зеркало из https://github.com/github/ruby.git
* bignum.c (rb_big_mul): faster multiplication by Karatsuba method and
twice faster square than normal multiplication. * random.c (rb_rand_internal): used by Bignum#*. * test/ruby/test_bignum.rb: add some tests for above. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@20733 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
Родитель
529ad093d4
Коммит
19f45f853c
|
@ -1,3 +1,12 @@
|
|||
$BF|(B 12$B7n(B 14 12:51:48 2008 Yusuke Endoh <mame@tsg.ne.jp>
|
||||
|
||||
* bignum.c (rb_big_mul): faster multiplication by Karatsuba method and
|
||||
twice faster square than normal multiplication.
|
||||
|
||||
* random.c (rb_rand_internal): used by Bignum#*.
|
||||
|
||||
* test/ruby/test_bignum.rb: add some tests for above.
|
||||
|
||||
Sun Dec 14 09:14:37 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp>
|
||||
|
||||
* reverts r20713.
|
||||
|
|
417
bignum.c
417
bignum.c
|
@ -17,6 +17,7 @@
|
|||
#ifdef HAVE_IEEEFP_H
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
#include <assert.h>
|
||||
|
||||
VALUE rb_cBignum;
|
||||
|
||||
|
@ -1380,12 +1381,36 @@ rb_big_neg(VALUE x)
|
|||
return bignorm(z);
|
||||
}
|
||||
|
||||
static void
|
||||
bigsub_core(BDIGIT *xds, long xn, BDIGIT *yds, long yn, BDIGIT *zds, long zn)
|
||||
{
|
||||
BDIGIT_DBL_SIGNED num;
|
||||
long i;
|
||||
|
||||
for (i = 0, num = 0; i < yn; i++) {
|
||||
num += (BDIGIT_DBL_SIGNED)xds[i] - yds[i];
|
||||
zds[i] = BIGLO(num);
|
||||
num = BIGDN(num);
|
||||
}
|
||||
while (num && i < xn) {
|
||||
num += xds[i];
|
||||
zds[i++] = BIGLO(num);
|
||||
num = BIGDN(num);
|
||||
}
|
||||
while (i < xn) {
|
||||
zds[i] = xds[i];
|
||||
i++;
|
||||
}
|
||||
assert(i <= zn);
|
||||
while (i < zn) {
|
||||
zds[i++] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static VALUE
|
||||
bigsub(VALUE x, VALUE y)
|
||||
{
|
||||
VALUE z = 0;
|
||||
BDIGIT *zds;
|
||||
BDIGIT_DBL_SIGNED num;
|
||||
long i = RBIGNUM_LEN(x);
|
||||
|
||||
/* if x is larger than y, swap */
|
||||
|
@ -1406,32 +1431,52 @@ bigsub(VALUE x, VALUE y)
|
|||
}
|
||||
|
||||
z = bignew(RBIGNUM_LEN(x), z==0);
|
||||
zds = BDIGITS(z);
|
||||
bigsub_core(BDIGITS(x), RBIGNUM_LEN(x),
|
||||
BDIGITS(y), RBIGNUM_LEN(y),
|
||||
BDIGITS(z), RBIGNUM_LEN(z));
|
||||
|
||||
for (i = 0, num = 0; i < RBIGNUM_LEN(y); i++) {
|
||||
num += (BDIGIT_DBL_SIGNED)BDIGITS(x)[i] - BDIGITS(y)[i];
|
||||
zds[i] = BIGLO(num);
|
||||
num = BIGDN(num);
|
||||
return z;
|
||||
}
|
||||
|
||||
static void
|
||||
bigadd_core(BDIGIT *xds, long xn, BDIGIT *yds, long yn, BDIGIT *zds, long zn)
|
||||
{
|
||||
BDIGIT_DBL num = 0;
|
||||
long i;
|
||||
|
||||
if (xn > yn) {
|
||||
BDIGIT *tds;
|
||||
tds = xds; xds = yds; yds = tds;
|
||||
i = xn; xn = yn; yn = i;
|
||||
}
|
||||
