* array.c (rb_ary_permutation): implementation contributed from

David Flanagan.  [ruby-core:12344]

* array.c (rb_ary_combination): RDoc update to clarify.  a patch
  from David Flanagan.  [ruby-core:12344]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@13590 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
matz 2007-10-01 23:35:30 +00:00
Родитель 88f570d9ae
Коммит 04bc87e582
3 изменённых файлов: 111 добавлений и 36 удалений

Просмотреть файл

@ -1,3 +1,11 @@
Tue Oct 2 08:25:50 2007 Yukihiro Matsumoto <matz@ruby-lang.org>
* array.c (rb_ary_permutation): implementation contributed from
David Flanagan. [ruby-core:12344]
* array.c (rb_ary_combination): RDoc update to clarify. a patch
from David Flanagan. [ruby-core:12344]
Tue Oct 2 07:01:05 2007 Koichi Sasada <ko1@atdot.net>
* proc.c (proc_dup): proc->block.proc should be self.
@ -5,11 +13,6 @@ Tue Oct 2 07:01:05 2007 Koichi Sasada <ko1@atdot.net>
* bootstraptest/test_knownbug.rb, test_method.rb:
move a fixed test.
Mon Oct 1 23:44:23 2007 Yukihiro Matsumoto <matz@ruby-lang.org>
* array.c (rb_ary_combination): revisit #combination behavior.
suggested by David Flanagan.
Mon Oct 1 16:17:44 2007 Tanaka Akira <akr@fsij.org>
* bootstraptest/test_method.rb: use assert_normal_exit to test

110
array.c
Просмотреть файл

@ -2954,37 +2954,95 @@ rb_ary_cycle(VALUE ary)
return Qnil;
}
static long
perm_len(long n, long k)
{
long i, val = 1;
/*
* Recursively compute permutations of r elements of the set [0..n-1].
* When we have a complete permutation of array indexes, copy the values
* at those indexes into a new array and yield that array.
*
* n: the size of the set
* r: the number of elements in each permutation
* p: the array (of size r) that we're filling in
* index: what index we're filling in now
* used: an array of booleans: whether a given index is already used
* values: the Ruby array that holds the actual values to permute
*/
static void
permute0(long n, long r, long p[], long index, int used[], VALUE values) {
long i,j;
for(i = 0; i < n; i++) {
if (used[i] == 0) {
p[index] = i;
if (index < r-1) { /* if not done yet */
used[i] = 1; /* mark index used */
permute0(n,r,p,index+1, /* recurse */
used, values);
used[i] = 0; /* index unused */
}
else {
/* We have a complete permutation of array indexes */
/* Build a ruby array of the corresponding values */
/* And yield it to the associated block */
VALUE result = rb_ary_new2(r);
VALUE *result_array = RARRAY_PTR(result);
VALUE *values_array = RARRAY_PTR(values);
while (n > k) {
val *= n--;
for(j = 0; j < r; j++) result_array[j] = values_array[p[j]];
RARRAY(result)->len = r;
rb_yield(result);
}
}
}
return val;
}
/*
* call-seq:
* ary.permutation(n)
* ary.permutation(n) { |p| block } -> array
* ary.permutation(n) -> enumerator
*
* Returns an array of all permutations of length <i>n</i> of
* elements from <i>ary</i>].
*
* When invoked with a block, yield all permutations of length <i>n</i>
* of the elements of <i>ary</i>, then return the array itself.
* The implementation makes no guarantees about the order in which
* the permutations are yielded.
*
* When invoked without a block, return an enumerator object instead.
*
* Examples:
* a = [1, 2, 3]
* a.permutation(0).to_a #=> []
* a.permutation(1).to_a #=> [[1],[2],[3]]
* a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
* a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
* a.permutation(4).to_a #=> []
*
* a.permutation(0).to_a #=> [[]]: one permutation of length 0
* a.permutation(4).to_a #=> [] : no permutations of length 4
*/
static VALUE
rb_ary_permutation(VALUE ary, VALUE num)
{
/* TBD */
RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */
long r = NUM2LONG(num); /* Permutation size from argument */
long n = RARRAY_LEN(ary); /* Array length */
long i;
if (r < 0 || n < r) {
/* no permutations: yield nothing */
}
else if (r == 0) { /* exactly one permutation: the zero-length array */
rb_yield(rb_ary_new2(0));
}
else if (r == 1) { /* this is a special, easy case */
for (i = 0; i < RARRAY_LEN(ary); i++) {
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
}
}
else { /* this is the general case */
ary = rb_ary_dup(ary); /* private defensive copy of ary */
long p[n];
int used[n];
for(i = 0; i < n; i++) used[i] = 0; /* initialize array */
permute0(n,r,p,0,used,ary); /* compute and yield permutations */
}
return ary;
}
static long
@ -3005,18 +3063,24 @@ combi_len(long n, long k)
/*
* call-seq:
* ary.combination(n)
* ary.combination(n) { |c| block } -> ary
* ary.combination(n) -> enumerator
*
* Returns an enumerator of all combinations of length <i>n</i> of
* elements from <i>ary</i>].
* When invoked with a block, yields all combinations of length <i>n</i>
* of elements from <i>ary</i> and then returns <i>ary</i> itself.
* The implementation makes no guarantees about the order in which
* the combinations are yielded.
*
* When invoked without a block, returns an enumerator object instead.
*
* Examples:
* a = [1, 2, 3, 4]
* a.combination(0).to_a #=> []
* a.combination(1).to_a #=> [[1],[2],[3],[4]]
* a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
* a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
* a.combination(4).to_a #=> [[1,2,3,4]]
* a.combination(5).to_a #=> []
* a.combination(0).to_a #=> [[]]: one combination of length 0
* a.combination(5).to_a #=> [] : no combinations of length 5
*
*/
@ -3028,10 +3092,10 @@ rb_ary_combination(VALUE ary, VALUE num)
RETURN_ENUMERATOR(ary, 1, &num);
n = NUM2LONG(num);
len = RARRAY_LEN(ary);
if (len < n) {
if (n < 0 || len < n) {
/* yield nothing */
}
else if (n <= 0) {
else if (n == 0) {
rb_yield(rb_ary_new2(0));
}
else if (n == 1) {
@ -3187,7 +3251,7 @@ Init_Array(void)
rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, 0);
rb_define_method(rb_cArray, "choice", rb_ary_choice, 0);
rb_define_method(rb_cArray, "cycle", rb_ary_cycle, 0);
/* rb_define_method(rb_cArray, "permutation", rb_ary_permutation, 1); */
rb_define_method(rb_cArray, "permutation", rb_ary_permutation, 1);
rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
rb_define_method(rb_cArray, "product", rb_ary_product, 1);

