used by the Ruby iseq compiler.
*
* For details, see InstructionSequence.compile_option=.
*/
static VALUE
iseq_s_compile_option_get(VALUE self)
{
return make_compile_option_value(&COMPILE_OPTION_DEFAULT);
}
static rb_iseq_t *
iseq_check(VALUE val)
{
rb_iseq_t *iseq;
GetISeqPtr(val, iseq);
if (!iseq->location.label) {
rb_raise(rb_eTypeError, "uninitialized InstructionSequence");
}
return iseq;
}
/*
* call-seq:
* iseq.eval -> obj
*
* Evaluates the instruction sequence and returns the result.
*
* RubyVM::InstructionSequence.compile("1 + 2").eval #=> 3
*/
static VALUE
iseq_eval(VALUE self)
{
rb_secure(1);
return rb_iseq_eval(self);
}
/*
* Returns a human-readable string representation of this instruction
* sequence, including the #label and #path.
*/
static VALUE
iseq_inspect(VALUE self)
{
rb_iseq_t *iseq;
GetISeqPtr(self, iseq);
if (!iseq->location.label) {
return rb_sprintf("#<%s: uninitialized>", rb_obj_classname(self));
}
return rb_sprintf("<%s:%s@%s>",
rb_obj_classname(self),
RSTRING_PTR(iseq->location.label), RSTRING_PTR(iseq->location.path));
}
/*
* Returns the path of this instruction sequence.
*
* <code><compiled></code> if the iseq was evaluated from a string.
*
* For example, using irb:
*
* iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
* iseq.path
* #=> "<compiled>"
*
* Using ::compile_file:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* # in irb
* > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
* > iseq.path #=> /tmp/method.rb
*/
VALUE
rb_iseq_path(VALUE self)
{
rb_iseq_t *iseq;
GetISeqPtr(self, iseq);
return iseq->location.path;
}
/*
* Returns the absolute path of this instruction sequence.
*
* +nil+ if the iseq was evaluated from a string.
*
* For example, using ::compile_file:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* # in irb
* > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
* > iseq.absolute_path #=> /tmp/method.rb
*/
VALUE
rb_iseq_absolute_path(VALUE self)
{
rb_iseq_t *iseq;
GetISeqPtr(self, iseq);
return iseq->location.absolute_path;
}
/* Returns the label of this instruction sequence.
*
* <code><main></code> if it's at the top level, <code><compiled></code> if it
* was evaluated from a string.
*
* For example, using irb:
*
* iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
* iseq.label
* #=> "<compiled>"
*
* Using ::compile_file:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* # in irb
* > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
* > iseq.label #=> <main>
*/
VALUE
rb_iseq_label(VALUE self)
{
rb_iseq_t *iseq;
GetISeqPtr(self, iseq);
return iseq->location.label;
}
/* Returns the base label of this instruction sequence.
*
* For example, using irb:
*
* iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
* iseq.base_label
* #=> "<compiled>"
*
* Using ::compile_file:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* # in irb
* > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb')
* > iseq.base_label #=> <main>
*/
VALUE
rb_iseq_base_label(VALUE self)
{
rb_iseq_t *iseq;
GetISeqPtr(self, iseq);
return iseq->location.base_label;
}
/* Returns the number of the first source line where the instruction sequence
* was loaded from.
*
* For example, using irb:
*
* iseq = RubyVM::InstructionSequence.compile('num = 1 + 2')
* #=> <RubyVM::InstructionSequence:<compiled>@<compiled>>
* iseq.first_lineno
* #=> 1
*/
VALUE
rb_iseq_first_lineno(VALUE self)
{
rb_iseq_t *iseq;
GetISeqPtr(self, iseq);
return iseq->location.first_lineno;
}
VALUE
rb_iseq_klass(VALUE self)
{
rb_iseq_t *iseq;
GetISeqPtr(self, iseq);
return iseq->local_iseq->klass;
}
VALUE
rb_iseq_method_name(VALUE self)
{
rb_iseq_t *iseq, *local_iseq;
GetISeqPtr(self, iseq);
local_iseq = iseq->local_iseq;
if (local_iseq->type == ISEQ_TYPE_METHOD) {
return local_iseq->location.base_label;
}
else {
return Qnil;
}
}
static
VALUE iseq_data_to_ary(rb_iseq_t *iseq);
/*
* call-seq:
* iseq.to_a -> ary
*
* Returns an Array with 14 elements representing the instruction sequence
* with the following data:
*
* [magic]
* A string identifying the data format. <b>Always
* +YARVInstructionSequence/SimpleDataFormat+.</b>
*
* [major_version]
* The major version of the instruction sequence.
*
* [minor_version]
* The minor version of the instruction sequence.
*
* [format_type]
* A number identifying the data format. <b>Always 1</b>.
*
* [misc]
* A hash containing:
*
* [+:arg_size+]
* the total number of arguments taken by the method or the block (0 if
* _iseq_ doesn't represent a method or block)
* [+:local_size+]
* the number of local variables + 1
* [+:stack_max+]
* used in calculating the stack depth at which a SystemStackError is
* thrown.
*
* [#label]
* The name of the context (block, method, class, module, etc.) that this
* instruction sequence belongs to.
*
* <code><main></code> if it's at the top level, <code><compiled></code> if
* it was evaluated from a string.
*
* [#path]
* The relative path to the Ruby file where the instruction sequence was
* loaded from.
*
* <code><compiled></code> if the iseq was evaluated from a string.
*
* [#absolute_path]
* The absolute path to the Ruby file where the instruction sequence was
* loaded from.
*
* +nil+ if the iseq was evaluated from a string.
*
* [#first_lineno]
* The number of the first source line where the instruction sequence was
* loaded from.
*
* [type]
* The type of the instruction sequence.
*
* Valid values are +:top+, +:method+, +:block+, +:class+, +:rescue+,
* +:ensure+, +:eval+, +:main+, and +:defined_guard+.
*
* [locals]
* An array containing the names of all arguments and local variables as
* symbols.
*
* [params]
* An Hash object containing parameter information.
*
* More info about these values can be found in +vm_core.h+.
*
* [catch_table]
* A list of exceptions and control flow operators (rescue, next, redo,
* break, etc.).
*
* [bytecode]
* An array of arrays containing the instruction names and operands that
* make up the body of the instruction sequence.
*
* Note that this format is MRI specific and version dependent.
*
*/
static VALUE
iseq_to_a(VALUE self)
{
rb_iseq_t *iseq = iseq_check(self);
rb_secure(1);
return iseq_data_to_ary(iseq);
}
/* TODO: search algorithm is brute force.
