ruby/proc.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

4440 строки
127 KiB
C
Исходник Обычный вид История

/**********************************************************************
proc.c - Proc, Binding, Env
$Author$
created at: Wed Jan 17 12:13:14 2007
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#include "eval_intern.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/error.h"
#include "internal/eval.h"
#include "internal/gc.h"
#include "internal/hash.h"
#include "internal/object.h"
#include "internal/proc.h"
#include "internal/symbol.h"
#include "method.h"
#include "iseq.h"
#include "vm_core.h"
Collect statistics about binding allocations / local variable set This commit collects statistics about how many binding objects are allocated as well as the number of local variables set on bindings. Statistics are output along with other YJIT stats. Here is an example of the output: ``` ***YJIT: Printing runtime counters from yjit.rb*** Number of Bindings Allocated: 195 Number of locals modified through binding: 0 opt_send_without_block exit reasons: ivar_get_method 7515891 (40.4%) se_cc_klass_differ 3081330 (16.6%) iseq_argc_mismatch 1564578 ( 8.4%) se_receiver_not_heap 1557663 ( 8.4%) ic_empty 1407064 ( 7.6%) optimized_method 995823 ( 5.4%) iseq_not_simple 819413 ( 4.4%) alias_method 706972 ( 3.8%) bmethod 685253 ( 3.7%) callsite_not_simple 225983 ( 1.2%) kw_splat 25999 ( 0.1%) ivar_set_method 902 ( 0.0%) cfunc_toomany_args 394 ( 0.0%) refined_method 42 ( 0.0%) cfunc_ruby_array_varg 29 ( 0.0%) invalid_cme 4 ( 0.0%) leave exit reasons: se_finish_frame 4067107 (100.0%) se_interrupt 24 ( 0.0%) getinstancevariable exit reasons: undef 121177 (100.0%) idx_out_of_range 5 ( 0.0%) opt_aref exit reasons: (all relevant counters are zero) compiled_iseq_count: 3944 main_block_code_size: 1.1 MiB side_block_code_size: 0.6 MiB vm_insns_count: 1137268516 yjit_exec_insns_count: 414015644 ratio_in_yjit: 26.7% avg_len_in_yjit: 7.5 total_exit_count: 55491789 most frequent exit op: opt_send_without_block: 18587628 (33.5%) opt_getinlinecache: 11075822 (20.0%) send: 4949300 (8.9%) leave: 4067131 (7.3%) defined: 3975196 (7.2%) setinstancevariable: 3567315 (6.4%) invokesuper: 2982163 (5.4%) getblockparamproxy: 2168852 (3.9%) opt_nil_p: 2104524 (3.8%) opt_aref: 2013858 (3.6%) ``` Running RailsBench allocates 195 binding objects but doesn't set any local variables.
2021-04-07 22:51:50 +03:00
#include "yjit.h"
const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase);
struct METHOD {
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
const VALUE recv;
const VALUE klass;
/* needed for #super_method */
const VALUE iclass;
/* Different than me->owner only for ZSUPER methods.
This is error-prone but unavoidable unless ZSUPER methods are removed. */
const VALUE owner;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
const rb_method_entry_t * const me;
/* for bound methods, `me' should be rb_callable_method_entry_t * */
};
VALUE rb_cUnboundMethod;
VALUE rb_cMethod;
VALUE rb_cBinding;
VALUE rb_cProc;
static rb_block_call_func bmcall;
static int method_arity(VALUE);
static int method_min_max_arity(VALUE, int *max);
static VALUE proc_binding(VALUE self);
/* Proc */
#define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall)
static void
block_mark_and_move(struct rb_block *block)
{
switch (block->type) {
case block_type_iseq:
case block_type_ifunc:
{
struct rb_captured_block *captured = &block->as.captured;
rb_gc_mark_and_move(&captured->self);
rb_gc_mark_and_move(&captured->code.val);
if (captured->ep) {
rb_gc_mark_and_move((VALUE *)&captured->ep[VM_ENV_DATA_INDEX_ENV]);
}
}
break;
case block_type_symbol:
rb_gc_mark_and_move(&block->as.symbol);
break;
case block_type_proc:
rb_gc_mark_and_move(&block->as.proc);
break;
}
}
static void
proc_mark_and_move(void *ptr)
{
rb_proc_t *proc = ptr;
block_mark_and_move((struct rb_block *)&proc->block);
}
typedef struct {
rb_proc_t basic;
VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */
} cfunc_proc_t;
static size_t
proc_memsize(const void *ptr)
{
const rb_proc_t *proc = ptr;
if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1)
return sizeof(cfunc_proc_t);
return sizeof(rb_proc_t);
}
static const rb_data_type_t proc_data_type = {
"proc",
{
proc_mark_and_move,
RUBY_TYPED_DEFAULT_FREE,
proc_memsize,
proc_mark_and_move,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
};
VALUE
rb_proc_alloc(VALUE klass)
{
rb_proc_t *proc;
return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc);
}
VALUE
rb_obj_is_proc(VALUE proc)
{
2021-08-02 06:06:44 +03:00
return RBOOL(rb_typeddata_is_kind_of(proc, &proc_data_type));
}
/* :nodoc: */
static VALUE
proc_clone(VALUE self)
{
`$SAFE` as a process global state. [Feature #14250] * vm_core.h (rb_vm_t): move `rb_execution_context_t::safe_level` to `rb_vm_t::safe_level_` because `$SAFE` is a process (VM) global state. * vm_core.h (rb_proc_t): remove `rb_proc_t::safe_level` because `Proc` objects don't need to keep `$SAFE` at the creation. Also make `is_from_method` and `is_lambda` as 1 bit fields. * cont.c (cont_restore_thread): no need to keep `$SAFE` for Continuation. * eval.c (ruby_cleanup): use `rb_set_safe_level_force()` instead of access `vm->safe_level_` directly. * eval_jump.c: End procs `END{}` doesn't keep `$SAFE`. * proc.c (proc_dup): removed and introduce `rb_proc_dup` in vm.c. * safe.c (rb_set_safe_level): don't check `$SAFE` 1 -> 0 changes. * safe.c (safe_setter): use `rb_set_safe_level()`. * thread.c (rb_thread_safe_level): `Thread#safe_level` returns `$SAFE`. It should be obsolete. * transcode.c (load_transcoder_entry): `rb_safe_level()` only returns 0 or 1 so that this check is not needed. * vm.c (vm_proc_create_from_captured): don't need to keep `$SAFE` for Proc. * vm.c (rb_proc_create): renamed to `proc_create`. * vm.c (rb_proc_dup): moved from proc.c. * vm.c (vm_invoke_proc): do not need to set and restore `$SAFE` for `Proc#call`. * vm_eval.c (rb_eval_cmd): rename a local variable to represent clearer meaning. * lib/drb/drb.rb: restore `$SAFE`. * lib/erb.rb: restore `$SAFE`, too. * test/lib/leakchecker.rb: check `$SAFE == 0` at the end of tests. * test/rubygems/test_gem.rb: do not set `$SAFE = 1`. * bootstraptest/test_proc.rb: catch up this change. * spec/ruby/optional/capi/string_spec.rb: ditto. * test/bigdecimal/test_bigdecimal.rb: ditto. * test/fiddle/test_func.rb: ditto. * test/fiddle/test_handle.rb: ditto. * test/net/imap/test_imap_response_parser.rb: ditto. * test/pathname/test_pathname.rb: ditto. * test/readline/test_readline.rb: ditto. * test/ruby/test_file.rb: ditto. * test/ruby/test_optimization.rb: ditto. * test/ruby/test_proc.rb: ditto. * test/ruby/test_require.rb: ditto. * test/ruby/test_thread.rb: ditto. * test/rubygems/test_gem_specification.rb: ditto. * test/test_tempfile.rb: ditto. * test/test_tmpdir.rb: ditto. * test/win32ole/test_win32ole.rb: ditto. * test/win32ole/test_win32ole_event.rb: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@61510 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-12-28 23:09:24 +03:00
VALUE procval = rb_proc_dup(self);
return rb_obj_clone_setup(self, procval, Qnil);
}
/* :nodoc: */
static VALUE
proc_dup(VALUE self)
{
VALUE procval = rb_proc_dup(self);
return rb_obj_dup_setup(self, procval);
}
/*
* call-seq:
* prc.lambda? -> true or false
*
2019-07-14 09:01:39 +03:00
* Returns +true+ if a Proc object is lambda.
* +false+ if non-lambda.
*
* The lambda-ness affects argument handling and the behavior of +return+ and +break+.
*
* A Proc object generated by +proc+ ignores extra arguments.
*
* proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2]
*
* It provides +nil+ for missing arguments.
*
* proc {|a,b| [a,b] }.call(1) #=> [1,nil]
*
* It expands a single array argument.
*
* proc {|a,b| [a,b] }.call([1,2]) #=> [1,2]
*
* A Proc object generated by +lambda+ doesn't have such tricks.
*
* lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError
* lambda {|a,b| [a,b] }.call(1) #=> ArgumentError
* lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError
*
* Proc#lambda? is a predicate for the tricks.
* It returns +true+ if no tricks apply.
*
* lambda {}.lambda? #=> true
* proc {}.lambda? #=> false
*
* Proc.new is the same as +proc+.
*
* Proc.new {}.lambda? #=> false
*
* +lambda+, +proc+ and Proc.new preserve the tricks of
* a Proc object given by <code>&</code> argument.
*
* lambda(&lambda {}).lambda? #=> true
* proc(&lambda {}).lambda? #=> true
* Proc.new(&lambda {}).lambda? #=> true
*
* lambda(&proc {}).lambda? #=> false
* proc(&proc {}).lambda? #=> false
* Proc.new(&proc {}).lambda? #=> false
*
* A Proc object generated by <code>&</code> argument has the tricks
*
* def n(&b) b.lambda? end
* n {} #=> false
*
* The <code>&</code> argument preserves the tricks if a Proc object
* is given by <code>&</code> argument.
*
* n(&lambda {}) #=> true
* n(&proc {}) #=> false
* n(&Proc.new {}) #=> false
*
* A Proc object converted from a method has no tricks.
*
* def m() end
* method(:m).to_proc.lambda? #=> true
*
* n(&method(:m)) #=> true
* n(&method(:m).to_proc) #=> true
*
* +define_method+ is treated the same as method definition.
* The defined method has no tricks.
*
* class C
* define_method(:d) {}
* end
* C.new.d(1,2) #=> ArgumentError
* C.new.method(:d).to_proc.lambda? #=> true
*
* +define_method+ always defines a method without the tricks,
* even if a non-lambda Proc object is given.
* This is the only exception for which the tricks are not preserved.
*
* class C
* define_method(:e, &proc {})
* end
* C.new.e(1,2) #=> ArgumentError
* C.new.method(:e).to_proc.lambda? #=> true
*
* This exception ensures that methods never have tricks
* and makes it easy to have wrappers to define methods that behave as usual.
*
* class C
* def self.def2(name, &body)
* define_method(name, &body)
* end
*
* def2(:f) {}
* end
* C.new.f(1,2) #=> ArgumentError
*
* The wrapper <i>def2</i> defines a method which has no tricks.
*
*/
VALUE
rb_proc_lambda_p(VALUE procval)
{
rb_proc_t *proc;
GetProcPtr(procval, proc);
2021-08-02 06:06:44 +03:00
return RBOOL(proc->is_lambda);
}
/* Binding */
static void
binding_free(void *ptr)
{
RUBY_FREE_ENTER("binding");
ruby_xfree(ptr);
RUBY_FREE_LEAVE("binding");
}
static void
binding_mark_and_move(void *ptr)
{
rb_binding_t *bind = ptr;
block_mark_and_move((struct rb_block *)&bind->block);
rb_gc_mark_and_move((VALUE *)&bind->pathobj);
}
static size_t
binding_memsize(const void *ptr)
{
return sizeof(rb_binding_t);
}
const rb_data_type_t ruby_binding_data_type = {
"binding",
{
binding_mark_and_move,
binding_free,
binding_memsize,
binding_mark_and_move,
},
0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY
};
VALUE
rb_binding_alloc(VALUE klass)
{
VALUE obj;
rb_binding_t *bind;
obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind);
#if YJIT_STATS
Collect statistics about binding allocations / local variable set This commit collects statistics about how many binding objects are allocated as well as the number of local variables set on bindings. Statistics are output along with other YJIT stats. Here is an example of the output: ``` ***YJIT: Printing runtime counters from yjit.rb*** Number of Bindings Allocated: 195 Number of locals modified through binding: 0 opt_send_without_block exit reasons: ivar_get_method 7515891 (40.4%) se_cc_klass_differ 3081330 (16.6%) iseq_argc_mismatch 1564578 ( 8.4%) se_receiver_not_heap 1557663 ( 8.4%) ic_empty 1407064 ( 7.6%) optimized_method 995823 ( 5.4%) iseq_not_simple 819413 ( 4.4%) alias_method 706972 ( 3.8%) bmethod 685253 ( 3.7%) callsite_not_simple 225983 ( 1.2%) kw_splat 25999 ( 0.1%) ivar_set_method 902 ( 0.0%) cfunc_toomany_args 394 ( 0.0%) refined_method 42 ( 0.0%) cfunc_ruby_array_varg 29 ( 0.0%) invalid_cme 4 ( 0.0%) leave exit reasons: se_finish_frame 4067107 (100.0%) se_interrupt 24 ( 0.0%) getinstancevariable exit reasons: undef 121177 (100.0%) idx_out_of_range 5 ( 0.0%) opt_aref exit reasons: (all relevant counters are zero) compiled_iseq_count: 3944 main_block_code_size: 1.1 MiB side_block_code_size: 0.6 MiB vm_insns_count: 1137268516 yjit_exec_insns_count: 414015644 ratio_in_yjit: 26.7% avg_len_in_yjit: 7.5 total_exit_count: 55491789 most frequent exit op: opt_send_without_block: 18587628 (33.5%) opt_getinlinecache: 11075822 (20.0%) send: 4949300 (8.9%) leave: 4067131 (7.3%) defined: 3975196 (7.2%) setinstancevariable: 3567315 (6.4%) invokesuper: 2982163 (5.4%) getblockparamproxy: 2168852 (3.9%) opt_nil_p: 2104524 (3.8%) opt_aref: 2013858 (3.6%) ``` Running RailsBench allocates 195 binding objects but doesn't set any local variables.
2021-04-07 22:51:50 +03:00
rb_yjit_collect_binding_alloc();
#endif
return obj;
}
/* :nodoc: */
static VALUE
binding_dup(VALUE self)
{
VALUE bindval = rb_binding_alloc(rb_cBinding);
rb_binding_t *src, *dst;
GetBindingPtr(self, src);
GetBindingPtr(bindval, dst);
rb_vm_block_copy(bindval, &dst->block, &src->block);
RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj);
dst->first_lineno = src->first_lineno;
return rb_obj_dup_setup(self, bindval);
}
/* :nodoc: */
static VALUE
binding_clone(VALUE self)
{
VALUE bindval = binding_dup(self);
return rb_obj_clone_setup(self, bindval, Qnil);
}
VALUE
rb_binding_new(void)
{
rb_execution_context_t *ec = GET_EC();
return rb_vm_make_binding(ec, ec->cfp);
}
/*
* call-seq:
* binding -> a_binding
*
* Returns a Binding object, describing the variable and
* method bindings at the point of call. This object can be used when
* calling Binding#eval to execute the evaluated command in this
* environment, or extracting its local variables.
*
* class User
* def initialize(name, position)
* @name = name
* @position = position
* end
*
* def get_binding
* binding
* end
* end
*
* user = User.new('Joan', 'manager')
* template = '{name: @name, position: @position}'
*
* # evaluate template in context of the object
* eval(template, user.get_binding)
* #=> {:name=>"Joan", :position=>"manager"}
*
* Binding#local_variable_get can be used to access the variables
* whose names are reserved Ruby keywords:
*
* # This is valid parameter declaration, but `if` parameter can't
* # be accessed by name, because it is a reserved word.
* def validate(field, validation, if: nil)
* condition = binding.local_variable_get('if')
* return unless condition
*
* # ...Some implementation ...
* end
*
* validate(:name, :empty?, if: false) # skips validation
* validate(:name, :empty?, if: true) # performs validation
*
*/
static VALUE
rb_f_binding(VALUE self)
{
return rb_binding_new();
}
/*
* call-seq:
* binding.eval(string [, filename [,lineno]]) -> obj
*
* Evaluates the Ruby expression(s) in <em>string</em>, in the
* <em>binding</em>'s context. If the optional <em>filename</em> and
* <em>lineno</em> parameters are present, they will be used when
* reporting syntax errors.
*
* def get_binding(param)
* binding
* end
* b = get_binding("hello")
* b.eval("param") #=> "hello"
*/
static VALUE
bind_eval(int argc, VALUE *argv, VALUE bindval)
{
VALUE args[4];
rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
args[1] = bindval;
return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
}
static const VALUE *
get_local_variable_ptr(const rb_env_t **envp, ID lid)
{
const rb_env_t *env = *envp;
do {
if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) {
if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) {
return NULL;
}
const rb_iseq_t *iseq = env->iseq;
unsigned int i;
VM_ASSERT(rb_obj_is_iseq((VALUE)iseq));
for (i=0; i<ISEQ_BODY(iseq)->local_table_size; i++) {
if (ISEQ_BODY(iseq)->local_table[i] == lid) {
if (ISEQ_BODY(iseq)->local_iseq == iseq &&
ISEQ_BODY(iseq)->param.flags.has_block &&
(unsigned int)ISEQ_BODY(iseq)->param.block_start == i) {
const VALUE *ep = env->ep;
if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) {
RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep)));
VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM);
}
}
2022-07-21 19:23:58 +03:00
*envp = env;
return &env->env[i];
}
}
}
else {
*envp = NULL;
return NULL;
}
} while ((env = rb_vm_env_prev_env(env)) != NULL);
*envp = NULL;
return NULL;
}
/*
* check local variable name.
* returns ID if it's an already interned symbol, or 0 with setting
* local name in String to *namep.
*/
static ID
check_local_id(VALUE bindval, volatile VALUE *pname)
{
ID lid = rb_check_id(pname);
VALUE name = *pname;
if (lid) {
if (!rb_is_local_id(lid)) {
rb_name_err_raise("wrong local variable name '%1$s' for %2$s",
bindval, ID2SYM(lid));
}
}
else {
if (!rb_is_local_name(name)) {
rb_name_err_raise("wrong local variable name '%1$s' for %2$s",
bindval, name);
}
return 0;
}
return lid;
}
/*
* call-seq:
* binding.local_variables -> Array
*
* Returns the names of the binding's local variables as symbols.
*
* def foo
* a = 1
* 2.times do |n|
* binding.local_variables #=> [:a, :n]
* end
* end
*
* This method is the short version of the following code:
*
* binding.eval("local_variables")
*
*/
static VALUE
bind_local_variables(VALUE bindval)
{
const rb_binding_t *bind;
const rb_env_t *env;
GetBindingPtr(bindval, bind);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
return rb_vm_env_local_variables(env);
}
/*
* call-seq:
* binding.local_variable_get(symbol) -> obj
*
* Returns the value of the local variable +symbol+.
