* lib/cmath.rb: make same exception for Math. fix [Bug #3137].

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@32297 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
keiju 2011-06-29 15:31:37 +00:00
Родитель 549d4feecd
Коммит 09dee51be3
2 изменённых файлов: 180 добавлений и 96 удалений

Просмотреть файл

@ -1,3 +1,7 @@
Thu Jun 30 00:30:15 2011 Keiju Ishitsuka <keiju@ishitsuka.com>
* lib/cmath.rb: make same exception for Math. fix [Bug #3137].
Thu Jun 30 00:03:20 2011 Keiju Ishitsuka <keiju@ishitsuka.com>
* lib/irb/completion.rb: complate correctry string literal. fix

Просмотреть файл

@ -50,12 +50,16 @@ module CMath
# exp(Complex(0,PI)) #=> -1.0+1.2246467991473532e-16i
# exp(Complex(0,PI/2.0)) #=> 6.123233995736766e-17+1.0i
def exp(z)
if z.real?
exp!(z)
else
ere = exp!(z.real)
Complex(ere * cos!(z.imag),
ere * sin!(z.imag))
begin
if z.real?
exp!(z)
else
ere = exp!(z.real)
Complex(ere * cos!(z.imag),
ere * sin!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
@ -65,35 +69,50 @@ module CMath
#
# log(Complex(0,0)) #=> -Infinity+0.0i
def log(*args)
z, b = args
if z.real? and z >= 0 and (b.nil? or b >= 0)
log!(*args)
else
a = Complex(log!(z.abs), z.arg)
if b
a /= log(b)
begin
z, b = args
unless b.kind_of?(Numeric)
raise TypeError, "Numeric Number required"
end
a
if z.real? and z >= 0 and (b.nil? or b >= 0)
log!(*args)
else
a = Complex(log!(z.abs), z.arg)
if b
a /= log(b)
end
a
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the base 2 logarithm of +z+
def log2(z)
if z.real? and z >= 0
log2!(z)
else
log(z) / log!(2)
begin
if z.real? and z >= 0
log2!(z)
else
log(z) / log!(2)
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the base 10 logarithm of +z+
def log10(z)
if z.real? and z >= 0
log10!(z)
else
log(z) / log!(10)
begin
if z.real? and z >= 0
log10!(z)
else
log(z) / log!(10)
end
rescue NoMethodError
handle_no_method_error
end
end
@ -103,21 +122,25 @@ module CMath
# sqrt(Complex(-1,0)) #=> 0.0+1.0i
# sqrt(Complex(0,8)) #=> 2.0+2.0i
def sqrt(z)
if z.real?
if z < 0
Complex(0, sqrt!(-z))
begin
if z.real?
if z < 0
Complex(0, sqrt!(-z))
else
sqrt!(z)
end
else
sqrt!(z)
end
else
if z.imag < 0 ||
(z.imag == 0 && z.imag.to_s[0] == '-')
sqrt(z.conjugate).conjugate
else
r = z.abs
x = z.real
Complex(sqrt!((r + x) / 2.0), sqrt!((r - x) / 2.0))
if z.imag < 0 ||
(z.imag == 0 && z.imag.to_s[0] == '-')
sqrt(z.conjugate).conjugate
else
r = z.abs
x = z.real
Complex(sqrt!((r + x) / 2.0), sqrt!((r - x) / 2.0))
end
end
rescue NoMethodError
handle_no_method_error
end
end
@ -130,94 +153,130 @@ module CMath
##
# returns the sine of +z+, where +z+ is given in radians
def sin(z)
if z.real?
sin!(z)
else
Complex(sin!(z.real) * cosh!(z.imag),
cos!(z.real) * sinh!(z.imag))
begin
if z.real?
sin!(z)
else
Complex(sin!(z.real) * cosh!(z.imag),
cos!(z.real) * sinh!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the cosine of +z+, where +z+ is given in radians
def cos(z)
if z.real?
cos!(z)
else
Complex(cos!(z.real) * cosh!(z.imag),
-sin!(z.real) * sinh!(z.imag))
begin
if z.real?
cos!(z)
else
Complex(cos!(z.real) * cosh!(z.imag),
-sin!(z.real) * sinh!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the tangent of +z+, where +z+ is given in radians
def tan(z)
if z.real?
tan!(z)
else
sin(z) / cos(z)
begin
if z.real?