this should be binary search or so. */
static struct iseq_line_info_entry *
get_line_info(const rb_iseq_t *iseq, size_t pos)
{
size_t i = 0, size = iseq->line_info_size;
struct iseq_line_info_entry *table = iseq->line_info_table;
const int debug = 0;
if (debug) {
printf("size: %"PRIdSIZE"\n", size);
printf("table[%"PRIdSIZE"]: position: %d, line: %d, pos: %"PRIdSIZE"\n",
i, table[i].position, table[i].line_no, pos);
}
if (size == 0) {
return 0;
}
else if (size == 1) {
return &table[0];
}
else {
for (i=1; i<size; i++) {
if (debug) printf("table[%"PRIdSIZE"]: position: %d, line: %d, pos: %"PRIdSIZE"\n",
i, table[i].position, table[i].line_no, pos);
if (table[i].position == pos) {
return &table[i];
}
if (table[i].position > pos) {
return &table[i-1];
}
}
}
return &table[i-1];
}
static unsigned int
find_line_no(const rb_iseq_t *iseq, size_t pos)
{
struct iseq_line_info_entry *entry = get_line_info(iseq, pos);
if (entry) {
return entry->line_no;
}
else {
return 0;
}
}
unsigned int
rb_iseq_line_no(const rb_iseq_t *iseq, size_t pos)
{
if (pos == 0) {
return find_line_no(iseq, pos);
}
else {
return find_line_no(iseq, pos - 1);
}
}
static VALUE
id_to_name(ID id, VALUE default_value)
{
VALUE str = rb_id2str(id);
if (!str) {
str = default_value;
}
else if (!rb_str_symname_p(str)) {
str = rb_str_inspect(str);
}
return str;
}
VALUE
rb_insn_operand_intern(const rb_iseq_t *iseq,
VALUE insn, int op_no, VALUE op,
int len, size_t pos, const VALUE *pnop, VALUE child)
{
const char *types = insn_op_types(insn);
char type = types[op_no];
VALUE ret;
switch (type) {
case TS_OFFSET: /* LONG */
ret = rb_sprintf("%"PRIdVALUE, (VALUE)(pos + len + op));
break;
case TS_NUM: /* ULONG */
ret = rb_sprintf("%"PRIuVALUE, op);
break;
case TS_LINDEX:{
if (insn == BIN(getlocal) || insn == BIN(setlocal)) {
if (pnop) {
const rb_iseq_t *diseq = iseq;
VALUE level = *pnop, i;
for (i = 0; i < level; i++) {
diseq = diseq->parent_iseq;
}
ret = id_to_name(diseq->local_table[diseq->local_size - op], INT2FIX('*'));
}
else {
ret = rb_sprintf("%"PRIuVALUE, op);
}
}
else {
ret = rb_inspect(INT2FIX(op));
}
break;
}
case TS_ID: /* ID (symbol) */
op = ID2SYM(op);
case TS_VALUE: /* VALUE */
op = obj_resurrect(op);
ret = rb_inspect(op);
if (CLASS_OF(op) == rb_cISeq) {
if (child) {
rb_ary_push(child, op);
}
}
break;
case TS_ISEQ: /* iseq */
{
rb_iseq_t *iseq = (rb_iseq_t *)op;
if (iseq) {
ret = iseq->location.label;
if (child) {
rb_ary_push(child, iseq->self);
}
}
else {
ret = rb_str_new2("nil");
}
break;
}
case TS_GENTRY:
{
struct rb_global_entry *entry = (struct rb_global_entry *)op;
ret = rb_str_dup(rb_id2str(entry->id));
}
break;
case TS_IC:
ret = rb_sprintf("<is:%"PRIdPTRDIFF">", (union iseq_inline_storage_entry *)op - iseq->is_entries);
break;
case TS_CALLINFO:
{
rb_call_info_t *ci = (rb_call_info_t *)op;
VALUE ary = rb_ary_new();
if (ci->mid) {
rb_ary_push(ary, rb_sprintf("mid:%"PRIsVALUE, rb_id2str(ci->mid)));
}
rb_ary_push(ary, rb_sprintf("argc:%d", ci->orig_argc));
* rewrite method/block parameter fitting logic to optimize keyword arguments/parameters and a splat argument. [Feature #10440] (Details are described in this ticket) Most of complex part is moved to vm_args.c. Now, ISeq#to_a does not catch up new instruction format. * vm_core.h: change iseq data structures. * introduce rb_call_info_kw_arg_t to represent keyword arguments. * add rb_call_info_t::kw_arg. * rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num. * rename rb_iseq_t::arg_keywords to arg_keyword_num. * rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits. to represent keyword bitmap parameter index. This bitmap parameter shows that which keyword parameters are given or not given (0 for given). It is refered by `checkkeyword' instruction described bellow. * rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest to represent keyword rest parameter index. * add rb_iseq_t::arg_keyword_default_values to represent default keyword values. * rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE to represent (ci->flag & (SPLAT|BLOCKARG)) && ci->blockiseq == NULL && ci->kw_arg == NULL. * vm_insnhelper.c, vm_args.c: rewrite with refactoring. * rewrite splat argument code. * rewrite keyword arguments/parameters code. * merge method and block parameter fitting code into one code base. * vm.c, vm_eval.c: catch up these changes. * compile.c (new_callinfo): callinfo requires kw_arg parameter. * compile.c (compile_array_): check the last argument Hash object or not. If Hash object and all keys are Symbol literals, they are compiled to keyword arguments. * insns.def (checkkeyword): add new instruction. This instruction check the availability of corresponding keyword. For example, a method "def foo k1: 'v1'; end" is cimpiled to the following instructions. 0000 checkkeyword 2, 0 # check k1 is given. 0003 branchif 9 # if given, jump to address #9 0005 putstring "v1" 0007 setlocal_OP__WC__0 3 # k1 = 'v1' 0009 trace 8 0011 putnil 0012 trace 16 0014 leave * insns.def (opt_send_simple): removed and add new instruction "opt_send_without_block". * parse.y (new_args_tail_gen): reorder variables. Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)" has parameter variables "k1, kr1, k2, &b, internal_id, krest", but this patch reorders to "kr1, k1, k2, internal_id, krest, &b". (locate a block variable at last) * parse.y (vtable_pop): added. This function remove latest `n' variables from vtable. * iseq.c: catch up iseq data changes. * proc.c: ditto. * class.c (keyword_error): export as rb_keyword_error(). * common.mk: depend vm_args.c for vm.o. * hash.c (rb_hash_has_key): export. * internal.h: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 21:02:55 +03:00
if (ci->kw_arg) {
rb_ary_push(ary, rb_sprintf("kw:%d", ci->kw_arg->keyword_len));
}
if (ci->blockiseq) {
if (child) {
rb_ary_push(child, ci->blockiseq->self);
}
rb_ary_push(ary, rb_sprintf("block:%"PRIsVALUE, ci->blockiseq->location.label));
}
if (ci->flag) {
VALUE flags = rb_ary_new();
if (ci->flag & VM_CALL_ARGS_SPLAT) rb_ary_push(flags, rb_str_new2("ARGS_SPLAT"));
if (ci->flag & VM_CALL_ARGS_BLOCKARG) rb_ary_push(flags, rb_str_new2("ARGS_BLOCKARG"));
if (ci->flag & VM_CALL_FCALL) rb_ary_push(flags, rb_str_new2("FCALL"));
if (ci->flag & VM_CALL_VCALL) rb_ary_push(flags, rb_str_new2("VCALL"));
if (ci->flag & VM_CALL_TAILCALL) rb_ary_push(flags, rb_str_new2("TAILCALL"));
if (ci->flag & VM_CALL_SUPER) rb_ary_push(flags, rb_str_new2("SUPER"));
if (ci->flag & VM_CALL_OPT_SEND) rb_ary_push(flags, rb_str_new2("SNED")); /* maybe not reachable */