*
* def foo
* a = 1
* binding.local_variable_get(:a) #=> 1
* binding.local_variable_get(:b) #=> NameError
* end
*
* This method is the short version of the following code:
*
* binding.eval("#{symbol}")
*
*/
static VALUE
bind_local_variable_get(VALUE bindval, VALUE sym)
{
ID lid = check_local_id(bindval, &sym);
const rb_binding_t *bind;
const VALUE *ptr;
const rb_env_t *env;
if (!lid) goto undefined;
GetBindingPtr(bindval, bind);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
if ((ptr = get_local_variable_ptr(&env, lid)) != NULL) {
return *ptr;
}
sym = ID2SYM(lid);
undefined:
rb_name_err_raise("local variable '%1$s' is not defined for %2$s",
bindval, sym);
UNREACHABLE_RETURN(Qundef);
}
/*
* call-seq:
* binding.local_variable_set(symbol, obj) -> obj
*
* Set local variable named +symbol+ as +obj+.
*
* def foo
* a = 1
* bind = binding
* bind.local_variable_set(:a, 2) # set existing local variable `a'
* bind.local_variable_set(:b, 3) # create new local variable `b'
* # `b' exists only in binding
*
* p bind.local_variable_get(:a) #=> 2
* p bind.local_variable_get(:b) #=> 3
* p a #=> 2
* p b #=> NameError
* end
*
* This method behaves similarly to the following code:
*
* binding.eval("#{symbol} = #{obj}")
*
* if +obj+ can be dumped in Ruby code.
*/
static VALUE
bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val)
{
ID lid = check_local_id(bindval, &sym);
rb_binding_t *bind;
const VALUE *ptr;
const rb_env_t *env;
if (!lid) lid = rb_intern_str(sym);
GetBindingPtr(bindval, bind);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) {
/* not found. create new env */
ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
}
#if YJIT_STATS
Collect statistics about binding allocations / local variable set This commit collects statistics about how many binding objects are allocated as well as the number of local variables set on bindings. Statistics are output along with other YJIT stats. Here is an example of the output: ``` ***YJIT: Printing runtime counters from yjit.rb*** Number of Bindings Allocated: 195 Number of locals modified through binding: 0 opt_send_without_block exit reasons: ivar_get_method 7515891 (40.4%) se_cc_klass_differ 3081330 (16.6%) iseq_argc_mismatch 1564578 ( 8.4%) se_receiver_not_heap 1557663 ( 8.4%) ic_empty 1407064 ( 7.6%) optimized_method 995823 ( 5.4%) iseq_not_simple 819413 ( 4.4%) alias_method 706972 ( 3.8%) bmethod 685253 ( 3.7%) callsite_not_simple 225983 ( 1.2%) kw_splat 25999 ( 0.1%) ivar_set_method 902 ( 0.0%) cfunc_toomany_args 394 ( 0.0%) refined_method 42 ( 0.0%) cfunc_ruby_array_varg 29 ( 0.0%) invalid_cme 4 ( 0.0%) leave exit reasons: se_finish_frame 4067107 (100.0%) se_interrupt 24 ( 0.0%) getinstancevariable exit reasons: undef 121177 (100.0%) idx_out_of_range 5 ( 0.0%) opt_aref exit reasons: (all relevant counters are zero) compiled_iseq_count: 3944 main_block_code_size: 1.1 MiB side_block_code_size: 0.6 MiB vm_insns_count: 1137268516 yjit_exec_insns_count: 414015644 ratio_in_yjit: 26.7% avg_len_in_yjit: 7.5 total_exit_count: 55491789 most frequent exit op: opt_send_without_block: 18587628 (33.5%) opt_getinlinecache: 11075822 (20.0%) send: 4949300 (8.9%) leave: 4067131 (7.3%) defined: 3975196 (7.2%) setinstancevariable: 3567315 (6.4%) invokesuper: 2982163 (5.4%) getblockparamproxy: 2168852 (3.9%) opt_nil_p: 2104524 (3.8%) opt_aref: 2013858 (3.6%) ``` Running RailsBench allocates 195 binding objects but doesn't set any local variables.
2021-04-07 22:51:50 +03:00
rb_yjit_collect_binding_set();
#endif
RB_OBJ_WRITE(env, ptr, val);
return val;
}
/*
* call-seq:
* binding.local_variable_defined?(symbol) -> obj
*
* Returns +true+ if a local variable +symbol+ exists.
*
* def foo
* a = 1
* binding.local_variable_defined?(:a) #=> true
* binding.local_variable_defined?(:b) #=> false
* end
*
* This method is the short version of the following code:
*
* binding.eval("defined?(#{symbol}) == 'local-variable'")
*
*/
static VALUE
bind_local_variable_defined_p(VALUE bindval, VALUE sym)
{
ID lid = check_local_id(bindval, &sym);
const rb_binding_t *bind;
const rb_env_t *env;
if (!lid) return Qfalse;
GetBindingPtr(bindval, bind);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
2021-08-02 06:06:44 +03:00
return RBOOL(get_local_variable_ptr(&env, lid));
}
/*
* call-seq:
* binding.receiver -> object
*
* Returns the bound receiver of the binding object.
*/
static VALUE
bind_receiver(VALUE bindval)
{
const rb_binding_t *bind;
GetBindingPtr(bindval, bind);
return vm_block_self(&bind->block);
}
/*
* call-seq:
* binding.source_location -> [String, Integer]
*
* Returns the Ruby source filename and line number of the binding object.
*/
static VALUE
bind_location(VALUE bindval)
{
VALUE loc[2];
const rb_binding_t *bind;
GetBindingPtr(bindval, bind);
loc[0] = pathobj_path(bind->pathobj);
loc[1] = INT2FIX(bind->first_lineno);
return rb_ary_new4(2, loc);
}
static VALUE
cfunc_proc_new(VALUE klass, VALUE ifunc)
{
rb_proc_t *proc;
cfunc_proc_t *sproc;
VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc);
VALUE *ep;
proc = &sproc->basic;
vm_block_type_set(&proc->block, block_type_ifunc);
*(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1;
ep[VM_ENV_DATA_INDEX_FLAGS] = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED;
ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse;
ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE;
ep[VM_ENV_DATA_INDEX_ENV] = Qundef; /* envval */
/* self? */
RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc);
proc->is_lambda = TRUE;
return procval;
}
static VALUE
sym_proc_new(VALUE klass, VALUE sym)
{
VALUE procval = rb_proc_alloc(klass);
rb_proc_t *proc;
GetProcPtr(procval, proc);
vm_block_type_set(&proc->block, block_type_symbol);
proc->is_lambda = TRUE;
RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym);
return procval;
}
struct vm_ifunc *
rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc)
{
union {
struct vm_ifunc_argc argc;
VALUE packed;
} arity;
if (min_argc < UNLIMITED_ARGUMENTS ||
#if SIZEOF_INT * 2 > SIZEOF_VALUE
min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
#endif
0) {
rb_raise(rb_eRangeError, "minimum argument number out of range: %d",
min_argc);
}
if (max_argc < UNLIMITED_ARGUMENTS ||
#if SIZEOF_INT * 2 > SIZEOF_VALUE
max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
#endif
0) {
rb_raise(rb_eRangeError, "maximum argument number out of range: %d",
max_argc);
}
arity.argc.min = min_argc;
arity.argc.max = max_argc;
rb_execution_context_t *ec = GET_EC();
struct vm_ifunc *ifunc = IMEMO_NEW(struct vm_ifunc, imemo_ifunc, (VALUE)rb_vm_svar_lep(ec, ec->cfp));
ifunc->func = func;
ifunc->data = data;
ifunc->argc = arity.argc;
return ifunc;
}
2023-03-07 08:34:31 +03:00
VALUE
rb_func_proc_new(rb_block_call_func_t func, VALUE val)
{
struct vm_ifunc *ifunc = rb_vm_ifunc_proc_new(func, (void *)val);
return cfunc_proc_new(rb_cProc, (VALUE)ifunc);
}
2023-03-07 08:34:31 +03:00
VALUE
rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc)
{
struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc);
return cfunc_proc_new(rb_cProc, (VALUE)ifunc);
}
static const char proc_without_block[] = "tried to create Proc object without a block";
static VALUE
proc_new(VALUE klass, int8_t is_lambda)
{
VALUE procval;
const rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
VALUE block_handler;
if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, proc_without_block);
}
/* block is in cf */
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_proc:
procval = VM_BH_TO_PROC(block_handler);
if (RBASIC_CLASS(procval) == klass) {
return procval;
}
else {
`$SAFE` as a process global state. [Feature #14250] * vm_core.h (rb_vm_t): move `rb_execution_context_t::safe_level` to `rb_vm_t::safe_level_` because `$SAFE` is a process (VM) global state. * vm_core.h (rb_proc_t): remove `rb_proc_t::safe_level` because `Proc` objects don't need to keep `$SAFE` at the creation. Also make `is_from_method` and `is_lambda` as 1 bit fields. * cont.c (cont_restore_thread): no need to keep `$SAFE` for Continuation. * eval.c (ruby_cleanup): use `rb_set_safe_level_force()` instead of access `vm->safe_level_` directly. * eval_jump.c: End procs `END{}` doesn't keep `$SAFE`. * proc.c (proc_dup): removed and introduce `rb_proc_dup` in vm.c. * safe.c (rb_set_safe_level): don't check `$SAFE` 1 -> 0 changes. * safe.c (safe_setter): use `rb_set_safe_level()`. * thread.c (rb_thread_safe_level): `Thread#safe_level` returns `$SAFE`. It should be obsolete. * transcode.c (load_transcoder_entry): `rb_safe_level()` only returns 0 or 1 so that this check is not needed. * vm.c (vm_proc_create_from_captured): don't need to keep `$SAFE` for Proc. * vm.c (rb_proc_create): renamed to `proc_create`. * vm.c (rb_proc_dup): moved from proc.c. * vm.c (vm_invoke_proc): do not need to set and restore `$SAFE` for `Proc#call`. * vm_eval.c (rb_eval_cmd): rename a local variable to represent clearer meaning. * lib/drb/drb.rb: restore `$SAFE`. * lib/erb.rb: restore `$SAFE`, too. * test/lib/leakchecker.rb: check `$SAFE == 0` at the end of tests. * test/rubygems/test_gem.rb: do not set `$SAFE = 1`. * bootstraptest/test_proc.rb: catch up this change. * spec/ruby/optional/capi/string_spec.rb: ditto. * test/bigdecimal/test_bigdecimal.rb: ditto. * test/fiddle/test_func.rb: ditto. * test/fiddle/test_handle.rb: ditto. * test/net/imap/test_imap_response_parser.rb: ditto. * test/pathname/test_pathname.rb: ditto. * test/readline/test_readline.rb: ditto. * test/ruby/test_file.rb: ditto. * test/ruby/test_optimization.rb: ditto. * test/ruby/test_proc.rb: ditto. * test/ruby/test_require.rb: ditto. * test/ruby/test_thread.rb: ditto. * test/rubygems/test_gem_specification.rb: ditto. * test/test_tempfile.rb: ditto. * test/test_tmpdir.rb: ditto. * test/win32ole/test_win32ole.rb: ditto. * test/win32ole/test_win32ole_event.rb: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@61510 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-12-28 23:09:24 +03:00
VALUE newprocval = rb_proc_dup(procval);
RBASIC_SET_CLASS(newprocval, klass);
return newprocval;
}
break;
case block_handler_type_symbol:
return (klass != rb_cProc) ?
sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) :
rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
break;
case block_handler_type_ifunc:
case block_handler_type_iseq:
return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda);
}
VM_UNREACHABLE(proc_new);
return Qnil;
}
/*
* call-seq:
* Proc.new {|...| block } -> a_proc
*
* Creates a new Proc object, bound to the current context.
*
* proc = Proc.new { "hello" }
* proc.call #=> "hello"
*
* Raises ArgumentError if called without a block.
*
* Proc.new #=> ArgumentError
*/
static VALUE
rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE block = proc_new(klass, FALSE);
rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS);
return block;
}
VALUE
rb_block_proc(void)
{
return proc_new(rb_cProc, FALSE);
}
/*
* call-seq:
* proc { |...| block } -> a_proc
*
* Equivalent to Proc.new.
*/
static VALUE
f_proc(VALUE _)
{
return proc_new(rb_cProc, FALSE);
}
VALUE
rb_block_lambda(void)
{
return proc_new(rb_cProc, TRUE);
}
static void
f_lambda_filter_non_literal(void)
{
rb_control_frame_t *cfp = GET_EC()->cfp;
VALUE block_handler = rb_vm_frame_block_handler(cfp);
if (block_handler == VM_BLOCK_HANDLER_NONE) {
2024-09-26 15:13:45 +03:00
// no block error raised else where
return;
}
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_iseq:
if (RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)->ep == VM_BH_TO_ISEQ_BLOCK(block_handler)->ep) {
return;
}
break;
case block_handler_type_symbol:
return;
case block_handler_type_proc:
if (rb_proc_lambda_p(VM_BH_TO_PROC(block_handler))) {
return;
}
break;
case block_handler_type_ifunc:
break;
}
rb_raise(rb_eArgError, "the lambda method requires a literal block");
}
/*
* call-seq:
* lambda { |...| block } -> a_proc
*
* Equivalent to Proc.new, except the resulting Proc objects check the
* number of parameters passed when called.
*/
static VALUE
f_lambda(VALUE _)
{
f_lambda_filter_non_literal();
return rb_block_lambda();
}
/* Document-method: Proc#===
*
* call-seq:
* proc === obj -> result_of_proc
*
* Invokes the block with +obj+ as the proc's parameter like Proc#call.
* This allows a proc object to be the target of a +when+ clause
* in a case statement.
*/
/* CHECKME: are the argument checking semantics correct? */
/*
* Document-method: Proc#[]
* Document-method: Proc#call
* Document-method: Proc#yield
*
* call-seq:
* prc.call(params,...) -> obj
* prc[params,...] -> obj
* prc.(params,...) -> obj
* prc.yield(params,...) -> obj
*
* Invokes the block, setting the block's parameters to the values in
* <i>params</i> using something close to method calling semantics.
* Returns the value of the last expression evaluated in the block.
*
* a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } }
* a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
* a_proc[9, 1, 2, 3] #=> [9, 18, 27]
* a_proc.(9, 1, 2, 3) #=> [9, 18, 27]
* a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
*
* Note that <code>prc.()</code> invokes <code>prc.call()</code> with
* the parameters given. It's syntactic sugar to hide "call".
*
* For procs created using #lambda or <code>->()</code> an error is
* generated if the wrong number of parameters are passed to the
* proc. For procs created using Proc.new or Kernel.proc, extra
* parameters are silently discarded and missing parameters are set
* to +nil+.
*
* a_proc = proc {|a,b| [a,b] }
* a_proc.call(1) #=> [1, nil]
*
* a_proc = lambda {|a,b| [a,b] }
* a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
*
* See also Proc#lambda?.
*/
#if 0
static VALUE
proc_call(int argc, VALUE *argv, VALUE procval)
{
/* removed */
}
#endif
#if SIZEOF_LONG > SIZEOF_INT
static inline int
check_argc(long argc)
{
if (argc > INT_MAX || argc < 0) {
rb_raise(rb_eArgError, "too many arguments (%lu)",
(unsigned long)argc);
}
return (int)argc;
}
#else
#define check_argc(argc) (argc)
#endif
VALUE
rb_proc_call_kw(VALUE self, VALUE args, int kw_splat)
{
VALUE vret;
rb_proc_t *proc;
int argc = check_argc(RARRAY_LEN(args));
const VALUE *argv = RARRAY_CONST_PTR(args);
GetProcPtr(self, proc);
vret = rb_vm_invoke_proc(GET_EC(), proc, argc, argv,
kw_splat, VM_BLOCK_HANDLER_NONE);
RB_GC_GUARD(self);
RB_GC_GUARD(args);
return vret;
}
VALUE
rb_proc_call(VALUE self, VALUE args)
{
2021-09-26 15:50:38 +03:00
return rb_proc_call_kw(self, args, RB_NO_KEYWORDS);
}
static VALUE
proc_to_block_handler(VALUE procval)
{
return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval;
}
VALUE
rb_proc_call_with_block_kw(VALUE self, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
{
rb_execution_context_t *ec = GET_EC();
VALUE vret;
rb_proc_t *proc;
GetProcPtr(self, proc);
vret = rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, proc_to_block_handler(passed_procval));
RB_GC_GUARD(self);
return vret;
}
VALUE
rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval)
{
return rb_proc_call_with_block_kw(self, argc, argv, passed_procval, RB_NO_KEYWORDS);
}
/*
* call-seq:
* prc.arity -> integer
*
* Returns the number of mandatory arguments. If the block
* is declared to take no arguments, returns 0. If the block is known
* to take exactly n arguments, returns n.
* If the block has optional arguments, returns -n-1, where n is the
* number of mandatory arguments, with the exception for blocks that
* are not lambdas and have only a finite number of optional arguments;
* in this latter case, returns n.
* Keyword arguments will be considered as a single additional argument,
* that argument being mandatory if any keyword argument is mandatory.
* A #proc with no argument declarations is the same as a block
* declaring <code>||</code> as its arguments.
*
* proc {}.arity #=> 0
* proc { || }.arity #=> 0
* proc { |a| }.arity #=> 1
* proc { |a, b| }.arity #=> 2
* proc { |a, b, c| }.arity #=> 3
* proc { |*a| }.arity #=> -1
* proc { |a, *b| }.arity #=> -2
* proc { |a, *b, c| }.arity #=> -3
* proc { |x:, y:, z:0| }.arity #=> 1
* proc { |*a, x:, y:0| }.arity #=> -2
*
* proc { |a=0| }.arity #=> 0
* lambda { |a=0| }.arity #=> -1
* proc { |a=0, b| }.arity #=> 1
* lambda { |a=0, b| }.arity #=> -2
* proc { |a=0, b=0| }.arity #=> 0
* lambda { |a=0, b=0| }.arity #=> -1
* proc { |a, b=0| }.arity #=> 1
* lambda { |a, b=0| }.arity #=> -2
* proc { |(a, b), c=0| }.arity #=> 1
* lambda { |(a, b), c=0| }.arity #=> -2
* proc { |a, x:0, y:0| }.arity #=> 1
* lambda { |a, x:0, y:0| }.arity #=> -2
*/
static VALUE
proc_arity(VALUE self)
{
int arity = rb_proc_arity(self);
return INT2FIX(arity);
}
static inline int
rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max)
{
*max = ISEQ_BODY(iseq)->param.flags.has_rest == FALSE ?