tan!(z)
else
sin(z) / cos(z)
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the hyperbolic sine of +z+, where +z+ is given in radians
def sinh(z)
if z.real?
sinh!(z)
else
Complex(sinh!(z.real) * cos!(z.imag),
cosh!(z.real) * sin!(z.imag))
begin
if z.real?
sinh!(z)
else
Complex(sinh!(z.real) * cos!(z.imag),
cosh!(z.real) * sin!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the hyperbolic cosine of +z+, where +z+ is given in radians
def cosh(z)
if z.real?
cosh!(z)
else
Complex(cosh!(z.real) * cos!(z.imag),
sinh!(z.real) * sin!(z.imag))
begin
if z.real?
cosh!(z)
else
Complex(cosh!(z.real) * cos!(z.imag),
sinh!(z.real) * sin!(z.imag))
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the hyperbolic tangent of +z+, where +z+ is given in radians
def tanh(z)
if z.real?
tanh!(z)
else
sinh(z) / cosh(z)
begin
if z.real?
tanh!(z)
else
sinh(z) / cosh(z)
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the arc sine of +z+
def asin(z)
if z.real? and z >= -1 and z <= 1
asin!(z)
else
(-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z))
begin
if z.real? and z >= -1 and z <= 1
asin!(z)
else
(-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z))
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the arc cosine of +z+
def acos(z)
if z.real? and z >= -1 and z <= 1
acos!(z)
else
(-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z))
begin
if z.real? and z >= -1 and z <= 1
acos!(z)
else
(-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z))
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the arc tangent of +z+
def atan(z)
if z.real?
atan!(z)
else
1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0
begin
if z.real?
atan!(z)
else
1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0
end
rescue NoMethodError
handle_no_method_error
end
end
@ -225,40 +284,56 @@ module CMath
# returns the arc tangent of +y+ divided by +x+ using the signs of +y+ and
# +x+ to determine the quadrant
def atan2(y,x)
if y.real? and x.real?
atan2!(y,x)
else
(-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y))
begin
if y.real? and x.real?
atan2!(y,x)
else
(-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y))
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the inverse hyperbolic sine of +z+
def asinh(z)
if z.real?
asinh!(z)
else
log(z + sqrt(1.0 + z * z))
begin
if z.real?
asinh!(z)
else
log(z + sqrt(1.0 + z * z))
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the inverse hyperbolic cosine of +z+
def acosh(z)
if z.real? and z >= 1
acosh!(z)
else
log(z + sqrt(z * z - 1.0))
begin
if z.real? and z >= 1
acosh!(z)
else
log(z + sqrt(z * z - 1.0))
end
rescue NoMethodError
handle_no_method_error
end
end
##
# returns the inverse hyperbolic tangent of +z+
def atanh(z)
if z.real? and z >= -1 and z <= 1
atanh!(z)
else
log((1.0 + z) / (1.0 - z)) / 2.0
begin
if z.real? and z >= -1 and z <= 1
atanh!(z)
else
log((1.0 + z) / (1.0 - z)) / 2.0
end
rescue NoMethodError
handle_no_method_error
end
end
@ -313,10 +388,15 @@ module CMath
module_function :gamma
module_function :lgamma
private
def handle_no_method_error
if $!.name == :real?
raise TypeError, "Numeric Number required"
else
raise
end
end
module_function :handle_no_method_error
end
class Object
def real?
raise TypeError, "Numeric Number required"
end
end