* rewrite method/block parameter fitting logic to optimize keyword arguments/parameters and a splat argument. [Feature #10440] (Details are described in this ticket) Most of complex part is moved to vm_args.c. Now, ISeq#to_a does not catch up new instruction format. * vm_core.h: change iseq data structures. * introduce rb_call_info_kw_arg_t to represent keyword arguments. * add rb_call_info_t::kw_arg. * rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num. * rename rb_iseq_t::arg_keywords to arg_keyword_num. * rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits. to represent keyword bitmap parameter index. This bitmap parameter shows that which keyword parameters are given or not given (0 for given). It is refered by `checkkeyword' instruction described bellow. * rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest to represent keyword rest parameter index. * add rb_iseq_t::arg_keyword_default_values to represent default keyword values. * rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE to represent (ci->flag & (SPLAT|BLOCKARG)) && ci->blockiseq == NULL && ci->kw_arg == NULL. * vm_insnhelper.c, vm_args.c: rewrite with refactoring. * rewrite splat argument code. * rewrite keyword arguments/parameters code. * merge method and block parameter fitting code into one code base. * vm.c, vm_eval.c: catch up these changes. * compile.c (new_callinfo): callinfo requires kw_arg parameter. * compile.c (compile_array_): check the last argument Hash object or not. If Hash object and all keys are Symbol literals, they are compiled to keyword arguments. * insns.def (checkkeyword): add new instruction. This instruction check the availability of corresponding keyword. For example, a method "def foo k1: 'v1'; end" is cimpiled to the following instructions. 0000 checkkeyword 2, 0 # check k1 is given. 0003 branchif 9 # if given, jump to address #9 0005 putstring "v1" 0007 setlocal_OP__WC__0 3 # k1 = 'v1' 0009 trace 8 0011 putnil 0012 trace 16 0014 leave * insns.def (opt_send_simple): removed and add new instruction "opt_send_without_block". * parse.y (new_args_tail_gen): reorder variables. Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)" has parameter variables "k1, kr1, k2, &b, internal_id, krest", but this patch reorders to "kr1, k1, k2, internal_id, krest, &b". (locate a block variable at last) * parse.y (vtable_pop): added. This function remove latest `n' variables from vtable. * iseq.c: catch up iseq data changes. * proc.c: ditto. * class.c (keyword_error): export as rb_keyword_error(). * common.mk: depend vm_args.c for vm.o. * hash.c (rb_hash_has_key): export. * internal.h: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 21:02:55 +03:00
if (ci->flag & VM_CALL_ARGS_SIMPLE) rb_ary_push(flags, rb_str_new2("ARGS_SIMPLE")); /* maybe not reachable */
rb_ary_push(ary, rb_ary_join(flags, rb_str_new2("|")));
}
ret = rb_sprintf("<callinfo!%"PRIsVALUE">", rb_ary_join(ary, rb_str_new2(", ")));
}
break;
case TS_CDHASH:
ret = rb_str_new2("<cdhash>");
break;
case TS_FUNCPTR:
{
#ifdef HAVE_DLADDR
Dl_info info;
if (dladdr((void *)op, &info) && info.dli_sname) {
ret = rb_str_new_cstr(info.dli_sname);
break;
}
#endif
ret = rb_str_new2("<funcptr>");
}
break;
default:
rb_bug("insn_operand_intern: unknown operand type: %c", type);
}
return ret;
}
/**
* Disassemble a instruction
* Iseq -> Iseq inspect object
*/
int
rb_iseq_disasm_insn(VALUE ret, const VALUE *iseq, size_t pos,
const rb_iseq_t *iseqdat, VALUE child)
{
VALUE insn = iseq[pos];
int len = insn_len(insn);
int j;
const char *types = insn_op_types(insn);
VALUE str = rb_str_new(0, 0);
const char *insn_name_buff;
insn_name_buff = insn_name(insn);
if (1) {
rb_str_catf(str, "%04"PRIdSIZE" %-16s ", pos, insn_name_buff);
}
else {
rb_str_catf(str, "%04"PRIdSIZE" %-16.*s ", pos,
(int)strcspn(insn_name_buff, "_"), insn_name_buff);
}
for (j = 0; types[j]; j++) {
const char *types = insn_op_types(insn);
VALUE opstr = rb_insn_operand_intern(iseqdat, insn, j, iseq[pos + j + 1],
len, pos, &iseq[pos + j + 2],
child);
rb_str_concat(str, opstr);
if (types[j + 1]) {
rb_str_cat2(str, ", ");
}
}
{
unsigned int line_no = find_line_no(iseqdat, pos);
unsigned int prev = pos == 0 ? 0 : find_line_no(iseqdat, pos - 1);
if (line_no && line_no != prev) {
long slen = RSTRING_LEN(str);
slen = (slen > 70) ? 0 : (70 - slen);
str = rb_str_catf(str, "%*s(%4d)", (int)slen, "", line_no);
}
}
if (ret) {
rb_str_cat2(str, "\n");
rb_str_concat(ret, str);
}
else {
printf("%s\n", RSTRING_PTR(str));
}
return len;
}
static const char *
catch_type(int type)
{
switch (type) {
case CATCH_TYPE_RESCUE:
return "rescue";
case CATCH_TYPE_ENSURE:
return "ensure";
case CATCH_TYPE_RETRY:
return "retry";
case CATCH_TYPE_BREAK:
return "break";
case CATCH_TYPE_REDO:
return "redo";
case CATCH_TYPE_NEXT:
return "next";
default:
rb_bug("unknown catch type (%d)", type);
return 0;
}
}
/*
* call-seq:
* iseq.disasm -> str
* iseq.disassemble -> str
*
* Returns the instruction sequence as a +String+ in human readable form.
*
* puts RubyVM::InstructionSequence.compile('1 + 2').disasm
*
* Produces:
*
* == disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
* 0000 trace 1 ( 1)
* 0002 putobject 1
* 0004 putobject 2
* 0006 opt_plus <ic:1>
* 0008 leave
*/
VALUE
rb_iseq_disasm(VALUE self)
{
rb_iseq_t *iseqdat = iseq_check(self); /* TODO: rename to iseq */
VALUE *iseq;
VALUE str = rb_str_new(0, 0);
VALUE child = rb_ary_new();
unsigned int size;
int i;
long l;
ID *tbl;
size_t n;
enum {header_minlen = 72};
rb_secure(1);
size = iseqdat->iseq_size;
rb_str_cat2(str, "== disasm: ");
rb_str_concat(str, iseq_inspect(iseqdat->self));
if ((l = RSTRING_LEN(str)) < header_minlen) {
rb_str_resize(str, header_minlen);
memset(RSTRING_PTR(str) + l, '=', header_minlen - l);
}
rb_str_cat2(str, "\n");
/* show catch table information */
if (iseqdat->catch_table) {
rb_str_cat2(str, "== catch table\n");
}
if (iseqdat->catch_table) for (i = 0; i < iseqdat->catch_table->size; i++) {
struct iseq_catch_table_entry *entry = &iseqdat->catch_table->entries[i];
rb_str_catf(str,
"| catch type: %-6s st: %04d ed: %04d sp: %04d cont: %04d\n",
catch_type((int)entry->type), (int)entry->start,
(int)entry->end, (int)entry->sp, (int)entry->cont);
if (entry->iseq) {
rb_str_concat(str, rb_iseq_disasm(entry->iseq));
}
}
if (iseqdat->catch_table) {
rb_str_cat2(str, "|-------------------------------------"
"-----------------------------------\n");
}
/* show local table information */
tbl = iseqdat->local_table;
if (tbl) {
rb_str_catf(str,
"local table (size: %d, argc: %d "
"[opts: %d, rest: %d, post: %d, block: %d, kw: %d@%d, kwrest: %d])\n",
iseqdat->local_size,
iseqdat->param.lead_num,
iseqdat->param.opt_num,
iseqdat->param.flags.has_rest ? iseqdat->param.rest_start : -1,
iseqdat->param.post_num,
iseqdat->param.flags.has_block ? iseqdat->param.block_start : -1,
iseqdat->param.flags.has_kw ? iseqdat->param.keyword->num : -1,
iseqdat->param.flags.has_kw ? iseqdat->param.keyword->required_num : -1,
iseqdat->param.flags.has_kwrest ? iseqdat->param.keyword->rest_start : -1);
for (i = 0; i < iseqdat->local_table_size; i++) {
long width;
VALUE name = id_to_name(tbl[i], 0);
char argi[0x100] = "";
char opti[0x100] = "";
if (iseqdat->param.flags.has_opt) {
int argc = iseqdat->param.lead_num;
int opts = iseqdat->param.opt_num;
if (i >= argc && i < argc + opts) {
snprintf(opti, sizeof(opti), "Opt=%"PRIdVALUE,
iseqdat->param.opt_table[i - argc]);
}
}
snprintf(argi, sizeof(argi), "%s%s%s%s%s", /* arg, opts, rest, post block */
iseqdat->param.lead_num > i ? "Arg" : "",
opti,
(iseqdat->param.flags.has_rest && iseqdat->param.rest_start == i) ? "Rest" : "",
(iseqdat->param.flags.has_post && iseqdat->param.post_start <= i && i < iseqdat->param.post_start + iseqdat->param.post_num) ? "Post" : "",
(iseqdat->param.flags.has_block && iseqdat->param.block_start == i) ? "Block" : "");
rb_str_catf(str, "[%2d] ", iseqdat->local_size - i);
width = RSTRING_LEN(str) + 11;
if (name)
rb_str_append(str, name);
else
rb_str_cat2(str, "?");
if (*argi) rb_str_catf(str, "<%s>", argi);
if ((width -= RSTRING_LEN(str)) > 0) rb_str_catf(str, "%*s", (int)width, "");
}
rb_str_cat2(str, "\n");
}
/* show each line */
iseq = rb_iseq_original_iseq(iseqdat);
for (n = 0; n < size;) {
n += rb_iseq_disasm_insn(str, iseq, n, iseqdat, child);
}
for (i = 0; i < RARRAY_LEN(child); i++) {
VALUE isv = rb_ary_entry(child, i);
rb_str_concat(str, rb_iseq_disasm(isv));
}
return str;
}
/*
* Returns the instruction sequence containing the given proc or method.