ISEQ_BODY(iseq)->param.lead_num + ISEQ_BODY(iseq)->param.opt_num + ISEQ_BODY(iseq)->param.post_num +
Optimized forwarding callers and callees This patch optimizes forwarding callers and callees. It only optimizes methods that only take `...` as their parameter, and then pass `...` to other calls. Calls it optimizes look like this: ```ruby def bar(a) = a def foo(...) = bar(...) # optimized foo(123) ``` ```ruby def bar(a) = a def foo(...) = bar(1, 2, ...) # optimized foo(123) ``` ```ruby def bar(*a) = a def foo(...) list = [1, 2] bar(*list, ...) # optimized end foo(123) ``` All variants of the above but using `super` are also optimized, including a bare super like this: ```ruby def foo(...) super end ``` This patch eliminates intermediate allocations made when calling methods that accept `...`. We can observe allocation elimination like this: ```ruby def m x = GC.stat(:total_allocated_objects) yield GC.stat(:total_allocated_objects) - x end def bar(a) = a def foo(...) = bar(...) def test m { foo(123) } end test p test # allocates 1 object on master, but 0 objects with this patch ``` ```ruby def bar(a, b:) = a + b def foo(...) = bar(...) def test m { foo(1, b: 2) } end test p test # allocates 2 objects on master, but 0 objects with this patch ``` How does it work? ----------------- This patch works by using a dynamic stack size when passing forwarded parameters to callees. The caller's info object (known as the "CI") contains the stack size of the parameters, so we pass the CI object itself as a parameter to the callee. When forwarding parameters, the forwarding ISeq uses the caller's CI to determine how much stack to copy, then copies the caller's stack before calling the callee. The CI at the forwarded call site is adjusted using information from the caller's CI. I think this description is kind of confusing, so let's walk through an example with code. ```ruby def delegatee(a, b) = a + b def delegator(...) delegatee(...) # CI2 (FORWARDING) end def caller delegator(1, 2) # CI1 (argc: 2) end ``` Before we call the delegator method, the stack looks like this: ``` Executing Line | Code | Stack ---------------+---------------------------------------+-------- 1| def delegatee(a, b) = a + b | self 2| | 1 3| def delegator(...) | 2 4| # | 5| delegatee(...) # CI2 (FORWARDING) | 6| end | 7| | 8| def caller | -> 9| delegator(1, 2) # CI1 (argc: 2) | 10| end | ``` The ISeq for `delegator` is tagged as "forwardable", so when `caller` calls in to `delegator`, it writes `CI1` on to the stack as a local variable for the `delegator` method. The `delegator` method has a special local called `...` that holds the caller's CI object. Here is the ISeq disasm fo `delegator`: ``` == disasm: #<ISeq:delegator@-e:1 (1,0)-(1,39)> local table (size: 1, argc: 0 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] "..."@0 0000 putself ( 1)[LiCa] 0001 getlocal_WC_0 "..."@0 0003 send <calldata!mid:delegatee, argc:0, FCALL|FORWARDING>, nil 0006 leave [Re] ``` The local called `...` will contain the caller's CI: CI1. Here is the stack when we enter `delegator`: ``` Executing Line | Code | Stack ---------------+---------------------------------------+-------- 1| def delegatee(a, b) = a + b | self 2| | 1 3| def delegator(...) | 2 -> 4| # | CI1 (argc: 2) 5| delegatee(...) # CI2 (FORWARDING) | cref_or_me 6| end | specval 7| | type 8| def caller | 9| delegator(1, 2) # CI1 (argc: 2) | 10| end | ``` The CI at `delegatee` on line 5 is tagged as "FORWARDING", so it knows to memcopy the caller's stack before calling `delegatee`. In this case, it will memcopy self, 1, and 2 to the stack before calling `delegatee`. It knows how much memory to copy from the caller because `CI1` contains stack size information (argc: 2). Before executing the `send` instruction, we push `...` on the stack. The `send` instruction pops `...`, and because it is tagged with `FORWARDING`, it knows to memcopy (using the information in the CI it just popped): ``` == disasm: #<ISeq:delegator@-e:1 (1,0)-(1,39)> local table (size: 1, argc: 0 [opts: 0, rest: -1, post: 0, block: -1, kw: -1@-1, kwrest: -1]) [ 1] "..."@0 0000 putself ( 1)[LiCa] 0001 getlocal_WC_0 "..."@0 0003 send <calldata!mid:delegatee, argc:0, FCALL|FORWARDING>, nil 0006 leave [Re] ``` Instruction 001 puts the caller's CI on the stack. `send` is tagged with FORWARDING, so it reads the CI and _copies_ the callers stack to this stack: ``` Executing Line | Code | Stack ---------------+---------------------------------------+-------- 1| def delegatee(a, b) = a + b | self 2| | 1 3| def delegator(...) | 2 4| # | CI1 (argc: 2) -> 5| delegatee(...) # CI2 (FORWARDING) | cref_or_me 6| end | specval 7| | type 8| def caller | self 9| delegator(1, 2) # CI1 (argc: 2) | 1 10| end | 2 ``` The "FORWARDING" call site combines information from CI1 with CI2 in order to support passing other values in addition to the `...` value, as well as perfectly forward splat args, kwargs, etc. Since we're able to copy the stack from `caller` in to `delegator`'s stack, we can avoid allocating objects. I want to do this to eliminate object allocations for delegate methods. My long term goal is to implement `Class#new` in Ruby and it uses `...`. I was able to implement `Class#new` in Ruby [here](https://github.com/ruby/ruby/pull/9289). If we adopt the technique in this patch, then we can optimize allocating objects that take keyword parameters for `initialize`. For example, this code will allocate 2 objects: one for `SomeObject`, and one for the kwargs: ```ruby SomeObject.new(foo: 1) ``` If we combine this technique, plus implement `Class#new` in Ruby, then we can reduce allocations for this common operation. Co-Authored-By: John Hawthorn <john@hawthorn.email> Co-Authored-By: Alan Wu <XrXr@users.noreply.github.com>
2024-04-15 20:48:53 +03:00
(ISEQ_BODY(iseq)->param.flags.has_kw == TRUE || ISEQ_BODY(iseq)->param.flags.has_kwrest == TRUE || ISEQ_BODY(iseq)->param.flags.forwardable == TRUE)
: UNLIMITED_ARGUMENTS;
return ISEQ_BODY(iseq)->param.lead_num + ISEQ_BODY(iseq)->param.post_num + (ISEQ_BODY(iseq)->param.flags.has_kw && ISEQ_BODY(iseq)->param.keyword->required_num > 0);
}
static int
rb_vm_block_min_max_arity(const struct rb_block *block, int *max)
{
again:
switch (vm_block_type(block)) {
case block_type_iseq:
return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max);
case block_type_proc:
block = vm_proc_block(block->as.proc);
goto again;
case block_type_ifunc:
{
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
if (IS_METHOD_PROC_IFUNC(ifunc)) {
/* e.g. method(:foo).to_proc.arity */
return method_min_max_arity((VALUE)ifunc->data, max);
}
*max = ifunc->argc.max;
return ifunc->argc.min;
}
case block_type_symbol:
*max = UNLIMITED_ARGUMENTS;
return 1;
}
*max = UNLIMITED_ARGUMENTS;
return 0;
}
/*
* Returns the number of required parameters and stores the maximum
* number of parameters in max, or UNLIMITED_ARGUMENTS if no max.
* For non-lambda procs, the maximum is the number of non-ignored
* parameters even though there is no actual limit to the number of parameters
*/
static int
rb_proc_min_max_arity(VALUE self, int *max)
{
rb_proc_t *proc;
GetProcPtr(self, proc);
return rb_vm_block_min_max_arity(&proc->block, max);
}
int
rb_proc_arity(VALUE self)
{
rb_proc_t *proc;
int max, min;
GetProcPtr(self, proc);
min = rb_vm_block_min_max_arity(&proc->block, &max);
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
}
static void
block_setup(struct rb_block *block, VALUE block_handler)
{
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_iseq:
block->type = block_type_iseq;
block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler);
break;
case block_handler_type_ifunc:
block->type = block_type_ifunc;
block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler);
break;
case block_handler_type_symbol:
block->type = block_type_symbol;
block->as.symbol = VM_BH_TO_SYMBOL(block_handler);
break;
case block_handler_type_proc:
block->type = block_type_proc;
block->as.proc = VM_BH_TO_PROC(block_handler);
}
}
int
rb_block_pair_yield_optimizable(void)
{
int min, max;
const rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
VALUE block_handler = rb_vm_frame_block_handler(cfp);
struct rb_block block;
if (block_handler == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, "no block given");
}
block_setup(&block, block_handler);
min = rb_vm_block_min_max_arity(&block, &max);
switch (vm_block_type(&block)) {
case block_handler_type_symbol:
return 0;
case block_handler_type_proc:
{
VALUE procval = block_handler;
rb_proc_t *proc;
GetProcPtr(procval, proc);
if (proc->is_lambda) return 0;
if (min != max) return 0;
return min > 1;
}
case block_handler_type_ifunc:
{
const struct vm_ifunc *ifunc = block.as.captured.code.ifunc;
if (ifunc->flags & IFUNC_YIELD_OPTIMIZABLE) return 1;
}
default:
return min > 1;
}
}
int
rb_block_arity(void)
{
int min, max;
const rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
VALUE block_handler = rb_vm_frame_block_handler(cfp);
struct rb_block block;
if (block_handler == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, "no block given");
}
block_setup(&block, block_handler);
switch (vm_block_type(&block)) {
case block_handler_type_symbol:
return -1;
case block_handler_type_proc:
2022-04-25 00:06:45 +03:00
return rb_proc_arity(block_handler);
default:
2022-04-25 00:06:45 +03:00
min = rb_vm_block_min_max_arity(&block, &max);
return max != UNLIMITED_ARGUMENTS ? min : -min-1;
}
}
int
rb_block_min_max_arity(int *max)
{
const rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
VALUE block_handler = rb_vm_frame_block_handler(cfp);
struct rb_block block;
if (block_handler == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, "no block given");
}
block_setup(&block, block_handler);
return rb_vm_block_min_max_arity(&block, max);
}
const rb_iseq_t *
rb_proc_get_iseq(VALUE self, int *is_proc)
{
const rb_proc_t *proc;
const struct rb_block *block;
GetProcPtr(self, proc);
block = &proc->block;
if (is_proc) *is_proc = !proc->is_lambda;
switch (vm_block_type(block)) {
case block_type_iseq:
return rb_iseq_check(block->as.captured.code.iseq);
case block_type_proc:
return rb_proc_get_iseq(block->as.proc, is_proc);
case block_type_ifunc:
{
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
if (IS_METHOD_PROC_IFUNC(ifunc)) {
/* method(:foo).to_proc */
if (is_proc) *is_proc = 0;
return rb_method_iseq((VALUE)ifunc->data);
}
else {
return NULL;
}
}
case block_type_symbol:
return NULL;
}
VM_UNREACHABLE(rb_proc_get_iseq);
return NULL;
}
2020-12-22 00:15:47 +03:00
/* call-seq:
* prc == other -> true or false
* prc.eql?(other) -> true or false
*
2020-12-27 00:49:23 +03:00
* Two procs are the same if, and only if, they were created from the same code block.
2020-12-22 00:15:47 +03:00
*
* def return_block(&block)
* block
* end
*
* def pass_block_twice(&block)
* [return_block(&block), return_block(&block)]
* end
*
* block1, block2 = pass_block_twice { puts 'test' }
* # Blocks might be instantiated into Proc's lazily, so they may, or may not,
* # be the same object.
* # But they are produced from the same code block, so they are equal
* block1 == block2
* #=> true
*
* # Another Proc will never be equal, even if the code is the "same"
* block1 == proc { puts 'test' }
* #=> false
*
*/
static VALUE
proc_eq(VALUE self, VALUE other)
{
const rb_proc_t *self_proc, *other_proc;
const struct rb_block *self_block, *other_block;
if (rb_obj_class(self) != rb_obj_class(other)) {
return Qfalse;
}
GetProcPtr(self, self_proc);
GetProcPtr(other, other_proc);
if (self_proc->is_from_method != other_proc->is_from_method ||
self_proc->is_lambda != other_proc->is_lambda) {
return Qfalse;
}
self_block = &self_proc->block;
other_block = &other_proc->block;
if (vm_block_type(self_block) != vm_block_type(other_block)) {
return Qfalse;
}
switch (vm_block_type(self_block)) {
case block_type_iseq:
if (self_block->as.captured.ep != \
other_block->as.captured.ep ||
self_block->as.captured.code.iseq != \
other_block->as.captured.code.iseq) {
return Qfalse;
}
break;
case block_type_ifunc:
if (self_block->as.captured.ep != \
other_block->as.captured.ep ||
self_block->as.captured.code.ifunc != \
other_block->as.captured.code.ifunc) {
return Qfalse;
}
break;
case block_type_proc:
if (self_block->as.proc != other_block->as.proc) {
return Qfalse;
}
break;
case block_type_symbol:
if (self_block->as.symbol != other_block->as.symbol) {
return Qfalse;
}
break;
}
return Qtrue;
}
static VALUE
iseq_location(const rb_iseq_t *iseq)
{
VALUE loc[2];
if (!iseq) return Qnil;
* introduce new ISeq binary format serializer/de-serializer and a pre-compilation/runtime loader sample. [Feature #11788] * iseq.c: add new methods: * RubyVM::InstructionSequence#to_binary_format(extra_data = nil) * RubyVM::InstructionSequence.from_binary_format(binary) * RubyVM::InstructionSequence.from_binary_format_extra_data(binary) * compile.c: implement body of this new feature. * load.c (rb_load_internal0), iseq.c (rb_iseq_load_iseq): call RubyVM::InstructionSequence.load_iseq(fname) with loading script name if this method is defined. We can return any ISeq object as a result value. Otherwise loading will be continue as usual. This interface is not matured and is not extensible. So that we don't guarantee the future compatibility of this method. Basically, you should'nt use this method. * iseq.h: move ISEQ_MAJOR/MINOR_VERSION (and some definitions) from iseq.c. * encoding.c (rb_data_is_encoding), internal.h: added. * vm_core.h: add several supports for lazy load. * add USE_LAZY_LOAD macro to specify enable or disable of this feature. * add several fields to rb_iseq_t. * introduce new macro rb_iseq_check(). * insns.def: some check for lazy loading feature. * vm_insnhelper.c: ditto. * proc.c: ditto. * vm.c: ditto. * test/lib/iseq_loader_checker.rb: enabled iff suitable environment variables are provided. * test/runner.rb: enable lib/iseq_loader_checker.rb. * sample/iseq_loader.rb: add sample compiler and loader. $ ruby sample/iseq_loader.rb [dir] will compile all ruby scripts in [dir]. With default setting, this compile creates *.rb.yarb files in same directory of target .rb scripts. $ ruby -r sample/iseq_loader.rb [app] will run with enable to load compiled binary data. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@52949 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-12-08 16:58:50 +03:00
rb_iseq_check(iseq);
loc[0] = rb_iseq_path(iseq);
loc[1] = RB_INT2NUM(ISEQ_BODY(iseq)->location.first_lineno);
return rb_ary_new4(2, loc);
}
2023-03-07 08:34:31 +03:00
VALUE
rb_iseq_location(const rb_iseq_t *iseq)
{
return iseq_location(iseq);
}
/*
* call-seq:
* prc.source_location -> [String, Integer]
*
* Returns the Ruby source filename and line number containing this proc
* or +nil+ if this proc was not defined in Ruby (i.e. native).
*/
VALUE
rb_proc_location(VALUE self)
{
return iseq_location(rb_proc_get_iseq(self, 0));
}
VALUE
rb_unnamed_parameters(int arity)
{
VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
int n = (arity < 0) ? ~arity : arity;
ID req, rest;
CONST_ID(req, "req");
a = rb_ary_new3(1, ID2SYM(req));
OBJ_FREEZE(a);
for (; n; --n) {
rb_ary_push(param, a);
}
if (arity < 0) {
CONST_ID(rest, "rest");
rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
}
return param;
}
/*
* call-seq:
* prc.parameters(lambda: nil) -> array
*
* Returns the parameter information of this proc. If the lambda
* keyword is provided and not nil, treats the proc as a lambda if
* true and as a non-lambda if false.
*
* prc = proc{|x, y=42, *other|}
* prc.parameters #=> [[:opt, :x], [:opt, :y], [:rest, :other]]
* prc = lambda{|x, y=42, *other|}
* prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]]
* prc = proc{|x, y=42, *other|}
* prc.parameters(lambda: true) #=> [[:req, :x], [:opt, :y], [:rest, :other]]
* prc = lambda{|x, y=42, *other|}
2022-04-06 05:59:35 +03:00
* prc.parameters(lambda: false) #=> [[:opt, :x], [:opt, :y], [:rest, :other]]
*/
static VALUE
rb_proc_parameters(int argc, VALUE *argv, VALUE self)
{
static ID keyword_ids[1];
VALUE opt, lambda;
VALUE kwargs[1];
int is_proc ;
const rb_iseq_t *iseq;
iseq = rb_proc_get_iseq(self, &is_proc);
if (!keyword_ids[0]) {
CONST_ID(keyword_ids[0], "lambda");
}
rb_scan_args(argc, argv, "0:", &opt);
if (!NIL_P(opt)) {
rb_get_kwargs(opt, keyword_ids, 0, 1, kwargs);
lambda = kwargs[0];
if (!NIL_P(lambda)) {
is_proc = !RTEST(lambda);
}
}
if (!iseq) {
return rb_unnamed_parameters(rb_proc_arity(self));
}
return rb_iseq_parameters(iseq, is_proc);
}
st_index_t
rb_hash_proc(st_index_t hash, VALUE prc)
{
rb_proc_t *proc;
GetProcPtr(prc, proc);
switch (vm_block_type(&proc->block)) {
case block_type_iseq:
hash = rb_st_hash_uint(hash, (st_index_t)proc->block.as.captured.code.iseq->body);
break;
case block_type_ifunc:
hash = rb_st_hash_uint(hash, (st_index_t)proc->block.as.captured.code.ifunc->func);
break;
case block_type_symbol:
hash = rb_st_hash_uint(hash, rb_any_hash(proc->block.as.symbol));
break;
case block_type_proc:
hash = rb_st_hash_uint(hash, rb_any_hash(proc->block.as.proc));
break;
default:
rb_bug("rb_hash_proc: unknown block type %d", vm_block_type(&proc->block));
}
return rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep);
}
/*
* call-seq:
* to_proc
*
* Returns a Proc object which calls the method with name of +self+
* on the first parameter and passes the remaining parameters to the method.
*
* proc = :to_s.to_proc # => #<Proc:0x000001afe0e48680(&:to_s) (lambda)>
* proc.call(1000) # => "1000"
* proc.call(1000, 16) # => "3e8"
* (1..3).collect(&:to_s) # => ["1", "2", "3"]
*
*/
2023-03-07 08:34:31 +03:00
VALUE
rb_sym_to_proc(VALUE sym)
{
static VALUE sym_proc_cache = Qfalse;
enum {SYM_PROC_CACHE_SIZE = 67};
VALUE proc;
long index;
ID id;
if (!sym_proc_cache) {
sym_proc_cache = rb_ary_hidden_new(SYM_PROC_CACHE_SIZE * 2);
rb_vm_register_global_object(sym_proc_cache);
rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE*2 - 1, Qnil);
}
id = SYM2ID(sym);
index = (id % SYM_PROC_CACHE_SIZE) << 1;
if (RARRAY_AREF(sym_proc_cache, index) == sym) {
return RARRAY_AREF(sym_proc_cache, index + 1);
}
else {
proc = sym_proc_new(rb_cProc, ID2SYM(id));
RARRAY_ASET(sym_proc_cache, index, sym);
RARRAY_ASET(sym_proc_cache, index + 1, proc);
return proc;
}
}
/*
* call-seq:
* prc.hash -> integer
*
* Returns a hash value corresponding to proc body.
*
* See also Object#hash.