while (num && i < RBIGNUM_LEN(x)) {
|
||||
num += BDIGITS(x)[i];
|
||||
|
||||
i = 0;
|
||||
while (i < xn) {
|
||||
num += (BDIGIT_DBL)xds[i] + yds[i];
|
||||
zds[i++] = BIGLO(num);
|
||||
num = BIGDN(num);
|
||||
}
|
||||
while (i < RBIGNUM_LEN(x)) {
|
||||
zds[i] = BDIGITS(x)[i];
|
||||
while (num && i < yn) {
|
||||
num += yds[i];
|
||||
zds[i++] = BIGLO(num);
|
||||
num = BIGDN(num);
|
||||
}
|
||||
while (i < yn) {
|
||||
zds[i] = yds[i];
|
||||
i++;
|
||||
}
|
||||
|
||||
return z;
|
||||
if (num) zds[i++] = (BDIGIT)num;
|
||||
assert(i <= zn);
|
||||
while (i < zn) {
|
||||
zds[i++] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static VALUE
|
||||
bigadd(VALUE x, VALUE y, int sign)
|
||||
{
|
||||
VALUE z;
|
||||
BDIGIT_DBL num;
|
||||
long i, len;
|
||||
long len;
|
||||
|
||||
sign = (sign == RBIGNUM_SIGN(y));
|
||||
if (RBIGNUM_SIGN(x) != sign) {
|
||||
|
@ -1441,30 +1486,15 @@ bigadd(VALUE x, VALUE y, int sign)
|
|||
|
||||
if (RBIGNUM_LEN(x) > RBIGNUM_LEN(y)) {
|
||||
len = RBIGNUM_LEN(x) + 1;
|
||||
z = x; x = y; y = z;
|
||||
}
|
||||
else {
|
||||
len = RBIGNUM_LEN(y) + 1;
|
||||
}
|
||||
z = bignew(len, sign);
|
||||
|
||||
len = RBIGNUM_LEN(x);
|
||||
for (i = 0, num = 0; i < len; i++) {
|
||||
num += (BDIGIT_DBL)BDIGITS(x)[i] + BDIGITS(y)[i];
|
||||
BDIGITS(z)[i] = BIGLO(num);
|
||||
num = BIGDN(num);
|
||||
}
|
||||
len = RBIGNUM_LEN(y);
|
||||
while (num && i < len) {
|
||||
num += BDIGITS(y)[i];
|
||||
BDIGITS(z)[i++] = BIGLO(num);
|
||||
num = BIGDN(num);
|
||||
}
|
||||
while (i < len) {
|
||||
BDIGITS(z)[i] = BDIGITS(y)[i];
|
||||
i++;
|
||||
}
|
||||
BDIGITS(z)[i] = (BDIGIT)num;
|
||||
bigadd_core(BDIGITS(x), RBIGNUM_LEN(x),
|
||||
BDIGITS(y), RBIGNUM_LEN(y),
|
||||
BDIGITS(z), RBIGNUM_LEN(z));
|
||||
|
||||
return z;
|
||||
}
|
||||
|
@ -1519,24 +1549,20 @@ rb_big_minus(VALUE x, VALUE y)
|
|||
}
|
||||
}
|
||||
|
||||
static void
|
||||
rb_big_stop(void *ptr)
|
||||
static long
|
||||
big_real_len(VALUE x)
|
||||
{
|
||||
VALUE *stop = (VALUE*)ptr;
|
||||
*stop = Qtrue;
|
||||
long i = RBIGNUM_LEN(x);
|
||||
while (--i && !BDIGITS(x)[i]);
|
||||
return i + 1;
|
||||
}
|
||||
|
||||
struct big_mul_struct {
|
||||
VALUE x, y, z, stop;
|
||||
};
|
||||
|
||||
static VALUE
|
||||
bigmul1(void *ptr)
|
||||
bigmul1_normal(VALUE x, VALUE y)
|
||||
{
|
||||
struct big_mul_struct *bms = (struct big_mul_struct*)ptr;
|
||||
long i, j;
|
||||
BDIGIT_DBL n = 0;
|
||||
VALUE x = bms->x, y = bms->y, z = bms->z;
|
||||
VALUE z = bignew(RBIGNUM_LEN(x) + RBIGNUM_LEN(y) + 1, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
||||
BDIGIT *zds;
|
||||
|
||||
j = RBIGNUM_LEN(x) + RBIGNUM_LEN(y) + 1;
|
||||
|
@ -1544,7 +1570,6 @@ bigmul1(void *ptr)
|
|||
while (j--) zds[j] = 0;
|
||||
for (i = 0; i < RBIGNUM_LEN(x); i++) {
|
||||
BDIGIT_DBL dd;