*
* For example, using irb:
*
* # a proc
* > p = proc { num = 1 + 2 }
* > RubyVM::InstructionSequence.of(p)
* > #=> <RubyVM::InstructionSequence:block in irb_binding@(irb)>
*
* # for a method
* > def foo(bar); puts bar; end
* > RubyVM::InstructionSequence.of(method(:foo))
* > #=> <RubyVM::InstructionSequence:foo@(irb)>
*
* Using ::compile_file:
*
* # /tmp/iseq_of.rb
* def hello
* puts "hello, world"
* end
*
* $a_global_proc = proc { str = 'a' + 'b' }
*
* # in irb
* > require '/tmp/iseq_of.rb'
*
* # first the method hello
* > RubyVM::InstructionSequence.of(method(:hello))
* > #=> #<RubyVM::InstructionSequence:0x007fb73d7cb1d0>
*
* # then the global proc
* > RubyVM::InstructionSequence.of($a_global_proc)
* > #=> #<RubyVM::InstructionSequence:0x007fb73d7caf78>
*/
static VALUE
iseq_s_of(VALUE klass, VALUE body)
{
VALUE ret = Qnil;
rb_iseq_t *iseq;
rb_secure(1);
if (rb_obj_is_proc(body)) {
rb_proc_t *proc;
GetProcPtr(body, proc);
iseq = proc->block.iseq;
if (RUBY_VM_NORMAL_ISEQ_P(iseq)) {
ret = iseq->self;
}
}
else if ((iseq = rb_method_get_iseq(body)) != 0) {
ret = iseq->self;
}
return ret;
}
/*
* call-seq:
* InstructionSequence.disasm(body) -> str
* InstructionSequence.disassemble(body) -> str
*
* Takes +body+, a Method or Proc object, and returns a String with the
* human readable instructions for +body+.
*
* For a Method object:
*
* # /tmp/method.rb
* def hello
* puts "hello, world"
* end
*
* puts RubyVM::InstructionSequence.disasm(method(:hello))
*
* Produces:
*
* == disasm: <RubyVM::InstructionSequence:hello@/tmp/method.rb>============
* 0000 trace 8 ( 1)
* 0002 trace 1 ( 2)
* 0004 putself
* 0005 putstring "hello, world"
* 0007 send :puts, 1, nil, 8, <ic:0>
* 0013 trace 16 ( 3)
* 0015 leave ( 2)
*
* For a Proc:
*
* # /tmp/proc.rb
* p = proc { num = 1 + 2 }
* puts RubyVM::InstructionSequence.disasm(p)
*
* Produces:
*
* == disasm: <RubyVM::InstructionSequence:block in <main>@/tmp/proc.rb>===
* == catch table
* | catch type: redo st: 0000 ed: 0012 sp: 0000 cont: 0000
* | catch type: next st: 0000 ed: 0012 sp: 0000 cont: 0012
* |------------------------------------------------------------------------
* local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
* [ 2] num
* 0000 trace 1 ( 1)
* 0002 putobject 1
* 0004 putobject 2
* 0006 opt_plus <ic:1>
* 0008 dup
* 0009 setlocal num, 0
* 0012 leave
*
*/
static VALUE
iseq_s_disasm(VALUE klass, VALUE body)
{
VALUE iseqval = iseq_s_of(klass, body);
return NIL_P(iseqval) ? Qnil : rb_iseq_disasm(iseqval);
}
const char *
* this commit is a result of refactoring. only renaming functions, moving definitions place, add/remove prototypes, deleting unused variables and removing yarv.h. This commit doesn't change any behavior of ruby/vm. * yarv.h, common.mk: remove yarv.h (contents are moved to yarvcore.h). * error.c, eval_intern.h: include yarvcore.h instead yarv.h * rename some functions: * debug.[ch]: debug_*() -> ruby_debug_*() * iseq.c: iseq_*() -> rb_iseq_*(), ruby_iseq_disasm() * iseq.c: node_name() -> ruby_node_name() * vm.c: yarv_check_redefinition_opt_method() -> rb_vm_check_redefinition_opt_method() * some refactoring with checking -Wall. * array.c: remove rb_ary_ptr() (unused) and remove unused local variables. * object.c: add a prototype of rb_mod_module_exec(). * eval_intern.h (ruby_cref): set it inline. * eval_load.c (rb_load), yarvcore.c: yarv_load() -> rb_load_internal(). * parse.y: add a prototype of rb_parse_in_eval() (in eval.c). * process.c: add a prototype of rb_thread_stop_timer_thread() (in thread.c). * thread.c: remove raw_gets() function (unused) and fix some format mismatch (format mismatchs have remained yet. this is todo). * thread.c (rb_thread_wait_fd_rw): fix typo on label name. * thread_pthread.ci: comment out codes with USE_THREAD_CACHE. * vm.c (rb_svar, rb_backref_get, rb_backref_get, rb_lastline_get, rb_lastline_set) : moved from yarvcore.c. * vm.c (yarv_init_redefined_flag): add a prototype and rename yarv_opt_method_table to vm_opt_method_table. * vm.c (rb_thread_eval): moved from yarvcore.c. * yarvcore.c: remove unused global variables and fix to use nsdr(). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@11652 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2007-02-07 04:25:05 +03:00
ruby_node_name(int node)
{
switch (node) {
#include "node_name.inc"
default:
rb_bug("unknown node (%d)", node);
return 0;
}
}
#define DECL_SYMBOL(name) \
static VALUE sym_##name
#define INIT_SYMBOL(name) \
sym_##name = ID2SYM(rb_intern(#name))
static VALUE
register_label(struct st_table *table, unsigned long idx)
{
VALUE sym = rb_str_intern(rb_sprintf("label_%lu", idx));
st_insert(table, idx, sym);
return sym;
}
static VALUE
exception_type2symbol(VALUE type)
{
ID id;
switch (type) {
case CATCH_TYPE_RESCUE: CONST_ID(id, "rescue"); break;
case CATCH_TYPE_ENSURE: CONST_ID(id, "ensure"); break;
case CATCH_TYPE_RETRY: CONST_ID(id, "retry"); break;
case CATCH_TYPE_BREAK: CONST_ID(id, "break"); break;
case CATCH_TYPE_REDO: CONST_ID(id, "redo"); break;
case CATCH_TYPE_NEXT: CONST_ID(id, "next"); break;
default:
rb_bug("...");
}
return ID2SYM(id);
}
static int
cdhash_each(VALUE key, VALUE value, VALUE ary)
{
rb_ary_push(ary, obj_resurrect(key));
rb_ary_push(ary, value);
return ST_CONTINUE;
}
static VALUE
iseq_data_to_ary(rb_iseq_t *iseq)
{
long i;
size_t ti;
unsigned int pos;
unsigned int line = 0;
VALUE *seq, *iseq_original;
VALUE val = rb_ary_new();
VALUE type; /* Symbol */
VALUE locals = rb_ary_new();
VALUE params = rb_hash_new();
VALUE body = rb_ary_new(); /* [[:insn1, ...], ...] */
VALUE nbody;
VALUE exception = rb_ary_new(); /* [[....]] */
VALUE misc = rb_hash_new();
static VALUE insn_syms[VM_INSTRUCTION_SIZE];
struct st_table *labels_table = st_init_numtable();
DECL_SYMBOL(top);
DECL_SYMBOL(method);
DECL_SYMBOL(block);
DECL_SYMBOL(class);
DECL_SYMBOL(rescue);
DECL_SYMBOL(ensure);
DECL_SYMBOL(eval);
DECL_SYMBOL(main);
DECL_SYMBOL(defined_guard);
if (sym_top == 0) {
int i;
for (i=0; i<VM_INSTRUCTION_SIZE; i++) {
insn_syms[i] = ID2SYM(rb_intern(insn_name(i)));
}
INIT_SYMBOL(top);
INIT_SYMBOL(method);
INIT_SYMBOL(block);