*/
static VALUE
proc_hash(VALUE self)
{
st_index_t hash;
hash = rb_hash_start(0);
hash = rb_hash_proc(hash, self);
hash = rb_hash_end(hash);
return ST2FIX(hash);
}
VALUE
rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info)
{
VALUE cname = rb_obj_class(self);
VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname);
again:
switch (vm_block_type(block)) {
case block_type_proc:
block = vm_proc_block(block->as.proc);
goto again;
case block_type_iseq:
{
const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq);
2019-08-14 10:25:32 +03:00
rb_str_catf(str, "%p %"PRIsVALUE":%d", (void *)self,
rb_iseq_path(iseq),
ISEQ_BODY(iseq)->location.first_lineno);
}
break;
case block_type_symbol:
rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol);
break;
case block_type_ifunc:
rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc);
break;
}
if (additional_info) rb_str_cat_cstr(str, additional_info);
rb_str_cat_cstr(str, ">");
return str;
}
/*
* call-seq:
* prc.to_s -> string
*
* Returns the unique identifier for this proc, along with
* an indication of where the proc was defined.
*/
static VALUE
proc_to_s(VALUE self)
{
const rb_proc_t *proc;
GetProcPtr(self, proc);
return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL);
}
/*
* call-seq:
* prc.to_proc -> proc
*
* Part of the protocol for converting objects to Proc objects.
* Instances of class Proc simply return themselves.
*/
static VALUE
proc_to_proc(VALUE self)
{
return self;
}
static void
bm_mark_and_move(void *ptr)
{
struct METHOD *data = ptr;
rb_gc_mark_and_move((VALUE *)&data->recv);
rb_gc_mark_and_move((VALUE *)&data->klass);
rb_gc_mark_and_move((VALUE *)&data->iclass);
rb_gc_mark_and_move((VALUE *)&data->owner);
rb_gc_mark_and_move_ptr((rb_method_entry_t **)&data->me);
}
static const rb_data_type_t method_data_type = {
"method",
{
bm_mark_and_move,
RUBY_TYPED_DEFAULT_FREE,
NULL, // No external memory to report,
bm_mark_and_move,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE
};
VALUE
rb_obj_is_method(VALUE m)
{
2021-08-02 06:06:44 +03:00
return RBOOL(rb_typeddata_is_kind_of(m, &method_data_type));
}
static int
respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope)
{
/* TODO: merge with obj_respond_to() */
ID rmiss = idRespond_to_missing;
2022-11-15 07:24:08 +03:00
if (UNDEF_P(obj)) return 0;
if (rb_method_basic_definition_p(klass, rmiss)) return 0;
2022-01-01 09:41:00 +03:00
return RTEST(rb_funcall(obj, rmiss, 2, sym, RBOOL(!scope)));
}
static VALUE
mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass)
{
struct METHOD *data;
VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
rb_method_entry_t *me;
rb_method_definition_t *def;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
RB_OBJ_WRITE(method, &data->recv, obj);
RB_OBJ_WRITE(method, &data->klass, klass);
RB_OBJ_WRITE(method, &data->owner, klass);
def = ZALLOC(rb_method_definition_t);
def->type = VM_METHOD_TYPE_MISSING;
def->original_id = id;
me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def);
RB_OBJ_WRITE(method, &data->me, me);
return method;
}
static VALUE
mnew_missing_by_name(VALUE klass, VALUE obj, VALUE *name, int scope, VALUE mclass)
{
VALUE vid = rb_str_intern(*name);
*name = vid;
if (!respond_to_missing_p(klass, obj, vid, scope)) return Qfalse;
return mnew_missing(klass, obj, SYM2ID(vid), mclass);
}
static VALUE
mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
VALUE obj, ID id, VALUE mclass, int scope, int error)
{
struct METHOD *data;
VALUE method;
const rb_method_entry_t *original_me = me;
rb_method_visibility_t visi = METHOD_VISI_UNDEF;
again:
if (UNDEFINED_METHOD_ENTRY_P(me)) {
if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) {
return mnew_missing(klass, obj, id, mclass);
}
if (!error) return Qnil;
rb_print_undef(klass, id, METHOD_VISI_UNDEF);
}
if (visi == METHOD_VISI_UNDEF) {
visi = METHOD_ENTRY_VISI(me);
RUBY_ASSERT(visi != METHOD_VISI_UNDEF); /* !UNDEFINED_METHOD_ENTRY_P(me) */
if (scope && (visi != METHOD_VISI_PUBLIC)) {
if (!error) return Qnil;
rb_print_inaccessible(klass, id, visi);
}
}
if (me->def->type == VM_METHOD_TYPE_ZSUPER) {
if (me->defined_class) {
VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class));
id = me->def->original_id;
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
}
else {
VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->owner));
id = me->def->original_id;
me = rb_method_entry_without_refinements(klass, id, &iclass);
}
goto again;
}
method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
2024-01-30 08:48:59 +03:00
if (UNDEF_P(obj)) {
RB_OBJ_WRITE(method, &data->recv, Qundef);
RB_OBJ_WRITE(method, &data->klass, Qundef);
}
else {
RB_OBJ_WRITE(method, &data->recv, obj);
RB_OBJ_WRITE(method, &data->klass, klass);
}
RB_OBJ_WRITE(method, &data->iclass, iclass);
RB_OBJ_WRITE(method, &data->owner, original_me->owner);
RB_OBJ_WRITE(method, &data->me, me);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
return method;
}
static VALUE
mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
VALUE obj, ID id, VALUE mclass, int scope)
{
return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE);
}
static VALUE
mnew_callable(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
{
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
const rb_method_entry_t *me;
VALUE iclass = Qnil;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
2022-11-15 07:24:08 +03:00
ASSUME(!UNDEF_P(obj));
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
return mnew_from_me(me, klass, iclass, obj, id, mclass, scope);
}
static VALUE
mnew_unbound(VALUE klass, ID id, VALUE mclass, int scope)
{
const rb_method_entry_t *me;
VALUE iclass = Qnil;
me = rb_method_entry_with_refinements(klass, id, &iclass);
return mnew_from_me(me, klass, iclass, Qundef, id, mclass, scope);
}
static inline VALUE
method_entry_defined_class(const rb_method_entry_t *me)
{
VALUE defined_class = me->defined_class;
return defined_class ? defined_class : me->owner;
}
/**********************************************************************
*
* Document-class: Method
*
* Method objects are created by Object#method, and are associated
* with a particular object (not just with a class). They may be
* used to invoke the method within the object, and as a block
* associated with an iterator. They may also be unbound from one
* object (creating an UnboundMethod) and bound to another.
*
* class Thing
* def square(n)
* n*n
* end
* end
* thing = Thing.new
* meth = thing.method(:square)
*
* meth.call(9) #=> 81
* [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
*
* [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3
*
* require 'date'
* %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
* #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
*/
/*
* call-seq:
* meth.eql?(other_meth) -> true or false
* meth == other_meth -> true or false
*
* Two method objects are equal if they are bound to the same
* object and refer to the same method definition and the classes
* defining the methods are the same class or module.
*/
static VALUE
method_eq(VALUE method, VALUE other)
{
struct METHOD *m1, *m2;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
VALUE klass1, klass2;
if (!rb_obj_is_method(other))
return Qfalse;
if (CLASS_OF(method) != CLASS_OF(other))
return Qfalse;
Check_TypedStruct(method, &method_data_type);
m1 = (struct METHOD *)RTYPEDDATA_GET_DATA(method);
m2 = (struct METHOD *)RTYPEDDATA_GET_DATA(other);
klass1 = method_entry_defined_class(m1->me);
klass2 = method_entry_defined_class(m2->me);
if (!rb_method_entry_eq(m1->me, m2->me) ||
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
klass1 != klass2 ||
m1->klass != m2->klass ||
m1->recv != m2->recv) {
return Qfalse;
}
return Qtrue;
}
/*
* call-seq:
* meth.eql?(other_meth) -> true or false
* meth == other_meth -> true or false
*
* Two unbound method objects are equal if they refer to the same
* method definition.
*
* Array.instance_method(:each_slice) == Enumerable.instance_method(:each_slice)
* #=> true
*
* Array.instance_method(:sum) == Enumerable.instance_method(:sum)
* #=> false, Array redefines the method for efficiency
*/
#define unbound_method_eq method_eq
/*
* call-seq:
* meth.hash -> integer
*
* Returns a hash value corresponding to the method object.
*
* See also Object#hash.
*/
static VALUE
method_hash(VALUE method)
{
struct METHOD *m;
st_index_t hash;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
hash = rb_hash_start((st_index_t)m->recv);
hash = rb_hash_method_entry(hash, m->me);
hash = rb_hash_end(hash);
return ST2FIX(hash);
}
/*
* call-seq:
* meth.unbind -> unbound_method
*
* Dissociates <i>meth</i> from its current receiver. The resulting
* UnboundMethod can subsequently be bound to a new object of the
* same class (see UnboundMethod).
*/
static VALUE
method_unbind(VALUE obj)
{
VALUE method;
struct METHOD *orig, *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
&method_data_type, data);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
RB_OBJ_WRITE(method, &data->recv, Qundef);
RB_OBJ_WRITE(method, &data->klass, Qundef);
RB_OBJ_WRITE(method, &data->iclass, orig->iclass);
RB_OBJ_WRITE(method, &data->owner, orig->me->owner);
RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me));
return method;
}
/*
* call-seq:
* meth.receiver -> object
*
* Returns the bound receiver of the method object.
*
* (1..3).method(:map).receiver # => 1..3
*/
static VALUE
method_receiver(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return data->recv;
}
/*
* call-seq:
* meth.name -> symbol
*
* Returns the name of the method.
*/
static VALUE
method_name(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
return ID2SYM(data->me->called_id);
}
/*
* call-seq:
* meth.original_name -> symbol
*
* Returns the original name of the method.
*
* class C
* def foo; end
* alias bar foo
* end
* C.instance_method(:bar).original_name # => :foo
*/
static VALUE
method_original_name(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return ID2SYM(data->me->def->original_id);
}
/*
* call-seq:
* meth.owner -> class_or_module
*
* Returns the class or module on which this method is defined.
* In other words,
*
* meth.owner.instance_methods(false).include?(meth.name) # => true
*
* holds as long as the method is not removed/undefined/replaced,
* (with private_instance_methods instead of instance_methods if the method
* is private).
*
* See also Method#receiver.
*
* (1..3).method(:map).owner #=> Enumerable
*/
static VALUE
method_owner(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return data->owner;
}
void
rb_method_name_error(VALUE klass, VALUE str)
{
#define MSG(s) rb_fstring_lit("undefined method '%1$s' for"s" '%2$s'")
VALUE c = klass;
VALUE s = Qundef;
if (RCLASS_SINGLETON_P(c)) {
VALUE obj = RCLASS_ATTACHED_OBJECT(klass);
switch (BUILTIN_TYPE(obj)) {
case T_MODULE:
case T_CLASS:
c = obj;
2020-04-08 09:13:37 +03:00
break;
default:
break;
}
}
else if (RB_TYPE_P(c, T_MODULE)) {
s = MSG(" module");
}
2022-11-15 07:24:08 +03:00
if (UNDEF_P(s)) {
s = MSG(" class");
}
rb_name_err_raise_str(s, c, str);
#undef MSG
}
static VALUE
obj_method(VALUE obj, VALUE vid, int scope)
{
ID id = rb_check_id(&vid);
const VALUE klass = CLASS_OF(obj);
const VALUE mclass = rb_cMethod;
if (!id) {
VALUE m = mnew_missing_by_name(klass, obj, &vid, scope, mclass);
if (m) return m;
rb_method_name_error(klass, vid);
}
return mnew_callable(klass, obj, id, mclass, scope);
}
/*
* call-seq:
* obj.method(sym) -> method
*
* Looks up the named method as a receiver in <i>obj</i>, returning a
* Method object (or raising NameError). The Method object acts as a
* closure in <i>obj</i>'s object instance, so instance variables and
* the value of <code>self</code> remain available.
*
* class Demo
* def initialize(n)
* @iv = n
* end
* def hello()
* "Hello, @iv = #{@iv}"
* end
* end
*
* k = Demo.new(99)
* m = k.method(:hello)
* m.call #=> "Hello, @iv = 99"
*
* l = Demo.new('Fred')
* m = l.method("hello")
* m.call #=> "Hello, @iv = Fred"
*
* Note that Method implements <code>to_proc</code> method, which
* means it can be used with iterators.
*
* [ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout
*
* out = File.open('test.txt', 'w')
* [ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file
*
* require 'date'
* %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
* #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
*/
VALUE
rb_obj_method(VALUE obj, VALUE vid)
{
return obj_method(obj, vid, FALSE);
}
/*
* call-seq:
* obj.public_method(sym) -> method
*
* Similar to _method_, searches public method only.
*/
VALUE
rb_obj_public_method(VALUE obj, VALUE vid)
{
return obj_method(obj, vid, TRUE);
}
static VALUE
rb_obj_singleton_method_lookup(VALUE arg)
{
VALUE *args = (VALUE *)arg;
return rb_obj_method(args[0], args[1]);
}
static VALUE
rb_obj_singleton_method_lookup_fail(VALUE arg1, VALUE arg2)
{
return Qfalse;
}
/*
* call-seq:
* obj.singleton_method(sym) -> method
*
* Similar to _method_, searches singleton method only.
*
* class Demo
* def initialize(n)
* @iv = n
* end
* def hello()
* "Hello, @iv = #{@iv}"
* end
* end
*
* k = Demo.new(99)
* def k.hi
* "Hi, @iv = #{@iv}"
* end
* m = k.singleton_method(:hi)
* m.call #=> "Hi, @iv = 99"
* m = k.singleton_method(:hello) #=> NameError
*/
VALUE
rb_obj_singleton_method(VALUE obj, VALUE vid)
{
VALUE sc = rb_singleton_class_get(obj);
VALUE klass;
ID id = rb_check_id(&vid);
if (NIL_P(sc) ||
NIL_P(klass = RCLASS_ORIGIN(sc)) ||
!NIL_P(rb_special_singleton_class(obj))) {
/* goto undef; */
}
else if (! id) {
VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod);
if (m) return m;
/* else goto undef; */
}
else {
VALUE args[2] = {obj, vid};
VALUE ruby_method = rb_rescue(rb_obj_singleton_method_lookup, (VALUE)args, rb_obj_singleton_method_lookup_fail, Qfalse);
if (ruby_method) {
struct METHOD *method = (struct METHOD *)RTYPEDDATA_GET_DATA(ruby_method);
VALUE lookup_class = RBASIC_CLASS(obj);
VALUE stop_class = rb_class_superclass(sc);
VALUE method_class = method->iclass;
/* Determine if method is in singleton class, or module included in or prepended to it */
do {
if (lookup_class == method_class) {
return ruby_method;
}
lookup_class = RCLASS_SUPER(lookup_class);
} while (lookup_class && lookup_class != stop_class);
}
}
/* undef: */
vid = ID2SYM(id);
rb_name_err_raise("undefined singleton method '%1$s' for '%2$s'",
obj, vid);
UNREACHABLE_RETURN(Qundef);
}
/*
* call-seq:
* mod.instance_method(symbol) -> unbound_method
*
* Returns an +UnboundMethod+ representing the given
* instance method in _mod_.
*
* class Interpreter
* def do_a() print "there, "; end
* def do_d() print "Hello "; end
* def do_e() print "!\n"; end
* def do_v() print "Dave"; end
* Dispatcher = {
* "a" => instance_method(:do_a),
* "d" => instance_method(:do_d),
* "e" => instance_method(:do_e),
* "v" => instance_method(:do_v)
* }
* def interpret(string)
* string.each_char {|b| Dispatcher[b].bind(self).call }
* end
* end
*
* interpreter = Interpreter.new
* interpreter.interpret('dave')
*
* <em>produces:</em>
*
* Hello there, Dave!
*/
static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew_unbound(mod, id, rb_cUnboundMethod, FALSE);
}
/*
* call-seq:
* mod.public_instance_method(symbol) -> unbound_method
*
* Similar to _instance_method_, searches public method only.
*/
static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew_unbound(mod, id, rb_cUnboundMethod, TRUE);
}
static VALUE
rb_mod_define_method_with_visibility(int argc, VALUE *argv, VALUE mod, const struct rb_scope_visi_struct* scope_visi)
{
ID id;
VALUE body;
VALUE name;
int is_method = FALSE;
rb_check_arity(argc, 1, 2);
name = argv[0];
id = rb_check_id(&name);
if (argc == 1) {
body = rb_block_lambda();
}
else {
body = argv[1];
2022-07-21 19:23:58 +03:00
if (rb_obj_is_method(body)) {
is_method = TRUE;
}
else if (rb_obj_is_proc(body)) {
is_method = FALSE;
}
else {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected Proc/Method/UnboundMethod)",
rb_obj_classname(body));
}
}
if (!id) id = rb_to_id(name);
if (is_method) {
struct METHOD *method = (struct METHOD *)RTYPEDDATA_GET_DATA(body);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
!RTEST(rb_class_inherited_p(mod, method->me->owner))) {
if (RCLASS_SINGLETON_P(method->me->owner)) {
rb_raise(rb_eTypeError,
"can't bind singleton method to a different class");
}
else {
rb_raise(rb_eTypeError,
"bind argument must be a subclass of % "PRIsVALUE,
method->me->owner);
}
}
rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
if (scope_visi->module_func) {
rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
}
RB_GC_GUARD(body);
}
else {
`$SAFE` as a process global state. [Feature #14250] * vm_core.h (rb_vm_t): move `rb_execution_context_t::safe_level` to `rb_vm_t::safe_level_` because `$SAFE` is a process (VM) global state. * vm_core.h (rb_proc_t): remove `rb_proc_t::safe_level` because `Proc` objects don't need to keep `$SAFE` at the creation. Also make `is_from_method` and `is_lambda` as 1 bit fields. * cont.c (cont_restore_thread): no need to keep `$SAFE` for Continuation. * eval.c (ruby_cleanup): use `rb_set_safe_level_force()` instead of access `vm->safe_level_` directly. * eval_jump.c: End procs `END{}` doesn't keep `$SAFE`. * proc.c (proc_dup): removed and introduce `rb_proc_dup` in vm.c. * safe.c (rb_set_safe_level): don't check `$SAFE` 1 -> 0 changes. * safe.c (safe_setter): use `rb_set_safe_level()`. * thread.c (rb_thread_safe_level): `Thread#safe_level` returns `$SAFE`. It should be obsolete. * transcode.c (load_transcoder_entry): `rb_safe_level()` only returns 0 or 1 so that this check is not needed. * vm.c (vm_proc_create_from_captured): don't need to keep `$SAFE` for Proc. * vm.c (rb_proc_create): renamed to `proc_create`. * vm.c (rb_proc_dup): moved from proc.c. * vm.c (vm_invoke_proc): do not need to set and restore `$SAFE` for `Proc#call`. * vm_eval.c (rb_eval_cmd): rename a local variable to represent clearer meaning. * lib/drb/drb.rb: restore `$SAFE`. * lib/erb.rb: restore `$SAFE`, too. * test/lib/leakchecker.rb: check `$SAFE == 0` at the end of tests. * test/rubygems/test_gem.rb: do not set `$SAFE = 1`. * bootstraptest/test_proc.rb: catch up this change. * spec/ruby/optional/capi/string_spec.rb: ditto. * test/bigdecimal/test_bigdecimal.rb: ditto. * test/fiddle/test_func.rb: ditto. * test/fiddle/test_handle.rb: ditto. * test/net/imap/test_imap_response_parser.rb: ditto. * test/pathname/test_pathname.rb: ditto. * test/readline/test_readline.rb: ditto. * test/ruby/test_file.rb: ditto. * test/ruby/test_optimization.rb: ditto. * test/ruby/test_proc.rb: ditto. * test/ruby/test_require.rb: ditto. * test/ruby/test_thread.rb: ditto. * test/rubygems/test_gem_specification.rb: ditto. * test/test_tempfile.rb: ditto. * test/test_tmpdir.rb: ditto. * test/win32ole/test_win32ole.rb: ditto. * test/win32ole/test_win32ole_event.rb: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@61510 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-12-28 23:09:24 +03:00
VALUE procval = rb_proc_dup(body);
if (vm_proc_iseq(procval) != NULL) {
rb_proc_t *proc;
GetProcPtr(procval, proc);
proc->is_lambda = TRUE;
proc->is_from_method = TRUE;
}
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
if (scope_visi->module_func) {
rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
}
}
return ID2SYM(id);
}
/*
* call-seq:
* define_method(symbol, method) -> symbol
* define_method(symbol) { block } -> symbol
*
* Defines an instance method in the receiver. The _method_
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
* If a block is specified, it is used as the method body.