|
||||
if (bms->stop) return Qnil;
|
||||
dd = BDIGITS(x)[i];
|
||||
if (dd == 0) continue;
|
||||
n = 0;
|
||||
|
@ -1558,15 +1583,267 @@ bigmul1(void *ptr)
|
|||
zds[i + j] = n;
|
||||
}
|
||||
}
|
||||
rb_thread_check_ints();
|
||||
return z;
|
||||
}
|
||||
|
||||
static VALUE
|
||||
rb_big_mul0(VALUE x, VALUE y)
|
||||
{
|
||||
struct big_mul_struct bms;
|
||||
volatile VALUE z;
|
||||
static VALUE bigmul0(VALUE x, VALUE y);
|
||||
|
||||
/* balancing multiplication by slicing larger argument */
|
||||
static VALUE
|
||||
bigmul1_balance(VALUE x, VALUE y)
|
||||
{
|
||||
VALUE z, t1, t2;
|
||||
long i, xn, yn, r, n;
|
||||
|
||||
xn = RBIGNUM_LEN(x);
|
||||
yn = RBIGNUM_LEN(y);
|
||||
assert(2 * xn <= yn);
|
||||
|
||||
z = bignew(xn + yn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
||||
t1 = bignew(xn, 1);
|
||||
|
||||
for (i = 0; i < xn + yn; i++) BDIGITS(z)[i] = 0;
|
||||
|
||||
n = 0;
|
||||
while (yn > 0) {
|
||||
r = xn > yn ? yn : xn;
|
||||
MEMCPY(BDIGITS(t1), BDIGITS(y) + n, BDIGIT, r);
|
||||
RBIGNUM_SET_LEN(t1, r);
|
||||
t2 = bigmul0(x, t1);
|
||||
bigadd_core(BDIGITS(z) + n, RBIGNUM_LEN(z) - n,
|
||||
BDIGITS(t2), big_real_len(t2),
|
||||
BDIGITS(z) + n, RBIGNUM_LEN(z) - n);
|
||||
yn -= r;
|
||||
n += r;
|
||||
}
|
||||
rb_gc_force_recycle(t1);
|
||||
|
||||
return z;
|
||||
}
|
||||
|
||||
/* split a bignum into high and low bignums */
|
||||
static void
|
||||
big_split(VALUE v, long n, VALUE *ph, VALUE *pl)
|
||||
{
|
||||
long hn, ln;
|
||||
VALUE h, l;
|
||||
|
||||
ln = RBIGNUM_LEN(v) > n ? n : RBIGNUM_LEN(v);
|
||||
hn = RBIGNUM_LEN(v) - ln;
|
||||
|
||||
while (--hn && !BDIGITS(v)[hn + ln]);
|
||||
h = bignew(++hn, 1);
|
||||
MEMCPY(BDIGITS(h), BDIGITS(v) + ln, BDIGIT, hn);
|
||||
|
||||
while (--ln && !BDIGITS(v)[ln]);
|
||||
l = bignew(++ln, 1);
|
||||
MEMCPY(BDIGITS(l), BDIGITS(v), BDIGIT, ln);
|
||||
|
||||
*pl = l;
|
||||
*ph = h;
|
||||
}
|
||||
|
||||
/* multiplication by karatsuba method */
|
||||
static VALUE
|
||||
bigmul1_karatsuba(VALUE x, VALUE y)
|
||||
{
|
||||
long i, n, xn, yn, t1n, t2n;
|
||||
VALUE xh, xl, yh, yl, z, t1, t2, t3;
|
||||
BDIGIT *zds;
|
||||
|
||||
xn = RBIGNUM_LEN(x);
|
||||
yn = RBIGNUM_LEN(y);
|
||||
n = yn / 2;
|
||||
big_split(x, n, &xh, &xl);
|
||||
if (x == y) {
|
||||
yh = xh; yl = xl;
|
||||
}
|
||||
else big_split(y, n, &yh, &yl);
|
||||
|
||||
/* x = xh * b + xl
|
||||
* y = yh * b + yl
|
||||
*
|
||||
* Karatsuba method:
|
||||
* x * y = z2 * b^2 + z1 * b + z0
|
||||
* where
|
||||
* z2 = xh * yh
|
||||
* z0 = xl * yl
|
||||
* z1 = (xh + xl) * (yh + yl) - x2 - x0
|
||||
*
|
||||
* ref: http://en.wikipedia.org/wiki/Karatsuba_algorithm
|
||||
*/
|
||||
|
||||
/* allocate a result bignum */
|
||||
z = bignew(xn + yn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