INIT_SYMBOL(class);
INIT_SYMBOL(rescue);
INIT_SYMBOL(ensure);
INIT_SYMBOL(eval);
INIT_SYMBOL(main);
INIT_SYMBOL(defined_guard);
}
/* type */
switch (iseq->type) {
case ISEQ_TYPE_TOP: type = sym_top; break;
case ISEQ_TYPE_METHOD: type = sym_method; break;
case ISEQ_TYPE_BLOCK: type = sym_block; break;
case ISEQ_TYPE_CLASS: type = sym_class; break;
case ISEQ_TYPE_RESCUE: type = sym_rescue; break;
case ISEQ_TYPE_ENSURE: type = sym_ensure; break;
case ISEQ_TYPE_EVAL: type = sym_eval; break;
case ISEQ_TYPE_MAIN: type = sym_main; break;
case ISEQ_TYPE_DEFINED_GUARD: type = sym_defined_guard; break;
default: rb_bug("unsupported iseq type");
};
/* locals */
for (i=0; i<iseq->local_table_size; i++) {
ID lid = iseq->local_table[i];
if (lid) {
if (rb_id2str(lid)) {
rb_ary_push(locals, ID2SYM(lid));
}
else { /* hidden variable from id_internal() */
rb_ary_push(locals, ULONG2NUM(iseq->local_table_size-i+1));
}
}
else {
rb_ary_push(locals, ID2SYM(rb_intern("#arg_rest")));
}
}
/* params */
{
int j;
if (iseq->param.flags.has_opt) {
int len = iseq->param.opt_num + 1;
VALUE arg_opt_labels = rb_ary_new2(len);
for (j = 0; j < len; j++) {
VALUE l = register_label(labels_table, iseq->param.opt_table[j]);
rb_ary_push(arg_opt_labels, l);
}
rb_hash_aset(params, ID2SYM(rb_intern("opt")), arg_opt_labels);
}
/* commit */
if (iseq->param.flags.has_lead) rb_hash_aset(params, ID2SYM(rb_intern("lead_num")), INT2FIX(iseq->param.lead_num));
if (iseq->param.flags.has_post) rb_hash_aset(params, ID2SYM(rb_intern("post_num")), INT2FIX(iseq->param.post_num));
if (iseq->param.flags.has_post) rb_hash_aset(params, ID2SYM(rb_intern("post_start")), INT2FIX(iseq->param.post_start));
if (iseq->param.flags.has_rest) rb_hash_aset(params, ID2SYM(rb_intern("rest_start")), INT2FIX(iseq->param.rest_start));
if (iseq->param.flags.has_block) rb_hash_aset(params, ID2SYM(rb_intern("block_start")), INT2FIX(iseq->param.block_start));
if (iseq->param.flags.has_kw) {
VALUE keywords = rb_ary_new();
int i, j;
for (i=0; i<iseq->param.keyword->required_num; i++) {
rb_ary_push(keywords, ID2SYM(iseq->param.keyword->table[i]));
}
for (j=0; i<iseq->param.keyword->num; i++, j++) {
VALUE key = rb_ary_new_from_args(1, ID2SYM(iseq->param.keyword->table[i]));
if (iseq->param.keyword->default_values[j] != Qundef) {
rb_ary_push(key, iseq->param.keyword->default_values[j]);
}
rb_ary_push(keywords, key);
}
rb_hash_aset(params, ID2SYM(rb_intern("kwbits")),
INT2FIX(iseq->param.keyword->bits_start));
rb_hash_aset(params, ID2SYM(rb_intern("keyword")), keywords);
}
if (iseq->param.flags.has_kwrest) rb_hash_aset(params, ID2SYM(rb_intern("kwrest")), INT2FIX(iseq->param.keyword->rest_start));
if (iseq->param.flags.ambiguous_param0) rb_hash_aset(params, ID2SYM(rb_intern("ambiguous_param0")), Qtrue);
}
/* body */
iseq_original = rb_iseq_original_iseq(iseq);
for (seq = iseq_original; seq < iseq_original + iseq->iseq_size; ) {
VALUE insn = *seq++;
int j, len = insn_len(insn);
VALUE *nseq = seq + len - 1;
VALUE ary = rb_ary_new2(len);
rb_ary_push(ary, insn_syms[insn]);
for (j=0; j<len-1; j++, seq++) {
switch (insn_op_type(insn, j)) {
case TS_OFFSET: {
unsigned long idx = nseq - iseq_original + *seq;
rb_ary_push(ary, register_label(labels_table, idx));
break;
}
case TS_LINDEX:
case TS_NUM:
rb_ary_push(ary, INT2FIX(*seq));
break;
case TS_VALUE:
rb_ary_push(ary, obj_resurrect(*seq));
break;
case TS_ISEQ:
{
rb_iseq_t *iseq = (rb_iseq_t *)*seq;
if (iseq) {
VALUE val = iseq_data_to_ary(iseq);
rb_ary_push(ary, val);
}
else {
rb_ary_push(ary, Qnil);
}
}
break;
case TS_GENTRY:
{
struct rb_global_entry *entry = (struct rb_global_entry *)*seq;
rb_ary_push(ary, ID2SYM(entry->id));
}
break;
case TS_IC:
{
union iseq_inline_storage_entry *is = (union iseq_inline_storage_entry *)*seq;
rb_ary_push(ary, INT2FIX(is - iseq->is_entries));
}
break;
case TS_CALLINFO:
{
rb_call_info_t *ci = (rb_call_info_t *)*seq;
VALUE e = rb_hash_new();
int orig_argc = ci->orig_argc;
rb_hash_aset(e, ID2SYM(rb_intern("mid")), ci->mid ? ID2SYM(ci->mid) : Qnil);
rb_hash_aset(e, ID2SYM(rb_intern("flag")), UINT2NUM(ci->flag));
rb_hash_aset(e, ID2SYM(rb_intern("blockptr")), ci->blockiseq ? iseq_data_to_ary(ci->blockiseq) : Qnil);
if (ci->kw_arg) {
int i;
VALUE kw = rb_ary_new2((long)ci->kw_arg->keyword_len);
orig_argc -= ci->kw_arg->keyword_len;
for (i = 0; i < ci->kw_arg->keyword_len; i++) {
rb_ary_push(kw, ID2SYM(ci->kw_arg->keywords[i]));
}
rb_hash_aset(e, ID2SYM(rb_intern("kw_arg")), kw);
}
rb_hash_aset(e, ID2SYM(rb_intern("orig_argc")),
INT2FIX(orig_argc));
rb_ary_push(ary, e);
}
break;
case TS_ID:
rb_ary_push(ary, ID2SYM(*seq));
break;
case TS_CDHASH:
{
VALUE hash = *seq;
VALUE val = rb_ary_new();
int i;
rb_hash_foreach(hash, cdhash_each, val);
for (i=0; i<RARRAY_LEN(val); i+=2) {
VALUE pos = FIX2INT(rb_ary_entry(val, i+1));
unsigned long idx = nseq - iseq_original + pos;
rb_ary_store(val, i+1,
register_label(labels_table, idx));
}
rb_ary_push(ary, val);
}
break;
case TS_FUNCPTR:
{
#if SIZEOF_VALUE <= SIZEOF_LONG
VALUE val = LONG2NUM((SIGNED_VALUE)*seq);
#else
VALUE val = LL2NUM((SIGNED_VALUE)*seq);
#endif
rb_ary_push(ary, val);
}
break;
default:
rb_bug("unknown operand: %c", insn_op_type(insn, j));
}
}
rb_ary_push(body, ary);
}
nbody = body;
/* exception */
if (iseq->catch_table) for (i=0; i<iseq->catch_table->size; i++) {
VALUE ary = rb_ary_new();
struct iseq_catch_table_entry *entry = &iseq->catch_table->entries[i];
rb_ary_push(ary, exception_type2symbol(entry->type));
if (entry->iseq) {
rb_iseq_t *eiseq;
GetISeqPtr(entry->iseq, eiseq);
rb_ary_push(ary, iseq_data_to_ary(eiseq));
}
else {
rb_ary_push(ary, Qnil);
}
rb_ary_push(ary, register_label(labels_table, entry->start));
rb_ary_push(ary, register_label(labels_table, entry->end));
rb_ary_push(ary, register_label(labels_table, entry->cont));
rb_ary_push(ary, UINT2NUM(entry->sp));
rb_ary_push(exception, ary);
}
/* make body with labels and insert line number */
body = rb_ary_new();
ti = 0;
for (i=0, pos=0; i<RARRAY_LEN(nbody); i++) {
VALUE ary = RARRAY_AREF(nbody, i);
st_data_t label;
if (st_lookup(labels_table, pos, &label)) {
rb_ary_push(body, (VALUE)label);