* If a block or the _method_ parameter has parameters,
* they're used as method parameters.
* This block is evaluated using #instance_eval.
*
* class A
* def fred
* puts "In Fred"
* end
* def create_method(name, &block)
* self.class.define_method(name, &block)
* end
* define_method(:wilma) { puts "Charge it!" }
* define_method(:flint) {|name| puts "I'm #{name}!"}
* end
* class B < A
* define_method(:barney, instance_method(:fred))
* end
* a = B.new
* a.barney
* a.wilma
* a.flint('Dino')
* a.create_method(:betty) { p self }
* a.betty
*
* <em>produces:</em>
*
* In Fred
* Charge it!
* I'm Dino!
* #<B:0x401b39e8>
*/
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
const rb_scope_visibility_t *scope_visi = &default_scope_visi;
if (cref) {
scope_visi = CREF_SCOPE_VISI(cref);
}
return rb_mod_define_method_with_visibility(argc, argv, mod, scope_visi);
}
/*
* call-seq:
* define_singleton_method(symbol, method) -> symbol
* define_singleton_method(symbol) { block } -> symbol
*
* Defines a public singleton method in the receiver. The _method_
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
* If a block is specified, it is used as the method body.
* If a block or a method has parameters, they're used as method parameters.
*
* class A
* class << self
* def class_name
* to_s
* end
* end
* end
* A.define_singleton_method(:who_am_i) do
* "I am: #{class_name}"
* end
* A.who_am_i # ==> "I am: A"
*
* guy = "Bob"
* guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
* guy.hello #=> "Bob: Hello there!"
*
* chris = "Chris"
* chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" }
* chris.greet("Hi") #=> "Hi, I'm Chris!"
*/
static VALUE
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
{
VALUE klass = rb_singleton_class(obj);
const rb_scope_visibility_t scope_visi = {METHOD_VISI_PUBLIC, FALSE};
return rb_mod_define_method_with_visibility(argc, argv, klass, &scope_visi);
}
/*
* define_method(symbol, method) -> symbol
* define_method(symbol) { block } -> symbol
*
* Defines a global function by _method_ or the block.
*/
static VALUE
top_define_method(int argc, VALUE *argv, VALUE obj)
{
return rb_mod_define_method(argc, argv, rb_top_main_class("define_method"));
}
/*
* call-seq:
* method.clone -> new_method
*
* Returns a clone of this method.
*
* class A
* def foo
* return "bar"
* end
* end
*
* m = A.new.method(:foo)
* m.call # => "bar"
* n = m.clone.call # => "bar"
*/
static VALUE
method_clone(VALUE self)
{
VALUE clone;
struct METHOD *orig, *data;
TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
rb_obj_clone_setup(self, clone, Qnil);
RB_OBJ_WRITE(clone, &data->recv, orig->recv);
RB_OBJ_WRITE(clone, &data->klass, orig->klass);
RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
RB_OBJ_WRITE(clone, &data->owner, orig->owner);
RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
return clone;
}
/* :nodoc: */
static VALUE
method_dup(VALUE self)
{
VALUE clone;
struct METHOD *orig, *data;
TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
rb_obj_dup_setup(self, clone);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
RB_OBJ_WRITE(clone, &data->recv, orig->recv);
RB_OBJ_WRITE(clone, &data->klass, orig->klass);
RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
RB_OBJ_WRITE(clone, &data->owner, orig->owner);
RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
return clone;
}
/* Document-method: Method#===
*
* call-seq:
* method === obj -> result_of_method
*
* Invokes the method with +obj+ as the parameter like #call.
* This allows a method object to be the target of a +when+ clause
* in a case statement.
*
* require 'prime'
*
* case 1373
* when Prime.method(:prime?)
* # ...
* end
*/
/* Document-method: Method#[]
*
* call-seq:
* meth[args, ...] -> obj
*
* Invokes the <i>meth</i> with the specified arguments, returning the
* method's return value, like #call.
*
* m = 12.method("+")
* m[3] #=> 15
* m[20] #=> 32
*/
/*
* call-seq:
* meth.call(args, ...) -> obj
*
* Invokes the <i>meth</i> with the specified arguments, returning the
* method's return value.
*
* m = 12.method("+")
* m.call(3) #=> 15
* m.call(20) #=> 32
*/
static VALUE
rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method)
{
2022-09-24 16:35:10 +03:00
return rb_method_call_kw(argc, argv, method, RB_PASS_CALLED_KEYWORDS);
}
VALUE
rb_method_call_kw(int argc, const VALUE *argv, VALUE method, int kw_splat)
{
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
return rb_method_call_with_block_kw(argc, argv, method, procval, kw_splat);
}
VALUE
rb_method_call(int argc, const VALUE *argv, VALUE method)
{
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
return rb_method_call_with_block(argc, argv, method, procval);
}
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
static const rb_callable_method_entry_t *
method_callable_method_entry(const struct METHOD *data)
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
{
if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable.");
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
return (const rb_callable_method_entry_t *)data->me;
}
static inline VALUE
call_method_data(rb_execution_context_t *ec, const struct METHOD *data,
int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
{
vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
return rb_vm_call_kw(ec, data->recv, data->me->called_id, argc, argv,
method_callable_method_entry(data), kw_splat);
}
VALUE
rb_method_call_with_block_kw(int argc, const VALUE *argv, VALUE method, VALUE passed_procval, int kw_splat)
{
const struct METHOD *data;
rb_execution_context_t *ec = GET_EC();
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
2022-11-15 07:24:08 +03:00
if (UNDEF_P(data->recv)) {
rb_raise(rb_eTypeError, "can't call unbound method; bind first");
}
return call_method_data(ec, data, argc, argv, passed_procval, kw_splat);
}
VALUE
rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval)
{
return rb_method_call_with_block_kw(argc, argv, method, passed_procval, RB_NO_KEYWORDS);
}
/**********************************************************************
*
* Document-class: UnboundMethod
*
* Ruby supports two forms of objectified methods. Class Method is
* used to represent methods that are associated with a particular
* object: these method objects are bound to that object. Bound
* method objects for an object can be created using Object#method.
*
* Ruby also supports unbound methods; methods objects that are not
* associated with a particular object. These can be created either
* by calling Module#instance_method or by calling #unbind on a bound
* method object. The result of both of these is an UnboundMethod
* object.
*
* Unbound methods can only be called after they are bound to an
* object. That object must be a kind_of? the method's original
* class.
*
* class Square
* def area
* @side * @side
* end
* def initialize(side)
* @side = side
* end
* end
*
* area_un = Square.instance_method(:area)
*
* s = Square.new(12)
* area = area_un.bind(s)
* area.call #=> 144
*
* Unbound methods are a reference to the method at the time it was
* objectified: subsequent changes to the underlying class will not
* affect the unbound method.
*
* class Test
* def test
* :original
* end
* end
* um = Test.instance_method(:test)
* class Test
* def test
* :modified
* end
* end
* t = Test.new
* t.test #=> :modified
* um.bind(t).call #=> :original
*
*/
static void
convert_umethod_to_method_components(const struct METHOD *data, VALUE recv, VALUE *methclass_out, VALUE *klass_out, VALUE *iclass_out, const rb_method_entry_t **me_out, const bool clone)
{
VALUE methclass = data->owner;
VALUE iclass = data->me->defined_class;
VALUE klass = CLASS_OF(recv);
if (RB_TYPE_P(methclass, T_MODULE)) {
VALUE refined_class = rb_refinement_module_get_refined_class(methclass);
if (!NIL_P(refined_class)) methclass = refined_class;
}
if (!RB_TYPE_P(methclass, T_MODULE) && !RTEST(rb_obj_is_kind_of(recv, methclass))) {
if (RCLASS_SINGLETON_P(methclass)) {
rb_raise(rb_eTypeError,
"singleton method called for a different object");
}
else {
rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE,
methclass);
}
}
const rb_method_entry_t *me;
if (clone) {
me = rb_method_entry_clone(data->me);
2022-09-02 08:49:42 +03:00
}
else {
me = data->me;
}
if (RB_TYPE_P(me->owner, T_MODULE)) {
if (!clone) {
// if we didn't previously clone the method entry, then we need to clone it now
// because this branch manipulates it in rb_method_entry_complement_defined_class
me = rb_method_entry_clone(me);
}
VALUE ic = rb_class_search_ancestor(klass, me->owner);
if (ic) {
klass = ic;
iclass = ic;
}
else {
klass = rb_include_class_new(methclass, klass);
}
me = (const rb_method_entry_t *) rb_method_entry_complement_defined_class(me, me->called_id, klass);
}
*methclass_out = methclass;
*klass_out = klass;
*iclass_out = iclass;
*me_out = me;
}
/*
* call-seq:
* umeth.bind(obj) -> method
*
* Bind <i>umeth</i> to <i>obj</i>. If Klass was the class from which
* <i>umeth</i> was obtained, <code>obj.kind_of?(Klass)</code> must
* be true.
*
* class A
* def test
* puts "In test, class = #{self.class}"
* end
* end
* class B < A
* end
* class C < B
* end
*
*
* um = B.instance_method(:test)
* bm = um.bind(C.new)
* bm.call
* bm = um.bind(B.new)
* bm.call
* bm = um.bind(A.new)
* bm.call
*
* <em>produces:</em>
*
* In test, class = C
* In test, class = B
* prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
* from prog.rb:16
*/
static VALUE
umethod_bind(VALUE method, VALUE recv)
{
VALUE methclass, klass, iclass;
const rb_method_entry_t *me;
const struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, true);
struct METHOD *bound;
method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
RB_OBJ_WRITE(method, &bound->recv, recv);
RB_OBJ_WRITE(method, &bound->klass, klass);
RB_OBJ_WRITE(method, &bound->iclass, iclass);
RB_OBJ_WRITE(method, &bound->owner, methclass);
RB_OBJ_WRITE(method, &bound->me, me);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
return method;
}
/*
* call-seq:
* umeth.bind_call(recv, args, ...) -> obj
*
* Bind <i>umeth</i> to <i>recv</i> and then invokes the method with the
* specified arguments.
* This is semantically equivalent to <code>umeth.bind(recv).call(args, ...)</code>.
*/
static VALUE
umethod_bind_call(int argc, VALUE *argv, VALUE method)
{
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
VALUE recv = argv[0];
argc--;
argv++;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil;
rb_execution_context_t *ec = GET_EC();
const struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(recv), data->me->called_id);
if (data->me == (const rb_method_entry_t *)cme) {
vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
return rb_vm_call_kw(ec, recv, cme->called_id, argc, argv, cme, RB_PASS_CALLED_KEYWORDS);
}
else {
VALUE methclass, klass, iclass;
const rb_method_entry_t *me;
convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me, false);
struct METHOD bound = { recv, klass, 0, methclass, me };
return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS);
}
}
/*
* Returns the number of required parameters and stores the maximum
* number of parameters in max, or UNLIMITED_ARGUMENTS
* if there is no maximum.
*/
static int
2021-12-12 19:16:04 +03:00
method_def_min_max_arity(const rb_method_definition_t *def, int *max)
{
again:
if (!def) return *max = 0;
switch (def->type) {
case VM_METHOD_TYPE_CFUNC:
if (def->body.cfunc.argc < 0) {
*max = UNLIMITED_ARGUMENTS;
return 0;
}
return *max = check_argc(def->body.cfunc.argc);
case VM_METHOD_TYPE_ZSUPER:
*max = UNLIMITED_ARGUMENTS;
return 0;
case VM_METHOD_TYPE_ATTRSET:
return *max = 1;
case VM_METHOD_TYPE_IVAR:
return *max = 0;
case VM_METHOD_TYPE_ALIAS:
def = def->body.alias.original_me->def;
goto again;
case VM_METHOD_TYPE_BMETHOD:
return rb_proc_min_max_arity(def->body.bmethod.proc, max);
case VM_METHOD_TYPE_ISEQ:
return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max);
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
return *max = 0;
case VM_METHOD_TYPE_MISSING:
*max = UNLIMITED_ARGUMENTS;
return 0;
case VM_METHOD_TYPE_OPTIMIZED: {
switch (def->body.optimized.type) {
case OPTIMIZED_METHOD_TYPE_SEND:
*max = UNLIMITED_ARGUMENTS;
return 0;
case OPTIMIZED_METHOD_TYPE_CALL:
*max = UNLIMITED_ARGUMENTS;
return 0;
case OPTIMIZED_METHOD_TYPE_BLOCK_CALL:
*max = UNLIMITED_ARGUMENTS;
return 0;
case OPTIMIZED_METHOD_TYPE_STRUCT_AREF:
*max = 0;
return 0;
case OPTIMIZED_METHOD_TYPE_STRUCT_ASET:
*max = 1;
return 1;
default:
break;
}
break;
}
* revised r37993 to avoid SEGV/ILL in tests. In r37993, a method entry with VM_METHOD_TYPE_REFINED holds only the original method definition, so ci->me is set to a method entry allocated in the stack, and it causes SEGV/ILL. In this commit, a method entry with VM_METHOD_TYPE_REFINED holds the whole original method entry. Furthermore, rb_thread_mark() is changed to mark cfp->klass to avoid GC for iclasses created by copy_refinement_iclass(). * vm_method.c (rb_method_entry_make): add a method entry with VM_METHOD_TYPE_REFINED to the class refined by the refinement if the target module is a refinement. When a method entry with VM_METHOD_TYPE_UNDEF is invoked by vm_call_method(), a method with the same name is searched in refinements. If such a method is found, the method is invoked. Otherwise, the original method in the refined class (rb_method_definition_t::body.orig_me) is invoked. This change is made to simplify the normal method lookup and to improve the performance of normal method calls. * vm_method.c (EXPR1, search_method, rb_method_entry), vm_eval.c (rb_call0, rb_search_method_entry): do not use refinements for method lookup. * vm_insnhelper.c (vm_call_method): search methods in refinements if ci->me is VM_METHOD_TYPE_REFINED. If the method is called by super (i.e., ci->call == vm_call_super_method), skip the same method entry as the current method to avoid infinite call of the same method. * class.c (include_modules_at): add a refined method entry for each method defined in a module included in a refinement. * class.c (rb_prepend_module): set an empty table to RCLASS_M_TBL(klass) to add refined method entries, because refinements should have priority over prepended modules. * proc.c (mnew): use rb_method_entry_with_refinements() to get a refined method. * vm.c (rb_thread_mark): mark cfp->klass for iclasses created by copy_refinement_iclass(). * vm.c (Init_VM), cont.c (fiber_init): initialize th->cfp->klass. * test/ruby/test_refinement.rb (test_inline_method_cache): do not skip the test because it should pass successfully. * test/ruby/test_refinement.rb (test_redefine_refined_method): new test for the case a refined method is redefined. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@38236 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2012-12-06 17:08:41 +04:00
case VM_METHOD_TYPE_REFINED:
*max = UNLIMITED_ARGUMENTS;
return 0;
}
2021-12-12 19:16:04 +03:00
rb_bug("method_def_min_max_arity: invalid method entry type (%d)", def->type);
UNREACHABLE_RETURN(Qnil);
}
2021-12-12 19:16:04 +03:00
static int
2021-12-21 11:39:43 +03:00
method_def_arity(const rb_method_definition_t *def)
2021-12-12 19:16:04 +03:00
{
int max, min = method_def_min_max_arity(def, &max);
return min == max ? min : -min-1;
}
int
rb_method_entry_arity(const rb_method_entry_t *me)
{
2021-12-21 11:39:43 +03:00
return method_def_arity(me->def);
}
/*
* call-seq:
* meth.arity -> integer
*
* Returns an indication of the number of arguments accepted by a
* method. Returns a nonnegative integer for methods that take a fixed
* number of arguments. For Ruby methods that take a variable number of
* arguments, returns -n-1, where n is the number of required arguments.
* Keyword arguments will be considered as a single additional argument,
* that argument being mandatory if any keyword argument is mandatory.
* For methods written in C, returns -1 if the call takes a
* variable number of arguments.