||||
zds = BDIGITS(z);
|
||||
|
||||
/* t1 <- xh * yh */
|
||||
t1 = bigmul0(xh, yh);
|
||||
t1n = big_real_len(t1);
|
||||
|
||||
/* copy t1 into high bytes of the result (z2) */
|
||||
MEMCPY(zds + 2 * n, BDIGITS(t1), BDIGIT, t1n);
|
||||
for (i = 2 * n + t1n; i < xn + yn; i++) BDIGITS(z)[i] = 0;
|
||||
|
||||
if (!BIGZEROP(xl) && !BIGZEROP(yl)) {
|
||||
/* t2 <- xl * yl */
|
||||
t2 = bigmul0(xl, yl);
|
||||
t2n = big_real_len(t2);
|
||||
|
||||
/* copy t2 into low bytes of the result (z0) */
|
||||
MEMCPY(zds, BDIGITS(t2), BDIGIT, t2n);
|
||||
for (i = t2n; i < 2 * n; i++) BDIGITS(z)[i] = 0;
|
||||
|
||||
/* subtract t2 from middle bytes of the result (z1) */
|
||||
i = xn + yn - n;
|
||||
bigsub_core(zds + n, i, BDIGITS(t2), t2n, zds + n, i);
|
||||
rb_gc_force_recycle(t2);
|
||||
}
|
||||
else {
|
||||
/* copy 0 into low bytes of the result (z0) */
|
||||
for (i = 0; i < 2 * n; i++) BDIGITS(z)[i] = 0;
|
||||
}
|
||||
|
||||
/* subtract t1 from middle bytes of the result (z1) */
|
||||
i = xn + yn - n;
|
||||
bigsub_core(zds + n, i, BDIGITS(t1), t1n, zds + n, i);
|
||||
rb_gc_force_recycle(t1);
|
||||
|
||||
/* t1 <- xh + xl */
|
||||
t1 = bigadd(xh, xl, 1);
|
||||
if (xh != yh) rb_gc_force_recycle(xh);
|
||||
if (xl != yl) rb_gc_force_recycle(xl);
|
||||
|
||||
/* t2 <- yh + yl */
|
||||
t2 = (x == y) ? t1 : bigadd(yh, yl, 1);
|
||||
rb_gc_force_recycle(yh);
|
||||
rb_gc_force_recycle(yl);
|
||||
|
||||
/* t3 <- t1 * t2 */
|
||||
t3 = bigmul0(t1, t2);
|
||||
rb_gc_force_recycle(t1);
|
||||
if (t1 != t2) rb_gc_force_recycle(t2);
|
||||
|
||||
/* add t3 to middle bytes of the result (z1) */
|
||||
bigadd_core(zds + n, i, BDIGITS(t3), big_real_len(t3), zds + n, i);
|
||||
rb_gc_force_recycle(t3);
|
||||
|
||||
return z;
|
||||
}
|
||||
|
||||
/* efficient squaring (2 times faster than normal multiplication)
|
||||
* ref: Handbook of Applied Cryptography, Algorithm 14.16
|
||||
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
|
||||
*/
|
||||
static VALUE
|
||||
bigsqr_fast(VALUE x)
|
||||
{
|
||||
long len = RBIGNUM_LEN(x), i, j;
|
||||
VALUE z = bignew(2 * len + 1, 1);
|
||||
BDIGIT *xds = BDIGITS(x), *zds = BDIGITS(z);
|
||||
BDIGIT_DBL c, v, w;
|
||||
|
||||
for (i = 2 * len + 1; i--; ) zds[i] = 0;
|
||||
for (i = 0; i < len; i++) {
|
||||
v = (BDIGIT_DBL)xds[i];
|
||||
if (!v) continue;
|
||||
c = (BDIGIT_DBL)zds[i + i] + v * v;
|
||||
zds[i + i] = BIGLO(c);
|
||||
c = BIGDN(c);
|
||||
v *= 2;
|
||||
for (j = i + 1; j < len; j++) {
|
||||
w = (BDIGIT_DBL)xds[j];
|
||||
c += (BDIGIT_DBL)zds[i + j] + BIGLO(v) * w;
|
||||
zds[i + j] = BIGLO(c);
|
||||
c = BIGDN(c);
|
||||
if (BIGDN(v)) c += w;
|
||||
}
|
||||
if (c) {
|
||||
c += (BDIGIT_DBL)zds[i + len];
|
||||
zds[i + len] = BIGLO(c);
|
||||
c = BIGDN(c);
|
||||
}