Просмотреть файл

@ -1177,14 +1177,6 @@ class TestArray < Test::Unit::TestCase
assert_equal(@cls[1,2], @cls[1, 2] | @cls[1, 2])
end
# def test_permutation
# assert_equal(@cls[[]], @cls[1,2,3].permutation(0).to_a)
# assert_equal(@cls[[1],[2],[3]], @cls[1,2,3].permutation(1).to_a)
# assert_equal(@cls[[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]], @cls[1,2,3].permutation(2).to_a)
# assert_equal(@cls[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]], @cls[1,2,3].permutation(3).to_a)
# assert_equal(@cls[], @cls[1,2,3].permutation(4).to_a)
# end
def test_combination
assert_equal(@cls[[]], @cls[1,2,3,4].combination(0).to_a)
assert_equal(@cls[[1],[2],[3],[4]], @cls[1,2,3,4].combination(1).to_a)
@ -1199,4 +1191,20 @@ class TestArray < Test::Unit::TestCase
@cls[1,2,3].product([4,5]))
assert_equal(@cls[[1,1],[1,2],[2,1],[2,2]], @cls[1,2].product([1,2]))
end
def test_permutation
a = @cls[1,2,3]
assert_equal(@cls[[]], a.permutation(0).to_a)
assert_equal(@cls[[1],[2],[3]], a.permutation(1).to_a.sort)
assert_equal(@cls[[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]],
a.permutation(2).to_a.sort)
assert_equal(@cls[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]],
a.permutation(3).sort.to_a)
assert_equal(@cls[], a.permutation(4).to_a)
assert_equal(@cls[], a.permutation(-1).to_a)
assert_equal("abcde".each_char.to_a.permutation(5).sort,
"edcba".each_char.to_a.permutation(5).sort)
assert_equal(@cls[].permutation(0).to_a, @cls[[]])
end
end