*
* class C
* def one; end
* def two(a); end
* def three(*a); end
* def four(a, b); end
* def five(a, b, *c); end
* def six(a, b, *c, &d); end
* def seven(a, b, x:0); end
* def eight(x:, y:); end
* def nine(x:, y:, **z); end
* def ten(*a, x:, y:); end
* end
* c = C.new
* c.method(:one).arity #=> 0
* c.method(:two).arity #=> 1
* c.method(:three).arity #=> -1
* c.method(:four).arity #=> 2
* c.method(:five).arity #=> -3
* c.method(:six).arity #=> -3
* c.method(:seven).arity #=> -3
* c.method(:eight).arity #=> 1
* c.method(:nine).arity #=> 1
* c.method(:ten).arity #=> -2
*
* "cat".method(:size).arity #=> 0
* "cat".method(:replace).arity #=> 1
* "cat".method(:squeeze).arity #=> -1
* "cat".method(:count).arity #=> -1
*/
static VALUE
method_arity_m(VALUE method)
{
int n = method_arity(method);
return INT2FIX(n);
}
static int
method_arity(VALUE method)
{
struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
return rb_method_entry_arity(data->me);
}
static const rb_method_entry_t *
original_method_entry(VALUE mod, ID id)
{
const rb_method_entry_t *me;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
while ((me = rb_method_entry(mod, id)) != 0) {
const rb_method_definition_t *def = me->def;
if (def->type != VM_METHOD_TYPE_ZSUPER) break;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
mod = RCLASS_SUPER(me->owner);
id = def->original_id;
}
return me;
}
static int
method_min_max_arity(VALUE method, int *max)
{
const struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
2021-12-12 19:16:04 +03:00
return method_def_min_max_arity(data->me->def, max);
}
int
rb_mod_method_arity(VALUE mod, ID id)
{
const rb_method_entry_t *me = original_method_entry(mod, id);
if (!me) return 0; /* should raise? */
return rb_method_entry_arity(me);
}
int
rb_obj_method_arity(VALUE obj, ID id)
{
return rb_mod_method_arity(CLASS_OF(obj), id);
}
VALUE
2020-10-06 03:56:49 +03:00
rb_callable_receiver(VALUE callable)
{
if (rb_obj_is_proc(callable)) {
VALUE binding = proc_binding(callable);
return rb_funcall(binding, rb_intern("receiver"), 0);
2020-10-06 03:56:49 +03:00
}
else if (rb_obj_is_method(callable)) {
return method_receiver(callable);
2020-10-06 03:56:49 +03:00
}
else {
return Qundef;
}
}
Support targetting TracePoint [Feature #15289] * vm_trace.c (rb_tracepoint_enable_for_target): support targetting TracePoint. [Feature #15289] Tragetting TracePoint is only enabled on specified method, proc and so on, example: `tp.enable(target: code)`. `code` should be consisted of InstructionSeuqnece (iseq) (RubyVM::InstructionSeuqnece.of(code) should not return nil) If code is a tree of iseq, TracePoint is enabled on all of iseqs in a tree. Enabled tragetting TracePoints can not enabled again with and without target. * vm_core.h (rb_iseq_t): introduce `rb_iseq_t::local_hooks` to store local hooks. `rb_iseq_t::aux::trace_events` is renamed to `global_trace_events` to contrast with `local_hooks`. * vm_core.h (rb_hook_list_t): add `rb_hook_list_t::running` to represent how many Threads/Fibers are used this list. If this field is 0, nobody using this hooks and we can delete it. This is why we can remove code from cont.c. * vm_core.h (rb_vm_t): because of above change, we can eliminate `rb_vm_t::trace_running` field. Also renamed from `rb_vm_t::event_hooks` to `global_hooks`. * vm_core.h, vm.c (ruby_vm_event_enabled_global_flags): renamed from `ruby_vm_event_enabled_flags. * vm_core.h, vm.c (ruby_vm_event_local_num): added to count enabled targetting TracePoints. * vm_core.h, vm_trace.c (rb_exec_event_hooks): accepts hook list. * vm_core.h (rb_vm_global_hooks): added for convinience. * method.h (rb_method_bmethod_t): added to maintain Proc and `rb_hook_list_t` for bmethod (defined by define_method). * prelude.rb (TracePoint#enable): extracet a keyword parameter (because it is easy than writing in C). It calls `TracePoint#__enable` internal method written in C. * vm_insnhelper.c (vm_trace): check also iseq->local_hooks. * vm.c (invoke_bmethod): check def->body.bmethod.hooks. * vm.c (hook_before_rewind): check iseq->local_hooks and def->body.bmethod.hooks before rewind by exception. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66003 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-11-26 21:16:39 +03:00
const rb_method_definition_t *
rb_method_def(VALUE method)
{
const struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
return data->me->def;
}
static const rb_iseq_t *
method_def_iseq(const rb_method_definition_t *def)
{
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
* introduce new ISeq binary format serializer/de-serializer and a pre-compilation/runtime loader sample. [Feature #11788] * iseq.c: add new methods: * RubyVM::InstructionSequence#to_binary_format(extra_data = nil) * RubyVM::InstructionSequence.from_binary_format(binary) * RubyVM::InstructionSequence.from_binary_format_extra_data(binary) * compile.c: implement body of this new feature. * load.c (rb_load_internal0), iseq.c (rb_iseq_load_iseq): call RubyVM::InstructionSequence.load_iseq(fname) with loading script name if this method is defined. We can return any ISeq object as a result value. Otherwise loading will be continue as usual. This interface is not matured and is not extensible. So that we don't guarantee the future compatibility of this method. Basically, you should'nt use this method. * iseq.h: move ISEQ_MAJOR/MINOR_VERSION (and some definitions) from iseq.c. * encoding.c (rb_data_is_encoding), internal.h: added. * vm_core.h: add several supports for lazy load. * add USE_LAZY_LOAD macro to specify enable or disable of this feature. * add several fields to rb_iseq_t. * introduce new macro rb_iseq_check(). * insns.def: some check for lazy loading feature. * vm_insnhelper.c: ditto. * proc.c: ditto. * vm.c: ditto. * test/lib/iseq_loader_checker.rb: enabled iff suitable environment variables are provided. * test/runner.rb: enable lib/iseq_loader_checker.rb. * sample/iseq_loader.rb: add sample compiler and loader. $ ruby sample/iseq_loader.rb [dir] will compile all ruby scripts in [dir]. With default setting, this compile creates *.rb.yarb files in same directory of target .rb scripts. $ ruby -r sample/iseq_loader.rb [app] will run with enable to load compiled binary data. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@52949 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-12-08 16:58:50 +03:00
return rb_iseq_check(def->body.iseq.iseqptr);
case VM_METHOD_TYPE_BMETHOD:
return rb_proc_get_iseq(def->body.bmethod.proc, 0);
case VM_METHOD_TYPE_ALIAS:
return method_def_iseq(def->body.alias.original_me->def);
case VM_METHOD_TYPE_CFUNC:
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
case VM_METHOD_TYPE_OPTIMIZED:
case VM_METHOD_TYPE_MISSING:
case VM_METHOD_TYPE_REFINED:
break;
}
return NULL;
}
const rb_iseq_t *
rb_method_iseq(VALUE method)
{
Support targetting TracePoint [Feature #15289] * vm_trace.c (rb_tracepoint_enable_for_target): support targetting TracePoint. [Feature #15289] Tragetting TracePoint is only enabled on specified method, proc and so on, example: `tp.enable(target: code)`. `code` should be consisted of InstructionSeuqnece (iseq) (RubyVM::InstructionSeuqnece.of(code) should not return nil) If code is a tree of iseq, TracePoint is enabled on all of iseqs in a tree. Enabled tragetting TracePoints can not enabled again with and without target. * vm_core.h (rb_iseq_t): introduce `rb_iseq_t::local_hooks` to store local hooks. `rb_iseq_t::aux::trace_events` is renamed to `global_trace_events` to contrast with `local_hooks`. * vm_core.h (rb_hook_list_t): add `rb_hook_list_t::running` to represent how many Threads/Fibers are used this list. If this field is 0, nobody using this hooks and we can delete it. This is why we can remove code from cont.c. * vm_core.h (rb_vm_t): because of above change, we can eliminate `rb_vm_t::trace_running` field. Also renamed from `rb_vm_t::event_hooks` to `global_hooks`. * vm_core.h, vm.c (ruby_vm_event_enabled_global_flags): renamed from `ruby_vm_event_enabled_flags. * vm_core.h, vm.c (ruby_vm_event_local_num): added to count enabled targetting TracePoints. * vm_core.h, vm_trace.c (rb_exec_event_hooks): accepts hook list. * vm_core.h (rb_vm_global_hooks): added for convinience. * method.h (rb_method_bmethod_t): added to maintain Proc and `rb_hook_list_t` for bmethod (defined by define_method). * prelude.rb (TracePoint#enable): extracet a keyword parameter (because it is easy than writing in C). It calls `TracePoint#__enable` internal method written in C. * vm_insnhelper.c (vm_trace): check also iseq->local_hooks. * vm.c (invoke_bmethod): check def->body.bmethod.hooks. * vm.c (hook_before_rewind): check iseq->local_hooks and def->body.bmethod.hooks before rewind by exception. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66003 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-11-26 21:16:39 +03:00
return method_def_iseq(rb_method_def(method));
}
static const rb_cref_t *
method_cref(VALUE method)
{
Support targetting TracePoint [Feature #15289] * vm_trace.c (rb_tracepoint_enable_for_target): support targetting TracePoint. [Feature #15289] Tragetting TracePoint is only enabled on specified method, proc and so on, example: `tp.enable(target: code)`. `code` should be consisted of InstructionSeuqnece (iseq) (RubyVM::InstructionSeuqnece.of(code) should not return nil) If code is a tree of iseq, TracePoint is enabled on all of iseqs in a tree. Enabled tragetting TracePoints can not enabled again with and without target. * vm_core.h (rb_iseq_t): introduce `rb_iseq_t::local_hooks` to store local hooks. `rb_iseq_t::aux::trace_events` is renamed to `global_trace_events` to contrast with `local_hooks`. * vm_core.h (rb_hook_list_t): add `rb_hook_list_t::running` to represent how many Threads/Fibers are used this list. If this field is 0, nobody using this hooks and we can delete it. This is why we can remove code from cont.c. * vm_core.h (rb_vm_t): because of above change, we can eliminate `rb_vm_t::trace_running` field. Also renamed from `rb_vm_t::event_hooks` to `global_hooks`. * vm_core.h, vm.c (ruby_vm_event_enabled_global_flags): renamed from `ruby_vm_event_enabled_flags. * vm_core.h, vm.c (ruby_vm_event_local_num): added to count enabled targetting TracePoints. * vm_core.h, vm_trace.c (rb_exec_event_hooks): accepts hook list. * vm_core.h (rb_vm_global_hooks): added for convinience. * method.h (rb_method_bmethod_t): added to maintain Proc and `rb_hook_list_t` for bmethod (defined by define_method). * prelude.rb (TracePoint#enable): extracet a keyword parameter (because it is easy than writing in C). It calls `TracePoint#__enable` internal method written in C. * vm_insnhelper.c (vm_trace): check also iseq->local_hooks. * vm.c (invoke_bmethod): check def->body.bmethod.hooks. * vm.c (hook_before_rewind): check iseq->local_hooks and def->body.bmethod.hooks before rewind by exception. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@66003 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2018-11-26 21:16:39 +03:00
const rb_method_definition_t *def = rb_method_def(method);
again:
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
return def->body.iseq.cref;
case VM_METHOD_TYPE_ALIAS:
def = def->body.alias.original_me->def;
goto again;
default:
return NULL;
}
}
static VALUE
method_def_location(const rb_method_definition_t *def)
{
if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) {
if (!def->body.attr.location)
return Qnil;
return rb_ary_dup(def->body.attr.location);
}
return iseq_location(method_def_iseq(def));
}
VALUE
rb_method_entry_location(const rb_method_entry_t *me)
{
if (!me) return Qnil;
return method_def_location(me->def);
}
/*
* call-seq:
* meth.source_location -> [String, Integer]
*
* Returns the Ruby source filename and line number containing this method
* or nil if this method was not defined in Ruby (i.e. native).
*/
VALUE
rb_method_location(VALUE method)
{
return method_def_location(rb_method_def(method));
}
static const rb_method_definition_t *
vm_proc_method_def(VALUE procval)
{
const rb_proc_t *proc;
const struct rb_block *block;
const struct vm_ifunc *ifunc;
GetProcPtr(procval, proc);
block = &proc->block;
if (vm_block_type(block) == block_type_ifunc &&
IS_METHOD_PROC_IFUNC(ifunc = block->as.captured.code.ifunc)) {
return rb_method_def((VALUE)ifunc->data);
}
else {
return NULL;
}
}
static VALUE
method_def_parameters(const rb_method_definition_t *def)
{
const rb_iseq_t *iseq;
const rb_method_definition_t *bmethod_def;
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
iseq = method_def_iseq(def);
return rb_iseq_parameters(iseq, 0);
case VM_METHOD_TYPE_BMETHOD:
if ((iseq = method_def_iseq(def)) != NULL) {
return rb_iseq_parameters(iseq, 0);
}
else if ((bmethod_def = vm_proc_method_def(def->body.bmethod.proc)) != NULL) {
return method_def_parameters(bmethod_def);
}
break;
case VM_METHOD_TYPE_ALIAS:
return method_def_parameters(def->body.alias.original_me->def);
case VM_METHOD_TYPE_OPTIMIZED:
if (def->body.optimized.type == OPTIMIZED_METHOD_TYPE_STRUCT_ASET) {
VALUE param = rb_ary_new_from_args(2, ID2SYM(rb_intern("req")), ID2SYM(rb_intern("_")));
return rb_ary_new_from_args(1, param);
}
break;
case VM_METHOD_TYPE_CFUNC:
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
case VM_METHOD_TYPE_MISSING:
case VM_METHOD_TYPE_REFINED:
break;
}
2021-12-21 11:39:43 +03:00
return rb_unnamed_parameters(method_def_arity(def));
}
/*
* call-seq:
* meth.parameters -> array
*
* Returns the parameter information of this method.
*
* def foo(bar); end
* method(:foo).parameters #=> [[:req, :bar]]
*
* def foo(bar, baz, bat, &blk); end
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]]
*
* def foo(bar, *args); end
* method(:foo).parameters #=> [[:req, :bar], [:rest, :args]]
*
* def foo(bar, baz, *args, &blk); end
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
*/
static VALUE
rb_method_parameters(VALUE method)
{
return method_def_parameters(rb_method_def(method));
}
/*
* call-seq:
* meth.to_s -> string
* meth.inspect -> string
*
* Returns a human-readable description of the underlying method.
*
2019-12-21 23:31:30 +03:00
* "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
* (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
*
* In the latter case, the method description includes the "owner" of the
* original method (+Enumerable+ module, which is included into +Range+).
2019-12-21 23:31:30 +03:00
*
* +inspect+ also provides, when possible, method argument names (call
* sequence) and source location.
*
* require 'net/http'
* Net::HTTP.method(:get).inspect
* #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
*
* <code>...</code> in argument definition means argument is optional (has
* some default value).
*
* For methods defined in C (language core and extensions), location and
* argument names can't be extracted, and only generic information is provided
* in form of <code>*</code> (any number of arguments) or <code>_</code> (some
* positional argument).
*
* "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
* "cat".method(:+).inspect #=> "#<Method: String#+(_)>""
*/
static VALUE
method_inspect(VALUE method)
{
struct METHOD *data;
VALUE str;
const char *sharp = "#";
VALUE mklass;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
VALUE defined_class;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method));
mklass = data->iclass;
if (!mklass) mklass = data->klass;
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
if (RB_TYPE_P(mklass, T_ICLASS)) {
/* TODO: I'm not sure why mklass is T_ICLASS.
* UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components()
* but not sure it is needed.
*/
mklass = RBASIC_CLASS(mklass);
}
if (data->me->def->type == VM_METHOD_TYPE_ALIAS) {
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
defined_class = data->me->def->body.alias.original_me->owner;
}
else {
defined_class = method_entry_defined_class(data->me);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
}
if (RB_TYPE_P(defined_class, T_ICLASS)) {
defined_class = RBASIC_CLASS(defined_class);
}
2024-01-30 08:48:59 +03:00
if (UNDEF_P(data->recv)) {
// UnboundMethod
rb_str_buf_append(str, rb_inspect(defined_class));
}
else if (RCLASS_SINGLETON_P(mklass)) {
VALUE v = RCLASS_ATTACHED_OBJECT(mklass);
2022-07-21 19:23:58 +03:00
2022-11-15 07:24:08 +03:00
if (UNDEF_P(data->recv)) {
rb_str_buf_append(str, rb_inspect(mklass));
}
else if (data->recv == v) {
rb_str_buf_append(str, rb_inspect(v));
sharp = ".";
}
else {
rb_str_buf_append(str, rb_inspect(data->recv));
rb_str_buf_cat2(str, "(");
rb_str_buf_append(str, rb_inspect(v));
rb_str_buf_cat2(str, ")");
sharp = ".";
}
}
else {
mklass = data->klass;
if (RCLASS_SINGLETON_P(mklass)) {
VALUE v = RCLASS_ATTACHED_OBJECT(mklass);
if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) {
do {
mklass = RCLASS_SUPER(mklass);
} while (RB_TYPE_P(mklass, T_ICLASS));
}
}
rb_str_buf_append(str, rb_inspect(mklass));
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
if (defined_class != mklass) {
rb_str_catf(str, "(% "PRIsVALUE")", defined_class);
}
}
rb_str_buf_cat2(str, sharp);
* method.h: introduce rb_callable_method_entry_t to remove rb_control_frame_t::klass. [Bug #11278], [Bug #11279] rb_method_entry_t data belong to modules/classes. rb_method_entry_t::owner points defined module or class. module M def foo; end end In this case, owner is M. rb_callable_method_entry_t data belong to only classes. For modules, MRI creates corresponding T_ICLASS internally. rb_callable_method_entry_t can also belong to T_ICLASS. rb_callable_method_entry_t::defined_class points T_CLASS or T_ICLASS. rb_method_entry_t data for classes (not for modules) are also rb_callable_method_entry_t data because it is completely same data. In this case, rb_method_entry_t::owner == rb_method_entry_t::defined_class. For example, there are classes C and D, and incldues M, class C; include M; end class D; include M; end then, two T_ICLASS objects for C's super class and D's super class will be created. When C.new.foo is called, then M#foo is searcheed and rb_callable_method_t data is used by VM to invoke M#foo. rb_method_entry_t data is only one for M#foo. However, rb_callable_method_entry_t data are two (and can be more). It is proportional to the number of including (and prepending) classes (the number of T_ICLASS which point to the module). Now, created rb_callable_method_entry_t are collected when the original module M was modified. We can think it is a cache. We need to select what kind of method entry data is needed. To operate definition, then you need to use rb_method_entry_t. You can access them by the following functions. * rb_method_entry(VALUE klass, ID id); * rb_method_entry_with_refinements(VALUE klass, ID id); * rb_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method(VALUE refinements, const rb_method_entry_t *me); To invoke methods, then you need to use rb_callable_method_entry_t which you can get by the following APIs corresponding to the above listed functions. * rb_callable_method_entry(VALUE klass, ID id); * rb_callable_method_entry_with_refinements(VALUE klass, ID id); * rb_callable_method_entry_without_refinements(VALUE klass, ID id); * rb_resolve_refined_method_callable(VALUE refinements, const rb_callable_method_entry_t *me); VM pushes rb_callable_method_entry_t, so that rb_vm_frame_method_entry() returns rb_callable_method_entry_t. You can check a super class of current method by rb_callable_method_entry_t::defined_class. * method.h: renamed from rb_method_entry_t::klass to rb_method_entry_t::owner. * internal.h: add rb_classext_struct::callable_m_tbl to cache rb_callable_method_entry_t data. We need to consider abotu this field again because it is only active for T_ICLASS. * class.c (method_entry_i): ditto. * class.c (rb_define_attr): rb_method_entry() does not takes defiend_class_ptr. * gc.c (mark_method_entry): mark RCLASS_CALLABLE_M_TBL() for T_ICLASS. * cont.c (fiber_init): rb_control_frame_t::klass is removed. * proc.c: fix `struct METHOD' data structure because rb_callable_method_t has all information. * vm_core.h: remove several fields. * rb_control_frame_t::klass. * rb_block_t::klass. And catch up changes. * eval.c: catch up changes. * gc.c: ditto. * insns.def: ditto. * vm.c: ditto. * vm_args.c: ditto. * vm_backtrace.c: ditto. * vm_dump.c: ditto. * vm_eval.c: ditto. * vm_insnhelper.c: ditto. * vm_method.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51126 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-07-03 14:24:50 +03:00
rb_str_append(str, rb_id2str(data->me->called_id));
if (data->me->called_id != data->me->def->original_id) {
rb_str_catf(str, "(%"PRIsVALUE")",
rb_id2str(data->me->def->original_id));
}
if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
rb_str_buf_cat2(str, " (not-implemented)");
}
// parameter information
{
VALUE params = rb_method_parameters(method);
VALUE pair, name, kind;
const VALUE req = ID2SYM(rb_intern("req"));
const VALUE opt = ID2SYM(rb_intern("opt"));
const VALUE keyreq = ID2SYM(rb_intern("keyreq"));
const VALUE key = ID2SYM(rb_intern("key"));
const VALUE rest = ID2SYM(rb_intern("rest"));
const VALUE keyrest = ID2SYM(rb_intern("keyrest"));
const VALUE block = ID2SYM(rb_intern("block"));
const VALUE nokey = ID2SYM(rb_intern("nokey"));
int forwarding = 0;
rb_str_buf_cat2(str, "(");
if (RARRAY_LEN(params) == 3 &&
RARRAY_AREF(RARRAY_AREF(params, 0), 0) == rest &&
RARRAY_AREF(RARRAY_AREF(params, 0), 1) == ID2SYM('*') &&
RARRAY_AREF(RARRAY_AREF(params, 1), 0) == keyrest &&
RARRAY_AREF(RARRAY_AREF(params, 1), 1) == ID2SYM(idPow) &&
RARRAY_AREF(RARRAY_AREF(params, 2), 0) == block &&
RARRAY_AREF(RARRAY_AREF(params, 2), 1) == ID2SYM('&')) {
forwarding = 1;
}
for (int i = 0; i < RARRAY_LEN(params); i++) {
pair = RARRAY_AREF(params, i);
kind = RARRAY_AREF(pair, 0);
name = RARRAY_AREF(pair, 1);
// FIXME: in tests it turns out that kind, name = [:req] produces name to be false. Why?..