|
||||
if (c) zds[i + len + 1] += c;
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
#define KARATSUBA_MUL_DIGITS 70
|
||||
|
||||
|
||||
/* determine whether a bignum is sparse or not by random sampling */
|
||||
static inline VALUE
|
||||
big_sparse_p(VALUE x)
|
||||
{
|
||||
long c = 0, n = RBIGNUM_LEN(x);
|
||||
unsigned long rb_rand_internal(unsigned long i);
|
||||
|
||||
if ( BDIGITS(x)[rb_rand_internal(n / 2) + n / 4]) c++;
|
||||
if (c <= 1 && BDIGITS(x)[rb_rand_internal(n / 2) + n / 4]) c++;
|
||||
if (c <= 1 && BDIGITS(x)[rb_rand_internal(n / 2) + n / 4]) c++;
|
||||
|
||||
return (c <= 1) ? Qtrue : Qfalse;
|
||||
}
|
||||
|
||||
#if 0
|
||||
static void
|
||||
dump_bignum(VALUE x)
|
||||
{
|
||||
long i;
|
||||
printf("0x0");
|
||||
for (i = RBIGNUM_LEN(x); i--; ) {
|
||||
printf("_%08x", BDIGITS(x)[i]);
|
||||
}
|
||||
puts("");
|
||||
}
|
||||
#endif
|
||||
|
||||
static VALUE
|
||||
bigmul0(VALUE x, VALUE y)
|
||||
{
|
||||
long xn, yn;
|
||||
|
||||
xn = RBIGNUM_LEN(x);
|
||||
yn = RBIGNUM_LEN(y);
|
||||
|
||||
/* make sure that y is longer than x */
|
||||
if (xn > yn) {
|
||||
VALUE t;
|
||||
long tn;
|
||||
t = x; x = y; y = t;
|
||||
tn = xn; xn = yn; yn = tn;
|
||||
}
|
||||
assert(xn <= yn);
|
||||
|
||||
/* normal multiplication when x is small */
|
||||
if (xn < KARATSUBA_MUL_DIGITS) {
|
||||
normal:
|
||||
if (x == y) return bigsqr_fast(x);
|
||||
return bigmul1_normal(x, y);
|
||||
}
|
||||
|
||||
/* normal multiplication when x or y is a sparse bignum */
|
||||
if (big_sparse_p(x)) goto normal;
|
||||
if (big_sparse_p(y)) return bigmul1_normal(y, x);
|
||||
|
||||
/* balance multiplication by slicing y when x is much smaller than y */
|
||||
if (2 * xn <= yn) return bigmul1_balance(x, y);
|
||||
|
||||
/* multiplication by karatsuba method */
|
||||
return bigmul1_karatsuba(x, y);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* big * other => Numeric
|
||||
*
|
||||
* Multiplies big and other, returning the result.
|
||||
*/
|
||||
|
||||
VALUE
|
||||
rb_big_mul(VALUE x, VALUE y)
|
||||
{
|
||||
switch (TYPE(y)) {
|
||||
case T_FIXNUM:
|
||||
y = rb_int2big(FIX2LONG(y));
|
||||
|
@ -1582,32 +1859,7 @@ rb_big_mul0(VALUE x, VALUE y)
|
|||
return rb_num_coerce_bin(x, y, '*');
|
||||
}
|
||||
|
||||
bms.x = x;
|
||||
bms.y = y;
|
||||
bms.z = bignew(RBIGNUM_LEN(x) + RBIGNUM_LEN(y) + 1, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
|
||||
bms.stop = Qfalse;
|
||||
|
||||
if (RBIGNUM_LEN(x) + RBIGNUM_LEN(y) > 10000) {
|
||||
z = rb_thread_blocking_region(bigmul1, &bms, rb_big_stop, &bms.stop);
|
||||
}
|
||||
else {
|
||||
z = bigmul1(&bms);
|
||||
}
|
||||
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* big * other => Numeric
|
||||
*
|
||||
* Multiplies big and other, returning the result.