}
if (ti < iseq->line_info_size && iseq->line_info_table[ti].position == pos) {
line = iseq->line_info_table[ti].line_no;
rb_ary_push(body, INT2FIX(line));
ti++;
}
rb_ary_push(body, ary);
pos += RARRAY_LENINT(ary); /* reject too huge data */
}
RB_GC_GUARD(nbody);
st_free_table(labels_table);
rb_hash_aset(misc, ID2SYM(rb_intern("arg_size")), INT2FIX(iseq->param.size));
rb_hash_aset(misc, ID2SYM(rb_intern("local_size")), INT2FIX(iseq->local_size));
rb_hash_aset(misc, ID2SYM(rb_intern("stack_max")), INT2FIX(iseq->stack_max));
/* TODO: compatibility issue */
/*
* [:magic, :major_version, :minor_version, :format_type, :misc,
* :name, :path, :absolute_path, :start_lineno, :type, :locals, :args,
* :catch_table, :bytecode]
*/
rb_ary_push(val, rb_str_new2("YARVInstructionSequence/SimpleDataFormat"));
rb_ary_push(val, INT2FIX(ISEQ_MAJOR_VERSION)); /* major */
rb_ary_push(val, INT2FIX(ISEQ_MINOR_VERSION)); /* minor */
rb_ary_push(val, INT2FIX(1));
rb_ary_push(val, misc);
rb_ary_push(val, iseq->location.label);
rb_ary_push(val, iseq->location.path);
rb_ary_push(val, iseq->location.absolute_path);
rb_ary_push(val, iseq->location.first_lineno);
rb_ary_push(val, type);
rb_ary_push(val, locals);
rb_ary_push(val, params);
rb_ary_push(val, exception);
rb_ary_push(val, body);
return val;
}
VALUE
rb_iseq_clone(VALUE iseqval, VALUE newcbase)
{
VALUE newiseq = iseq_alloc(rb_cISeq);
rb_iseq_t *iseq0, *iseq1;
GetISeqPtr(iseqval, iseq0);
GetISeqPtr(newiseq, iseq1);
MEMCPY(iseq1, iseq0, rb_iseq_t, 1); /* TODO: write barrier? */
iseq1->self = newiseq;
if (!iseq1->orig) {
RB_OBJ_WRITE(iseq1->self, &iseq1->orig, iseqval);
}
if (iseq0->local_iseq == iseq0) {
iseq1->local_iseq = iseq1;
}
if (newcbase) {
ISEQ_SET_CREF(iseq1, NEW_CREF(newcbase));
RB_OBJ_WRITE(iseq1->cref_stack, &iseq1->cref_stack->nd_refinements, iseq0->cref_stack->nd_refinements);
iseq1->cref_stack->nd_visi = iseq0->cref_stack->nd_visi;
if (iseq0->cref_stack->nd_next) {
RB_OBJ_WRITE(iseq1->cref_stack, &iseq1->cref_stack->nd_next, iseq0->cref_stack->nd_next);
}
RB_OBJ_WRITE(iseq1->self, &iseq1->klass, newcbase);
}
return newiseq;
}
VALUE
rb_iseq_parameters(const rb_iseq_t *iseq, int is_proc)
{
int i, r;
VALUE a, args = rb_ary_new2(iseq->param.size);
ID req, opt, rest, block, key, keyrest;
#define PARAM_TYPE(type) rb_ary_push(a = rb_ary_new2(2), ID2SYM(type))
#define PARAM_ID(i) iseq->local_table[(i)]
#define PARAM(i, type) ( \
PARAM_TYPE(type), \
rb_id2str(PARAM_ID(i)) ? \
rb_ary_push(a, ID2SYM(PARAM_ID(i))) : \
a)
CONST_ID(req, "req");
CONST_ID(opt, "opt");
if (is_proc) {
for (i = 0; i < iseq->param.lead_num; i++) {
PARAM_TYPE(opt);
rb_ary_push(a, rb_id2str(PARAM_ID(i)) ? ID2SYM(PARAM_ID(i)) : Qnil);
rb_ary_push(args, a);
}
}
else {
for (i = 0; i < iseq->param.lead_num; i++) {
rb_ary_push(args, PARAM(i, req));
}
}
r = iseq->param.lead_num + iseq->param.opt_num;
for (; i < r; i++) {
PARAM_TYPE(opt);
if (rb_id2str(PARAM_ID(i))) {
rb_ary_push(a, ID2SYM(PARAM_ID(i)));
}
rb_ary_push(args, a);
}
if (iseq->param.flags.has_rest) {
CONST_ID(rest, "rest");
rb_ary_push(args, PARAM(iseq->param.rest_start, rest));
}
r = iseq->param.post_start + iseq->param.post_num;
if (is_proc) {
for (i = iseq->param.post_start; i < r; i++) {
PARAM_TYPE(opt);
rb_ary_push(a, rb_id2str(PARAM_ID(i)) ? ID2SYM(PARAM_ID(i)) : Qnil);
rb_ary_push(args, a);
}
}
else {
for (i = iseq->param.post_start; i < r; i++) {
rb_ary_push(args, PARAM(i, req));
}
}
if (iseq->param.flags.has_kw) {
i = 0;
if (iseq->param.keyword->required_num > 0) {
ID keyreq;
CONST_ID(keyreq, "keyreq");
for (; i < iseq->param.keyword->required_num; i++) {
PARAM_TYPE(keyreq);
if (rb_id2str(iseq->param.keyword->table[i])) {
rb_ary_push(a, ID2SYM(iseq->param.keyword->table[i]));
}
rb_ary_push(args, a);
}
}
CONST_ID(key, "key");
for (; i < iseq->param.keyword->num; i++) {
PARAM_TYPE(key);
if (rb_id2str(iseq->param.keyword->table[i])) {
rb_ary_push(a, ID2SYM(iseq->param.keyword->table[i]));
}
rb_ary_push(args, a);
}
* rewrite method/block parameter fitting logic to optimize keyword arguments/parameters and a splat argument. [Feature #10440] (Details are described in this ticket) Most of complex part is moved to vm_args.c. Now, ISeq#to_a does not catch up new instruction format. * vm_core.h: change iseq data structures. * introduce rb_call_info_kw_arg_t to represent keyword arguments. * add rb_call_info_t::kw_arg. * rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num. * rename rb_iseq_t::arg_keywords to arg_keyword_num. * rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits. to represent keyword bitmap parameter index. This bitmap parameter shows that which keyword parameters are given or not given (0 for given). It is refered by `checkkeyword' instruction described bellow. * rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest to represent keyword rest parameter index. * add rb_iseq_t::arg_keyword_default_values to represent default keyword values. * rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE to represent (ci->flag & (SPLAT|BLOCKARG)) && ci->blockiseq == NULL && ci->kw_arg == NULL. * vm_insnhelper.c, vm_args.c: rewrite with refactoring. * rewrite splat argument code. * rewrite keyword arguments/parameters code. * merge method and block parameter fitting code into one code base. * vm.c, vm_eval.c: catch up these changes. * compile.c (new_callinfo): callinfo requires kw_arg parameter. * compile.c (compile_array_): check the last argument Hash object or not. If Hash object and all keys are Symbol literals, they are compiled to keyword arguments. * insns.def (checkkeyword): add new instruction. This instruction check the availability of corresponding keyword. For example, a method "def foo k1: 'v1'; end" is cimpiled to the following instructions. 0000 checkkeyword 2, 0 # check k1 is given. 0003 branchif 9 # if given, jump to address #9 0005 putstring "v1" 0007 setlocal_OP__WC__0 3 # k1 = 'v1' 0009 trace 8 0011 putnil 0012 trace 16 0014 leave * insns.def (opt_send_simple): removed and add new instruction "opt_send_without_block". * parse.y (new_args_tail_gen): reorder variables. Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)" has parameter variables "k1, kr1, k2, &b, internal_id, krest", but this patch reorders to "kr1, k1, k2, internal_id, krest, &b". (locate a block variable at last) * parse.y (vtable_pop): added. This function remove latest `n' variables from vtable. * iseq.c: catch up iseq data changes. * proc.c: ditto. * class.c (keyword_error): export as rb_keyword_error(). * common.mk: depend vm_args.c for vm.o. * hash.c (rb_hash_has_key): export. * internal.h: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 21:02:55 +03:00