if (NIL_P(name) || name == Qfalse) {
// FIXME: can it be reduced to switch/case?
if (kind == req || kind == opt) {
name = rb_str_new2("_");
}
else if (kind == rest || kind == keyrest) {
name = rb_str_new2("");
}
else if (kind == block) {
name = rb_str_new2("block");
}
else if (kind == nokey) {
name = rb_str_new2("nil");
}
}
if (kind == req) {
rb_str_catf(str, "%"PRIsVALUE, name);
}
else if (kind == opt) {
rb_str_catf(str, "%"PRIsVALUE"=...", name);
}
else if (kind == keyreq) {
rb_str_catf(str, "%"PRIsVALUE":", name);
}
else if (kind == key) {
rb_str_catf(str, "%"PRIsVALUE": ...", name);
}
else if (kind == rest) {
if (name == ID2SYM('*')) {
rb_str_cat_cstr(str, forwarding ? "..." : "*");
}
else {
rb_str_catf(str, "*%"PRIsVALUE, name);
}
}
else if (kind == keyrest) {
if (name != ID2SYM(idPow)) {
rb_str_catf(str, "**%"PRIsVALUE, name);
}
else if (i > 0) {
rb_str_set_len(str, RSTRING_LEN(str) - 2);
}
else {
rb_str_cat_cstr(str, "**");
}
}
else if (kind == block) {
if (name == ID2SYM('&')) {
if (forwarding) {
rb_str_set_len(str, RSTRING_LEN(str) - 2);
}
else {
rb_str_cat_cstr(str, "...");
}
}
else {
rb_str_catf(str, "&%"PRIsVALUE, name);
}
}
else if (kind == nokey) {
rb_str_buf_cat2(str, "**nil");
}
if (i < RARRAY_LEN(params) - 1) {
rb_str_buf_cat2(str, ", ");
}
}
rb_str_buf_cat2(str, ")");
}
{ // source location
VALUE loc = rb_method_location(method);
if (!NIL_P(loc)) {
rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE,
RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1));
}
}
rb_str_buf_cat2(str, ">");
return str;
}
static VALUE
bmcall(RB_BLOCK_CALL_FUNC_ARGLIST(args, method))
{
return rb_method_call_with_block_kw(argc, argv, method, blockarg, RB_PASS_CALLED_KEYWORDS);
}
VALUE
rb_proc_new(
rb_block_call_func_t func,
VALUE val)
{
VALUE procval = rb_block_call(rb_mRubyVMFrozenCore, idProc, 0, 0, func, val);
return procval;
}
/*
* call-seq:
* meth.to_proc -> proc
*
* Returns a Proc object corresponding to this method.
*/
static VALUE
method_to_proc(VALUE method)
{
VALUE procval;
rb_proc_t *proc;
/*
* class Method
* def to_proc
* lambda{|*args|
* self.call(*args)
* }
* end
* end
*/
procval = rb_block_call(rb_mRubyVMFrozenCore, idLambda, 0, 0, bmcall, method);
GetProcPtr(procval, proc);
proc->is_from_method = 1;
return procval;
}
extern VALUE rb_find_defined_class_by_owner(VALUE current_class, VALUE target_owner);
/*
* call-seq:
* meth.super_method -> method
*
* Returns a Method of superclass which would be called when super is used
* or nil if there is no method on superclass.
*/
static VALUE
method_super_method(VALUE method)
{
const struct METHOD *data;
VALUE super_class, iclass;
ID mid;
const rb_method_entry_t *me;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
iclass = data->iclass;
if (!iclass) return Qnil;
if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) {
super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class,
data->me->def->body.alias.original_me->owner));
mid = data->me->def->body.alias.original_me->def->original_id;
}
else {
super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass));
mid = data->me->def->original_id;
}
if (!super_class) return Qnil;
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass);
if (!me) return Qnil;
return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE);
}
/*
* call-seq:
* local_jump_error.exit_value -> obj
*
* Returns the exit value associated with this +LocalJumpError+.
*/
static VALUE
localjump_xvalue(VALUE exc)
{
return rb_iv_get(exc, "@exit_value");
}
/*
* call-seq:
* local_jump_error.reason -> symbol
*
* The reason this block was terminated:
* :break, :redo, :retry, :next, :return, or :noreason.
*/
static VALUE
localjump_reason(VALUE exc)
{
return rb_iv_get(exc, "@reason");
}
rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */
static const rb_env_t *
env_clone(const rb_env_t *env, const rb_cref_t *cref)
{
VALUE *new_ep;
VALUE *new_body;
const rb_env_t *new_env;
VM_ASSERT(env->ep > env->env);
VM_ASSERT(VM_ENV_ESCAPED_P(env->ep));
if (cref == NULL) {
cref = rb_vm_cref_new_toplevel();
}
new_body = ALLOC_N(VALUE, env->env_size);
new_ep = &new_body[env->ep - env->env];
new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq);
/* The memcpy has to happen after the vm_env_new because it can trigger a
* GC compaction which can move the objects in the env. */
MEMCPY(new_body, env->env, VALUE, env->env_size);
/* VM_ENV_DATA_INDEX_ENV is set in vm_env_new but will get overwritten
* by the memcpy above. */
new_ep[VM_ENV_DATA_INDEX_ENV] = (VALUE)new_env;
RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref);
VM_ASSERT(VM_ENV_ESCAPED_P(new_ep));
return new_env;
}
/*
* call-seq:
* prc.binding -> binding
*
* Returns the binding associated with <i>prc</i>.
*
* def fred(param)
* proc {}
* end
*
* b = fred(99)
* eval("param", b.binding) #=> 99
*/
static VALUE
proc_binding(VALUE self)
{
VALUE bindval, binding_self = Qundef;
rb_binding_t *bind;
const rb_proc_t *proc;
const rb_iseq_t *iseq = NULL;
const struct rb_block *block;
const rb_env_t *env = NULL;
GetProcPtr(self, proc);
block = &proc->block;
if (proc->is_isolated) rb_raise(rb_eArgError, "Can't create Binding from isolated Proc");
again:
switch (vm_block_type(block)) {
case block_type_iseq:
iseq = block->as.captured.code.iseq;
binding_self = block->as.captured.self;
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
break;
case block_type_proc:
GetProcPtr(block->as.proc, proc);
block = &proc->block;
goto again;
case block_type_ifunc:
{
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
if (IS_METHOD_PROC_IFUNC(ifunc)) {
VALUE method = (VALUE)ifunc->data;
VALUE name = rb_fstring_lit("<empty_iseq>");
rb_iseq_t *empty;
binding_self = method_receiver(method);
iseq = rb_method_iseq(method);
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
env = env_clone(env, method_cref(method));
/* set empty iseq */
[Universal parser] Decouple IMEMO from rb_ast_t This patch removes the `VALUE flags` member from the `rb_ast_t` structure making `rb_ast_t` no longer an IMEMO object. ## Background We are trying to make the Ruby parser generated from parse.y a universal parser that can be used by other implementations such as mruby. To achieve this, it is necessary to exclude VALUE and IMEMO from parse.y, AST, and NODE. ## Summary (file by file) - `rubyparser.h` - Remove the `VALUE flags` member from `rb_ast_t` - `ruby_parser.c` and `internal/ruby_parser.h` - Use TypedData_Make_Struct VALUE which wraps `rb_ast_t` `in ast_alloc()` so that GC can manage it - You can retrieve `rb_ast_t` from the VALUE by `rb_ruby_ast_data_get()` - Change the return type of `rb_parser_compile_XXXX()` functions from `rb_ast_t *` to `VALUE` - rb_ruby_ast_new() which internally `calls ast_alloc()` is to create VALUE vast outside ruby_parser.c - `iseq.c` and `vm_core.h` - Amend the first parameter of `rb_iseq_new_XXXX()` functions from `rb_ast_body_t *` to `VALUE` - This keeps the VALUE of AST on the machine stack to prevent being removed by GC - `ast.c` - Almost all change is replacement `rb_ast_t *ast` with `VALUE vast` (sorry for the big diff) - Fix `node_memsize()` - Now it includes `rb_ast_local_table_link`, `tokens` and script_lines - `compile.c`, `load.c`, `node.c`, `parse.y`, `proc.c`, `ruby.c`, `template/prelude.c.tmpl`, `vm.c` and `vm_eval.c` - Follow-up due to the above changes - `imemo.{c|h}` - If an object with `imemo_ast` appears, considers it a bug Co-authored-by: Nobuyoshi Nakada <nobu@ruby-lang.org>
2024-04-16 12:42:42 +03:00
empty = rb_iseq_new(Qnil, name, name, Qnil, 0, ISEQ_TYPE_TOP);
RB_OBJ_WRITE(env, &env->iseq, empty);
break;
}
}
/* FALLTHROUGH */
case block_type_symbol:
rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
UNREACHABLE_RETURN(Qnil);
}
bindval = rb_binding_alloc(rb_cBinding);
GetBindingPtr(bindval, bind);
RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self);
RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
rb_vm_block_ep_update(bindval, &bind->block, env->ep);
RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep));
if (iseq) {
* introduce new ISeq binary format serializer/de-serializer and a pre-compilation/runtime loader sample. [Feature #11788] * iseq.c: add new methods: * RubyVM::InstructionSequence#to_binary_format(extra_data = nil) * RubyVM::InstructionSequence.from_binary_format(binary) * RubyVM::InstructionSequence.from_binary_format_extra_data(binary) * compile.c: implement body of this new feature. * load.c (rb_load_internal0), iseq.c (rb_iseq_load_iseq): call RubyVM::InstructionSequence.load_iseq(fname) with loading script name if this method is defined. We can return any ISeq object as a result value. Otherwise loading will be continue as usual. This interface is not matured and is not extensible. So that we don't guarantee the future compatibility of this method. Basically, you should'nt use this method. * iseq.h: move ISEQ_MAJOR/MINOR_VERSION (and some definitions) from iseq.c. * encoding.c (rb_data_is_encoding), internal.h: added. * vm_core.h: add several supports for lazy load. * add USE_LAZY_LOAD macro to specify enable or disable of this feature. * add several fields to rb_iseq_t. * introduce new macro rb_iseq_check(). * insns.def: some check for lazy loading feature. * vm_insnhelper.c: ditto. * proc.c: ditto. * vm.c: ditto. * test/lib/iseq_loader_checker.rb: enabled iff suitable environment variables are provided. * test/runner.rb: enable lib/iseq_loader_checker.rb. * sample/iseq_loader.rb: add sample compiler and loader. $ ruby sample/iseq_loader.rb [dir] will compile all ruby scripts in [dir]. With default setting, this compile creates *.rb.yarb files in same directory of target .rb scripts. $ ruby -r sample/iseq_loader.rb [app] will run with enable to load compiled binary data. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@52949 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-12-08 16:58:50 +03:00
rb_iseq_check(iseq);
RB_OBJ_WRITE(bindval, &bind->pathobj, ISEQ_BODY(iseq)->location.pathobj);
bind->first_lineno = ISEQ_BODY(iseq)->location.first_lineno;
}
else {
RB_OBJ_WRITE(bindval, &bind->pathobj,
rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil));
bind->first_lineno = 1;
}
return bindval;
}
static rb_block_call_func curry;
static VALUE
make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
{
VALUE args = rb_ary_new3(3, proc, passed, arity);
rb_proc_t *procp;
int is_lambda;
GetProcPtr(proc, procp);
is_lambda = procp->is_lambda;
rb_ary_freeze(passed);
rb_ary_freeze(args);
proc = rb_proc_new(curry, args);
GetProcPtr(proc, procp);
procp->is_lambda = is_lambda;
return proc;
}
static VALUE
curry(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
{
VALUE proc, passed, arity;
proc = RARRAY_AREF(args, 0);
passed = RARRAY_AREF(args, 1);
arity = RARRAY_AREF(args, 2);
passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
rb_ary_freeze(passed);
if (RARRAY_LEN(passed) < FIX2INT(arity)) {
if (!NIL_P(blockarg)) {
rb_warn("given block not used");
}
arity = make_curry_proc(proc, passed, arity);
return arity;
}
else {
return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), blockarg);
}
}
/*
* call-seq:
* prc.curry -> a_proc
* prc.curry(arity) -> a_proc
*
* Returns a curried proc. If the optional <i>arity</i> argument is given,
* it determines the number of arguments.
* A curried proc receives some arguments. If a sufficient number of
* arguments are supplied, it passes the supplied arguments to the original
* proc and returns the result. Otherwise, returns another curried proc that
* takes the rest of arguments.
*
* The optional <i>arity</i> argument should be supplied when currying procs with
* variable arguments to determine how many arguments are needed before the proc is
* called.
*
* b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> 6
* p b.curry(5)[1][2][3][4][5] #=> 6
* p b.curry(5)[1, 2][3, 4][5] #=> 6
* p b.curry(1)[1] #=> 1
*
* b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> 10
* p b.curry(5)[1][2][3][4][5] #=> 15
* p b.curry(5)[1, 2][3, 4][5] #=> 15
* p b.curry(1)[1] #=> 1
*
* b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3)
* p b.curry(5) #=> wrong number of arguments (given 5, expected 3)
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
*
* b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> 10
* p b.curry(5)[1][2][3][4][5] #=> 15
* p b.curry(5)[1, 2][3, 4][5] #=> 15
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
*
* b = proc { :foo }
* p b.curry[] #=> :foo
*/
static VALUE
proc_curry(int argc, const VALUE *argv, VALUE self)
{
int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
VALUE arity;
if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) {
arity = INT2FIX(min_arity);
}
else {
sarity = FIX2INT(arity);
if (rb_proc_lambda_p(self)) {
rb_check_arity(sarity, min_arity, max_arity);
}
}
return make_curry_proc(self, rb_ary_new(), arity);
}
/*
* call-seq:
* meth.curry -> proc
* meth.curry(arity) -> proc
*
* Returns a curried proc based on the method. When the proc is called with a number of
* arguments that is lower than the method's arity, then another curried proc is returned.
* Only when enough arguments have been supplied to satisfy the method signature, will the
* method actually be called.
*
* The optional <i>arity</i> argument should be supplied when currying methods with
* variable arguments to determine how many arguments are needed before the method is
* called.
*
* def foo(a,b,c)
* [a, b, c]
* end
*
* proc = self.method(:foo).curry
* proc2 = proc.call(1, 2) #=> #<Proc>
* proc2.call(3) #=> [1,2,3]
*
* def vararg(*args)
* args
* end
*
* proc = self.method(:vararg).curry(4)
* proc2 = proc.call(:x) #=> #<Proc>
* proc3 = proc2.call(:y, :z) #=> #<Proc>
* proc3.call(:a) #=> [:x, :y, :z, :a]
*/
static VALUE
rb_method_curry(int argc, const VALUE *argv, VALUE self)
{
VALUE proc = method_to_proc(self);
return proc_curry(argc, argv, proc);
}
static VALUE
compose(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
{
VALUE f, g, fargs;
f = RARRAY_AREF(args, 0);
g = RARRAY_AREF(args, 1);
if (rb_obj_is_proc(g))
fargs = rb_proc_call_with_block_kw(g, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
else
fargs = rb_funcall_with_block_kw(g, idCall, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
if (rb_obj_is_proc(f))
return rb_proc_call(f, rb_ary_new3(1, fargs));
else
return rb_funcallv(f, idCall, 1, &fargs);
}
static VALUE
to_callable(VALUE f)
{
VALUE mesg;
if (rb_obj_is_proc(f)) return f;
if (rb_obj_is_method(f)) return f;
if (rb_obj_respond_to(f, idCall, TRUE)) return f;
mesg = rb_fstring_lit("callable object is expected");
rb_exc_raise(rb_exc_new_str(rb_eTypeError, mesg));
}
static VALUE rb_proc_compose_to_left(VALUE self, VALUE g);
static VALUE rb_proc_compose_to_right(VALUE self, VALUE g);
/*
* call-seq:
* prc << g -> a_proc
*
* Returns a proc that is the composition of this proc and the given <i>g</i>.
* The returned proc takes a variable number of arguments, calls <i>g</i> with them
* then calls this proc with the result.
*
* f = proc {|x| x * x }
* g = proc {|x| x + x }
* p (f << g).call(2) #=> 16
*
* See Proc#>> for detailed explanations.
*/
static VALUE
proc_compose_to_left(VALUE self, VALUE g)
{
return rb_proc_compose_to_left(self, to_callable(g));
}
static VALUE
rb_proc_compose_to_left(VALUE self, VALUE g)
{
VALUE proc, args, procs[2];
rb_proc_t *procp;
int is_lambda;
procs[0] = self;
procs[1] = g;
args = rb_ary_tmp_new_from_values(0, 2, procs);
if (rb_obj_is_proc(g)) {
GetProcPtr(g, procp);
is_lambda = procp->is_lambda;
}
else {
VM_ASSERT(rb_obj_is_method(g) || rb_obj_respond_to(g, idCall, TRUE));
is_lambda = 1;
}
proc = rb_proc_new(compose, args);
GetProcPtr(proc, procp);
procp->is_lambda = is_lambda;
return proc;
}
/*
* call-seq:
* prc >> g -> a_proc
*
* Returns a proc that is the composition of this proc and the given <i>g</i>.
* The returned proc takes a variable number of arguments, calls this proc with them
* then calls <i>g</i> with the result.
*
* f = proc {|x| x * x }
* g = proc {|x| x + x }
* p (f >> g).call(2) #=> 8
*
* <i>g</i> could be other Proc, or Method, or any other object responding to
* +call+ method:
*
* class Parser
* def self.call(text)
* # ...some complicated parsing logic...
* end
* end
*
* pipeline = File.method(:read) >> Parser >> proc { |data| puts "data size: #{data.count}" }
* pipeline.call('data.json')
*
* See also Method#>> and Method#<<.
*/
static VALUE
proc_compose_to_right(VALUE self, VALUE g)
{
return rb_proc_compose_to_right(self, to_callable(g));
}
static VALUE
rb_proc_compose_to_right(VALUE self, VALUE g)
{
VALUE proc, args, procs[2];
rb_proc_t *procp;
int is_lambda;
procs[0] = g;
procs[1] = self;
args = rb_ary_tmp_new_from_values(0, 2, procs);
GetProcPtr(self, procp);
is_lambda = procp->is_lambda;
proc = rb_proc_new(compose, args);
GetProcPtr(proc, procp);
procp->is_lambda = is_lambda;
return proc;
}
/*
* call-seq:
* meth << g -> a_proc
*
* Returns a proc that is the composition of this method and the given <i>g</i>.
* The returned proc takes a variable number of arguments, calls <i>g</i> with them
* then calls this method with the result.
*
* def f(x)
* x * x
* end
*
* f = self.method(:f)
* g = proc {|x| x + x }
* p (f << g).call(2) #=> 16
*/
static VALUE
rb_method_compose_to_left(VALUE self, VALUE g)
{
g = to_callable(g);
self = method_to_proc(self);
return proc_compose_to_left(self, g);
}
/*
* call-seq:
* meth >> g -> a_proc
*
* Returns a proc that is the composition of this method and the given <i>g</i>.
* The returned proc takes a variable number of arguments, calls this method
* with them then calls <i>g</i> with the result.
*
* def f(x)
* x * x
* end
*
* f = self.method(:f)
* g = proc {|x| x + x }
* p (f >> g).call(2) #=> 8
*/
static VALUE
rb_method_compose_to_right(VALUE self, VALUE g)
{
g = to_callable(g);
self = method_to_proc(self);
return proc_compose_to_right(self, g);
}
/*
* call-seq:
* proc.ruby2_keywords -> proc
*
* Marks the proc as passing keywords through a normal argument splat.
* This should only be called on procs that accept an argument splat
* (<tt>*args</tt>) but not explicit keywords or a keyword splat. It
* marks the proc such that if the proc is called with keyword arguments,
* the final hash argument is marked with a special flag such that if it
* is the final element of a normal argument splat to another method call,
* and that method call does not include explicit keywords or a keyword
* splat, the final element is interpreted as keywords. In other words,
* keywords will be passed through the proc to other methods.
*
* This should only be used for procs that delegate keywords to another
* method, and only for backwards compatibility with Ruby versions before
* 2.7.
*
* This method will probably be removed at some point, as it exists only
* for backwards compatibility. As it does not exist in Ruby versions
* before 2.7, check that the proc responds to this method before calling
* it. Also, be aware that if this method is removed, the behavior of the
* proc will change so that it does not pass through keywords.
*
* module Mod
* foo = ->(meth, *args, &block) do
* send(:"do_#{meth}", *args, &block)
* end
* foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords)
* end
*/
static VALUE
proc_ruby2_keywords(VALUE procval)
{
rb_proc_t *proc;
GetProcPtr(procval, proc);
rb_check_frozen(procval);
if (proc->is_from_method) {
rb_warn("Skipping set of ruby2_keywords flag for proc (proc created from method)");
return procval;
}
switch (proc->block.type) {
case block_type_iseq:
if (ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_rest &&
!ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kw &&
!ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kwrest) {
ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.ruby2_keywords = 1;
}
else {
rb_warn("Skipping set of ruby2_keywords flag for proc (proc accepts keywords or proc does not accept argument splat)");
}
break;
default:
rb_warn("Skipping set of ruby2_keywords flag for proc (proc not defined in Ruby)");
break;
}
return procval;
}
/*
* Document-class: LocalJumpError
*
* Raised when Ruby can't yield as requested.
*
* A typical scenario is attempting to yield when no block is given:
*
* def call_block
* yield 42
* end
* call_block
*
* <em>raises the exception:</em>
*
* LocalJumpError: no block given (yield)
*
* A more subtle example:
*
* def get_me_a_return
* Proc.new { return 42 }
* end
* get_me_a_return.call
*
* <em>raises the exception:</em>
*
* LocalJumpError: unexpected return
*/
/*
* Document-class: SystemStackError
*
* Raised in case of a stack overflow.
*
* def me_myself_and_i
* me_myself_and_i
* end
* me_myself_and_i
*
* <em>raises the exception:</em>
*
* SystemStackError: stack level too deep
*/
/*
* Document-class: Proc
*
* A +Proc+ object is an encapsulation of a block of code, which can be stored
* in a local variable, passed to a method or another Proc, and can be called.
* Proc is an essential concept in Ruby and a core of its functional
* programming features.
*
* square = Proc.new {|x| x**2 }
*
* square.call(3) #=> 9
* # shorthands:
* square.(3) #=> 9
* square[3] #=> 9
*
* Proc objects are _closures_, meaning they remember and can use the entire
* context in which they were created.
*
* def gen_times(factor)
* Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation
* end
*
* times3 = gen_times(3)
* times5 = gen_times(5)
*
* times3.call(12) #=> 36
* times5.call(5) #=> 25
* times3.call(times5.call(4)) #=> 60
*
* == Creation
*
* There are several methods to create a Proc
*
* * Use the Proc class constructor:
*
* proc1 = Proc.new {|x| x**2 }
*
* * Use the Kernel#proc method as a shorthand of Proc.new:
*
* proc2 = proc {|x| x**2 }
*
* * Receiving a block of code into proc argument (note the <code>&</code>):
*
* def make_proc(&block)
* block
* end
*
* proc3 = make_proc {|x| x**2 }
*
* * Construct a proc with lambda semantics using the Kernel#lambda method
* (see below for explanations about lambdas):
*
* lambda1 = lambda {|x| x**2 }
*
* * Use the {Lambda proc literal}[rdoc-ref:syntax/literals.rdoc@Lambda+Proc+Literals] syntax
* (also constructs a proc with lambda semantics):
*
* lambda2 = ->(x) { x**2 }
*
* == Lambda and non-lambda semantics
*
* Procs are coming in two flavors: lambda and non-lambda (regular procs).
* Differences are:
*
2019-07-14 09:01:39 +03:00
* * In lambdas, +return+ and +break+ means exit from this lambda;
* * In non-lambda procs, +return+ means exit from embracing method
* (and will throw +LocalJumpError+ if invoked outside the method);
2019-07-14 09:01:39 +03:00
* * In non-lambda procs, +break+ means exit from the method which the block given for.
* (and will throw +LocalJumpError+ if invoked after the method returns);
* * In lambdas, arguments are treated in the same way as in methods: strict,
* with +ArgumentError+ for mismatching argument number,
* and no additional argument processing;
* * Regular procs accept arguments more generously: missing arguments
* are filled with +nil+, single Array arguments are deconstructed if the
* proc has multiple arguments, and there is no error raised on extra
* arguments.
*
* Examples:
*
2019-07-14 09:01:39 +03:00
* # +return+ in non-lambda proc, +b+, exits +m2+.
* # (The block +{ return }+ is given for +m1+ and embraced by +m2+.)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a
* #=> []
*
* # +break+ in non-lambda proc, +b+, exits +m1+.
* # (The block +{ break }+ is given for +m1+ and embraced by +m2+.)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a
* #=> [:m2]
*
* # +next+ in non-lambda proc, +b+, exits the block.
* # (The block +{ next }+ is given for +m1+ and embraced by +m2+.)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
*
* # Using +proc+ method changes the behavior as follows because
* # The block is given for +proc+ method and embraced by +m2+.
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a
* #=> []
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a
* # break from proc-closure (LocalJumpError)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
*
2019-07-14 16:04:27 +03:00
* # +return+, +break+ and +next+ in the stubby lambda exits the block.
2019-07-14 09:01:39 +03:00
* # (+lambda+ method behaves same.)
* # (The block is given for stubby lambda syntax and embraced by +m2+.)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
*
* p = proc {|x, y| "x=#{x}, y=#{y}" }
* p.call(1, 2) #=> "x=1, y=2"
* p.call([1, 2]) #=> "x=1, y=2", array deconstructed
* p.call(1, 2, 8) #=> "x=1, y=2", extra argument discarded
* p.call(1) #=> "x=1, y=", nil substituted instead of error
*
* l = lambda {|x, y| "x=#{x}, y=#{y}" }
* l.call(1, 2) #=> "x=1, y=2"
* l.call([1, 2]) # ArgumentError: wrong number of arguments (given 1, expected 2)
* l.call(1, 2, 8) # ArgumentError: wrong number of arguments (given 3, expected 2)
* l.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
*
* def test_return
* -> { return 3 }.call # just returns from lambda into method body
* proc { return 4 }.call # returns from method
* return 5
* end
*
* test_return # => 4, return from proc
*
* Lambdas are useful as self-sufficient functions, in particular useful as
* arguments to higher-order functions, behaving exactly like Ruby methods.
*
* Procs are useful for implementing iterators:
*
* def test
* [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 }
* # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* end
*
* Inside +map+, the block of code is treated as a regular (non-lambda) proc,
* which means that the internal arrays will be deconstructed to pairs of
* arguments, and +return+ will exit from the method +test+. That would
* not be possible with a stricter lambda.
*
* You can tell a lambda from a regular proc by using the #lambda? instance method.
*
* Lambda semantics is typically preserved during the proc lifetime, including
* <code>&</code>-deconstruction to a block of code:
*
* p = proc {|x, y| x }
* l = lambda {|x, y| x }
* [[1, 2], [3, 4]].map(&p) #=> [1, 3]
* [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2)
*
* The only exception is dynamic method definition: even if defined by
* passing a non-lambda proc, methods still have normal semantics of argument
* checking.
*
* class C
* define_method(:e, &proc {})
* end
* C.new.e(1,2) #=> ArgumentError
* C.new.method(:e).to_proc.lambda? #=> true
*
* This exception ensures that methods never have unusual argument passing
* conventions, and makes it easy to have wrappers defining methods that
* behave as usual.
*
* class C
* def self.def2(name, &body)
* define_method(name, &body)
* end
*
* def2(:f) {}
* end
* C.new.f(1,2) #=> ArgumentError
*
* The wrapper <code>def2</code> receives _body_ as a non-lambda proc,
* yet defines a method which has normal semantics.
*
* == Conversion of other objects to procs
*
* Any object that implements the +to_proc+ method can be converted into
2020-11-16 20:30:48 +03:00
* a proc by the <code>&</code> operator, and therefore can be
* consumed by iterators.
*
2019-07-14 16:04:27 +03:00
* class Greeter
* def initialize(greeting)
* @greeting = greeting
* end
*
* def to_proc
2019-07-14 16:04:27 +03:00
* proc {|name| "#{@greeting}, #{name}!" }
* end
* end
*
2019-07-14 16:04:27 +03:00
* hi = Greeter.new("Hi")
* hey = Greeter.new("Hey")
* ["Bob", "Jane"].map(&hi) #=> ["Hi, Bob!", "Hi, Jane!"]
* ["Bob", "Jane"].map(&hey) #=> ["Hey, Bob!", "Hey, Jane!"]
*
* Of the Ruby core classes, this method is implemented by Symbol,
* Method, and Hash.
*
* :to_s.to_proc.call(1) #=> "1"
* [1, 2].map(&:to_s) #=> ["1", "2"]
*
* method(:puts).to_proc.call(1) # prints 1
* [1, 2].each(&method(:puts)) # prints 1, 2
*
* {test: 1}.to_proc.call(:test) #=> 1
* %i[test many keys].map(&{test: 1}) #=> [1, nil, nil]
*
2019-07-14 09:01:39 +03:00
* == Orphaned Proc
*
* +return+ and +break+ in a block exit a method.
* If a Proc object is generated from the block and the Proc object
* survives until the method is returned, +return+ and +break+ cannot work.
* In such case, +return+ and +break+ raises LocalJumpError.
* A Proc object in such situation is called as orphaned Proc object.
*
* Note that the method to exit is different for +return+ and +break+.
* There is a situation that orphaned for +break+ but not orphaned for +return+.
*
* def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok
* def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok
*
* def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok
* def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError
*
* def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError
* def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError
*
2019-07-14 16:04:27 +03:00
* Since +return+ and +break+ exits the block itself in lambdas,
2019-07-14 09:01:39 +03:00
* lambdas cannot be orphaned.
*
2019-12-20 23:51:22 +03:00
* == Numbered parameters
*
* Numbered parameters are implicitly defined block parameters intended to
* simplify writing short blocks:
*
* # Explicit parameter:
* %w[test me please].each { |str| puts str.upcase } # prints TEST, ME, PLEASE
* (1..5).map { |i| i**2 } # => [1, 4, 9, 16, 25]
*
* # Implicit parameter:
* %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE
* (1..5).map { _1**2 } # => [1, 4, 9, 16, 25]
*
* Parameter names from +_1+ to +_9+ are supported:
*
* [10, 20, 30].zip([40, 50, 60], [70, 80, 90]).map { _1 + _2 + _3 }
* # => [120, 150, 180]
*
* Though, it is advised to resort to them wisely, probably limiting
* yourself to +_1+ and +_2+, and to one-line blocks.
*
* Numbered parameters can't be used together with explicitly named
* ones:
*
* [10, 20, 30].map { |x| _1**2 }
* # SyntaxError (ordinary parameter is defined)
*
* To avoid conflicts, naming local variables or method
* arguments +_1+, +_2+ and so on, causes a warning.
*
* _1 = 'test'
* # warning: `_1' is reserved as numbered parameter
*
* Using implicit numbered parameters affects block's arity:
*
* p = proc { _1 + _2 }
* l = lambda { _1 + _2 }
* p.parameters # => [[:opt, :_1], [:opt, :_2]]
* p.arity # => 2
* l.parameters # => [[:req, :_1], [:req, :_2]]
* l.arity # => 2
*
* Blocks with numbered parameters can't be nested:
*
* %w[test me].each { _1.each_char { p _1 } }
* # SyntaxError (numbered parameter is already used in outer block here)
* # %w[test me].each { _1.each_char { p _1 } }
* # ^~
*
2019-12-23 02:21:13 +03:00
* Numbered parameters were introduced in Ruby 2.7.
*/
void
Init_Proc(void)
{
#undef rb_intern
/* Proc */
rb_cProc = rb_define_class("Proc", rb_cObject);
rb_undef_alloc_func(rb_cProc);
rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
rb_add_method_optimized(rb_cProc, idCall, OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
rb_add_method_optimized(rb_cProc, rb_intern("[]"), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
rb_add_method_optimized(rb_cProc, rb_intern("==="), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
rb_add_method_optimized(rb_cProc, rb_intern("yield"), OPTIMIZED_METHOD_TYPE_CALL, 0, METHOD_VISI_PUBLIC);
#if 0 /* for RDoc */
rb_define_method(rb_cProc, "call", proc_call, -1);
rb_define_method(rb_cProc, "[]", proc_call, -1);
rb_define_method(rb_cProc, "===", proc_call, -1);
rb_define_method(rb_cProc, "yield", proc_call, -1);
#endif
rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
rb_define_method(rb_cProc, "arity", proc_arity, 0);
rb_define_method(rb_cProc, "clone", proc_clone, 0);
rb_define_method(rb_cProc, "dup", proc_dup, 0);
rb_define_method(rb_cProc, "hash", proc_hash, 0);
rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
rb_define_alias(rb_cProc, "inspect", "to_s");
rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0);
rb_define_method(rb_cProc, "binding", proc_binding, 0);
rb_define_method(rb_cProc, "curry", proc_curry, -1);
rb_define_method(rb_cProc, "<<", proc_compose_to_left, 1);
rb_define_method(rb_cProc, ">>", proc_compose_to_right, 1);
rb_define_method(rb_cProc, "==", proc_eq, 1);
rb_define_method(rb_cProc, "eql?", proc_eq, 1);
rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
rb_define_method(rb_cProc, "parameters", rb_proc_parameters, -1);
rb_define_method(rb_cProc, "ruby2_keywords", proc_ruby2_keywords, 0);
// rb_define_method(rb_cProc, "isolate", rb_proc_isolate, 0); is not accepted.
/* Exceptions */
rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep");
/* utility functions */
rb_define_global_function("proc", f_proc, 0);
rb_define_global_function("lambda", f_lambda, 0);
/* Method */
rb_cMethod = rb_define_class("Method", rb_cObject);
rb_undef_alloc_func(rb_cMethod);
rb_undef_method(CLASS_OF(rb_cMethod), "new");
rb_define_method(rb_cMethod, "==", method_eq, 1);
rb_define_method(rb_cMethod, "eql?", method_eq, 1);
rb_define_method(rb_cMethod, "hash", method_hash, 0);
rb_define_method(rb_cMethod, "clone", method_clone, 0);
rb_define_method(rb_cMethod, "dup", method_dup, 0);
rb_define_method(rb_cMethod, "call", rb_method_call_pass_called_kw, -1);
rb_define_method(rb_cMethod, "===", rb_method_call_pass_called_kw, -1);
rb_define_method(rb_cMethod, "curry", rb_method_curry, -1);
rb_define_method(rb_cMethod, "<<", rb_method_compose_to_left, 1);
rb_define_method(rb_cMethod, ">>", rb_method_compose_to_right, 1);
rb_define_method(rb_cMethod, "[]", rb_method_call_pass_called_kw, -1);
rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0);
rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
rb_define_method(rb_cMethod, "name", method_name, 0);
rb_define_method(rb_cMethod, "original_name", method_original_name, 0);
rb_define_method(rb_cMethod, "owner", method_owner, 0);
rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
rb_define_method(rb_cMethod, "super_method", method_super_method, 0);
rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1);
/* UnboundMethod */
rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
rb_undef_alloc_func(rb_cUnboundMethod);
rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
rb_define_method(rb_cUnboundMethod, "==", unbound_method_eq, 1);
rb_define_method(rb_cUnboundMethod, "eql?", unbound_method_eq, 1);
rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
rb_define_method(rb_cUnboundMethod, "dup", method_dup, 0);
rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0);
rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
rb_define_method(rb_cUnboundMethod, "bind_call", umethod_bind_call, -1);
rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0);
/* Module#*_method */
rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1);
/* Kernel */
rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"define_method", top_define_method, -1);
}
/*
* Objects of class Binding encapsulate the execution context at some
* particular place in the code and retain this context for future
* use. The variables, methods, value of <code>self</code>, and
* possibly an iterator block that can be accessed in this context
* are all retained. Binding objects can be created using
* Kernel#binding, and are made available to the callback of
* Kernel#set_trace_func and instances of TracePoint.
*
* These binding objects can be passed as the second argument of the
* Kernel#eval method, establishing an environment for the
* evaluation.
*
* class Demo
* def initialize(n)
* @secret = n
* end
* def get_binding
* binding
* end
* end
*
* k1 = Demo.new(99)
* b1 = k1.get_binding
* k2 = Demo.new(-3)
* b2 = k2.get_binding
*
* eval("@secret", b1) #=> 99
* eval("@secret", b2) #=> -3
* eval("@secret") #=> nil
*
* Binding objects have no class-specific methods.
*
*/
void
Init_Binding(void)
{
rb_cBinding = rb_define_class("Binding", rb_cObject);
rb_undef_alloc_func(rb_cBinding);
rb_undef_method(CLASS_OF(rb_cBinding), "new");
rb_define_method(rb_cBinding, "clone", binding_clone, 0);
rb_define_method(rb_cBinding, "dup", binding_dup, 0);
rb_define_method(rb_cBinding, "eval", bind_eval, -1);
rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0);
rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1);
rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2);
rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1);
rb_define_method(rb_cBinding, "receiver", bind_receiver, 0);
rb_define_method(rb_cBinding, "source_location", bind_location, 0);
rb_define_global_function("binding", rb_f_binding, 0);
}