}
if (iseq->param.flags.has_kwrest) {
* rewrite method/block parameter fitting logic to optimize keyword arguments/parameters and a splat argument. [Feature #10440] (Details are described in this ticket) Most of complex part is moved to vm_args.c. Now, ISeq#to_a does not catch up new instruction format. * vm_core.h: change iseq data structures. * introduce rb_call_info_kw_arg_t to represent keyword arguments. * add rb_call_info_t::kw_arg. * rename rb_iseq_t::arg_post_len to rb_iseq_t::arg_post_num. * rename rb_iseq_t::arg_keywords to arg_keyword_num. * rename rb_iseq_t::arg_keyword to rb_iseq_t::arg_keyword_bits. to represent keyword bitmap parameter index. This bitmap parameter shows that which keyword parameters are given or not given (0 for given). It is refered by `checkkeyword' instruction described bellow. * rename rb_iseq_t::arg_keyword_check to rb_iseq_t::arg_keyword_rest to represent keyword rest parameter index. * add rb_iseq_t::arg_keyword_default_values to represent default keyword values. * rename VM_CALL_ARGS_SKIP_SETUP to VM_CALL_ARGS_SIMPLE to represent (ci->flag & (SPLAT|BLOCKARG)) && ci->blockiseq == NULL && ci->kw_arg == NULL. * vm_insnhelper.c, vm_args.c: rewrite with refactoring. * rewrite splat argument code. * rewrite keyword arguments/parameters code. * merge method and block parameter fitting code into one code base. * vm.c, vm_eval.c: catch up these changes. * compile.c (new_callinfo): callinfo requires kw_arg parameter. * compile.c (compile_array_): check the last argument Hash object or not. If Hash object and all keys are Symbol literals, they are compiled to keyword arguments. * insns.def (checkkeyword): add new instruction. This instruction check the availability of corresponding keyword. For example, a method "def foo k1: 'v1'; end" is cimpiled to the following instructions. 0000 checkkeyword 2, 0 # check k1 is given. 0003 branchif 9 # if given, jump to address #9 0005 putstring "v1" 0007 setlocal_OP__WC__0 3 # k1 = 'v1' 0009 trace 8 0011 putnil 0012 trace 16 0014 leave * insns.def (opt_send_simple): removed and add new instruction "opt_send_without_block". * parse.y (new_args_tail_gen): reorder variables. Before this patch, a method "def foo(k1: 1, kr1:, k2: 2, **krest, &b)" has parameter variables "k1, kr1, k2, &b, internal_id, krest", but this patch reorders to "kr1, k1, k2, internal_id, krest, &b". (locate a block variable at last) * parse.y (vtable_pop): added. This function remove latest `n' variables from vtable. * iseq.c: catch up iseq data changes. * proc.c: ditto. * class.c (keyword_error): export as rb_keyword_error(). * common.mk: depend vm_args.c for vm.o. * hash.c (rb_hash_has_key): export. * internal.h: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@48239 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-11-02 21:02:55 +03:00
CONST_ID(keyrest, "keyrest");
rb_ary_push(args, PARAM(iseq->param.keyword->rest_start, keyrest));
}
if (iseq->param.flags.has_block) {
CONST_ID(block, "block");
rb_ary_push(args, PARAM(iseq->param.block_start, block));
}
return args;
}
VALUE
rb_iseq_defined_string(enum defined_type type)
{
static const char expr_names[][18] = {
"nil",
"instance-variable",
"local-variable",
"global-variable",
"class variable",
"constant",
"method",
"yield",
"super",
"self",
"true",
"false",
"assignment",
"expression",
};
const char *estr;
VALUE *defs, str;
if ((unsigned)(type - 1) >= (unsigned)numberof(expr_names)) return 0;
estr = expr_names[type - 1];
if (!estr[0]) return 0;
defs = GET_VM()->defined_strings;
if (!defs) {
defs = ruby_xcalloc(numberof(expr_names), sizeof(VALUE));
GET_VM()->defined_strings = defs;
}
str = defs[type-1];
if (!str) {
str = rb_str_new_cstr(estr);
OBJ_FREEZE(str);
defs[type-1] = str;
rb_gc_register_mark_object(str);
}
return str;
}
/* ruby2cext */
VALUE
rb_iseq_build_for_ruby2cext(
const rb_iseq_t *iseq_template,
const rb_insn_func_t *func,
const struct iseq_line_info_entry *line_info_table,
const char **local_table,
const VALUE *arg_opt_table,
const struct iseq_catch_table_entry *catch_table,
const char *name,
const char *path,
const unsigned short first_lineno)
{
unsigned long i;
VALUE iseqval = iseq_alloc(rb_cISeq);
rb_iseq_t *iseq;
GetISeqPtr(iseqval, iseq);
/* copy iseq */
MEMCPY(iseq, iseq_template, rb_iseq_t, 1); /* TODO: write barrier, *iseq = *iseq_template; */
RB_OBJ_WRITE(iseq->self, &iseq->location.label, rb_str_new2(name));
RB_OBJ_WRITE(iseq->self, &iseq->location.path, rb_str_new2(path));
iseq->location.first_lineno = UINT2NUM(first_lineno);
RB_OBJ_WRITE(iseq->self, &iseq->mark_ary, 0);
iseq->self = iseqval;
iseq->iseq_encoded = ALLOC_N(VALUE, iseq->iseq_size);
for (i=0; i<iseq->iseq_size; i+=2) {
iseq->iseq_encoded[i] = BIN(opt_call_c_function);
iseq->iseq_encoded[i+1] = (VALUE)func;
}
rb_iseq_translate_threaded_code(iseq);
#define ALLOC_AND_COPY(dst, src, type, size) do { \
if (size) { \
(dst) = ALLOC_N(type, (size)); \
MEMCPY((dst), (src), type, (size)); \
} \
} while (0)
ALLOC_AND_COPY(iseq->line_info_table, line_info_table,
struct iseq_line_info_entry, iseq->line_info_size);
/*
* FIXME: probably broken, but this function is probably unused
* and should be removed
*/
if (iseq->catch_table) {
MEMCPY(&iseq->catch_table->entries, catch_table,
struct iseq_catch_table_entry, iseq->catch_table->size);
}
ALLOC_AND_COPY(iseq->param.opt_table, arg_opt_table, VALUE, iseq->param.opt_num + 1);
set_relation(iseq, 0);
return iseqval;
}
/* Experimental tracing support: trace(line) -> trace(specified_line)
* MRI Specific.
*/
int
rb_iseq_line_trace_each(VALUE iseqval, int (*func)(int line, rb_event_flag_t *events_ptr, void *d), void *data)
{
int trace_num = 0;
unsigned int pos;
size_t insn;
rb_iseq_t *iseq;
int cont = 1;
VALUE *iseq_original;
GetISeqPtr(iseqval, iseq);
iseq_original = rb_iseq_original_iseq(iseq);
for (pos = 0; cont && pos < iseq->iseq_size; pos += insn_len(insn)) {
insn = iseq_original[pos];
if (insn == BIN(trace)) {
rb_event_flag_t current_events;
current_events = (rb_event_flag_t)iseq_original[pos+1];
if (current_events & RUBY_EVENT_LINE) {
rb_event_flag_t events = current_events & RUBY_EVENT_SPECIFIED_LINE;
trace_num++;
if (func) {
int line = find_line_no(iseq, pos);
/* printf("line: %d\n", line); */
cont = (*func)(line, &events, data);
if (current_events != events) {
iseq_original[pos+1] = iseq->iseq_encoded[pos+1] =
(VALUE)(current_events | (events & RUBY_EVENT_SPECIFIED_LINE));
}
}
}
}
}
return trace_num;
}
static int
collect_trace(int line, rb_event_flag_t *events_ptr, void *ptr)
{
VALUE result = (VALUE)ptr;
rb_ary_push(result, INT2NUM(line));
return 1;
}
/*
* <b>Experimental MRI specific feature, only available as C level api.</b>
*
* Returns all +specified_line+ events.
*/
VALUE
rb_iseq_line_trace_all(VALUE iseqval)
{
VALUE result = rb_ary_new();
rb_iseq_line_trace_each(iseqval, collect_trace, (void *)result);
return result;
}
struct set_specifc_data {
int pos;
int set;
int prev; /* 1: set, 2: unset, 0: not found */
};
static int
line_trace_specify(int line, rb_event_flag_t *events_ptr, void *ptr)
{
struct set_specifc_data *data = (struct set_specifc_data *)ptr;
if (data->pos == 0) {
data->prev = *events_ptr & RUBY_EVENT_SPECIFIED_LINE ? 1 : 2;
if (data->set) {
*events_ptr = *events_ptr | RUBY_EVENT_SPECIFIED_LINE;
}
else {
*events_ptr = *events_ptr & ~RUBY_EVENT_SPECIFIED_LINE;
}
return 0; /* found */
}
else {
data->pos--;
return 1;
}
}
/*
* <b>Experimental MRI specific feature, only available as C level api.</b>
*
* Set a +specified_line+ event at the given line position, if the +set+
* parameter is +true+.
*
* This method is useful for building a debugger breakpoint at a specific line.
*
* A TypeError is raised if +set+ is not boolean.
*
* If +pos+ is a negative integer a TypeError exception is raised.
*/
VALUE
rb_iseq_line_trace_specify(VALUE iseqval, VALUE pos, VALUE set)
{
struct set_specifc_data data;
data.prev = 0;
data.pos = NUM2INT(pos);
if (data.pos < 0) rb_raise(rb_eTypeError, "`pos' is negative");
switch (set) {
case Qtrue: data.set = 1; break;
case Qfalse: data.set = 0; break;
default:
rb_raise(rb_eTypeError, "`set' should be true/false");
}
rb_iseq_line_trace_each(iseqval, line_trace_specify, (void *)&data);
if (data.prev == 0) {
rb_raise(rb_eTypeError, "`pos' is out of range.");
}
return data.prev == 1 ? Qtrue : Qfalse;
}
/*
* Document-class: RubyVM::InstructionSequence
*
* The InstructionSequence class represents a compiled sequence of
* instructions for the Ruby Virtual Machine.
*
* With it, you can get a handle to the instructions that make up a method or
* a proc, compile strings of Ruby code down to VM instructions, and
* disassemble instruction sequences to strings for easy inspection. It is
* mostly useful if you want to learn how the Ruby VM works, but it also lets
* you control various settings for the Ruby iseq compiler.
*
* You can find the source for the VM instructions in +insns.def+ in the Ruby
* source.
*
* The instruction sequence results will almost certainly change as Ruby
* changes, so example output in this documentation may be different from what
* you see.
*/
void
Init_ISeq(void)
{
/* declare ::RubyVM::InstructionSequence */
rb_cISeq = rb_define_class_under(rb_cRubyVM, "InstructionSequence", rb_cObject);
rb_define_alloc_func(rb_cISeq, iseq_alloc);
rb_define_method(rb_cISeq, "inspect", iseq_inspect, 0);
rb_define_method(rb_cISeq, "disasm", rb_iseq_disasm, 0);
rb_define_method(rb_cISeq, "disassemble", rb_iseq_disasm, 0);
rb_define_method(rb_cISeq, "to_a", iseq_to_a, 0);
rb_define_method(rb_cISeq, "eval", iseq_eval, 0);
/* location APIs */
rb_define_method(rb_cISeq, "path", rb_iseq_path, 0);
rb_define_method(rb_cISeq, "absolute_path", rb_iseq_absolute_path, 0);
rb_define_method(rb_cISeq, "label", rb_iseq_label, 0);
rb_define_method(rb_cISeq, "base_label", rb_iseq_base_label, 0);
rb_define_method(rb_cISeq, "first_lineno", rb_iseq_first_lineno, 0);
#if 0
/* Now, it is experimental. No discussions, no tests. */
/* They can be used from C level. Please give us feedback. */
rb_define_method(rb_cISeq, "line_trace_all", rb_iseq_line_trace_all, 0);
rb_define_method(rb_cISeq, "line_trace_specify", rb_iseq_line_trace_specify, 2);
#else
(void)rb_iseq_line_trace_all;
(void)rb_iseq_line_trace_specify;
#endif
#if 0 /* TBD */
rb_define_private_method(rb_cISeq, "marshal_dump", iseq_marshal_dump, 0);
rb_define_private_method(rb_cISeq, "marshal_load", iseq_marshal_load, 1);
#endif
/* disable this feature because there is no verifier. */
/* rb_define_singleton_method(rb_cISeq, "load", iseq_s_load, -1); */
(void)iseq_s_load;
rb_define_singleton_method(rb_cISeq, "compile", iseq_s_compile, -1);
rb_define_singleton_method(rb_cISeq, "new", iseq_s_compile, -1);
rb_define_singleton_method(rb_cISeq, "compile_file", iseq_s_compile_file, -1);
rb_define_singleton_method(rb_cISeq, "compile_option", iseq_s_compile_option_get, 0);
rb_define_singleton_method(rb_cISeq, "compile_option=", iseq_s_compile_option_set, 1);
rb_define_singleton_method(rb_cISeq, "disasm", iseq_s_disasm, 1);
rb_define_singleton_method(rb_cISeq, "disassemble", iseq_s_disasm, 1);
rb_define_singleton_method(rb_cISeq, "of", iseq_s_of, 1);
}