|
||||
*/
|
||||
|
||||
VALUE
|
||||
rb_big_mul(VALUE x, VALUE y)
|
||||
{
|
||||
return bignorm(rb_big_mul0(x, y));
|
||||
return bignorm(bigmul0(x, y));
|
||||
}
|
||||
|
||||
struct big_div_struct {
|
||||
|
@ -1661,6 +1913,13 @@ bigdivrem1(void *ptr)
|
|||
return Qnil;
|
||||
}
|
||||
|
||||
static void
|
||||
rb_big_stop(void *ptr)
|
||||
{
|
||||
VALUE *stop = (VALUE*)ptr;
|
||||
*stop = Qtrue;
|
||||
}
|
||||
|
||||
static VALUE
|
||||
bigdivrem(VALUE x, VALUE y, VALUE *divp, VALUE *modp)
|
||||
{
|
||||
|
@ -2037,7 +2296,7 @@ bigsqr(VALUE x)
|
|||
BDIGIT_DBL num;
|
||||
|
||||
if (len < 4000 / BITSPERDIG) {
|
||||
return bigtrunc(rb_big_mul0(x, x));
|
||||
return bigtrunc(bigmul0(x, x));
|
||||
}
|
||||
|
||||
a = bignew(len - k, 1);
|
||||
|
@ -2054,7 +2313,7 @@ bigsqr(VALUE x)
|
|||
}
|
||||
MEMCPY(BDIGITS(z) + 2 * k, BDIGITS(a2), BDIGIT, RBIGNUM_LEN(a2));
|
||||
RBIGNUM_SET_LEN(z, len);
|
||||
a2 = bigtrunc(rb_big_mul0(a, b));
|
||||
a2 = bigtrunc(bigmul0(a, b));
|
||||
len = RBIGNUM_LEN(a2);
|
||||
for (i = 0, num = 0; i < len; i++) {
|
||||
num += (BDIGIT_DBL)BDIGITS(z)[i + k] + ((BDIGIT_DBL)BDIGITS(a2)[i] << 1);
|
||||
|
@ -2125,7 +2384,7 @@ rb_big_pow(VALUE x, VALUE y)
|
|||
for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
|
||||
if (z) z = bigtrunc(bigsqr(z));
|
||||
if (yy & mask) {
|
||||
z = z ? bigtrunc(rb_big_mul0(z, x)) : x;
|
||||
z = z ? bigtrunc(bigmul0(z, x)) : x;
|
||||
}
|
||||
}
|
||||
return bignorm(z);
|
||||
|
|
10
random.c
10
random.c
|
@ -452,6 +452,16 @@ limited_big_rand(struct MT *mt, struct RBignum *limit)
|
|||
return rb_big_norm((VALUE)val);
|
||||
}
|
||||
|
||||
unsigned long
|
||||
rb_rand_internal(unsigned long i)
|
||||
{
|
||||
struct MT *mt = &default_mt.mt;
|
||||
if (!genrand_initialized(mt)) {
|
||||
rand_init(mt, random_seed());
|
||||
}
|
||||
return limited_rand(mt, i);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* rand(max=0) => number
|
||||
|
|
|
@ -200,11 +200,24 @@ class TestBignum < Test::Unit::TestCase
|
|||
|
||||
def test_sub
|
||||
assert_equal(-T31, T32 - (T32 + T31))
|
||||
x = 2**100
|
||||
assert_equal(1, (x+2) - (x+1))
|
||||
assert_equal(-1, (x+1) - (x+2))
|
||||
assert_equal(0, (2**100) - (2.0**100))
|
||||
o = Object.new
|
||||
def o.coerce(x); [2**100+2, x]; end
|
||||
assert_equal(1, (2**100+1) - o)
|
||||
end
|
||||
|
||||
def test_plus
|
||||
assert_equal(T32.to_f, T32P + 1.0)
|
||||
assert_raise(TypeError) { T32 + "foo" }
|
||||
assert_equal(1267651809154049016125877911552, (2**100) + (2**80))
|
||||
assert_equal(1267651809154049016125877911552, (2**80) + (2**100))
|
||||
assert_equal(2**101, (2**100) + (2.0**100))
|
||||
o = Object.new
|
||||
def o.coerce(x); [2**80, x]; end
|
||||
assert_equal(1267651809154049016125877911552, (2**100) + o)
|
||||
end
|
||||
|
||||
def test_minus
|
||||
|
@ -215,6 +228,13 @@ class TestBignum < Test::Unit::TestCase
|
|||
def test_mul
|
||||
assert_equal(T32.to_f, T32 * 1.0)
|
||||
assert_raise(TypeError) { T32 * "foo" }
|
||||
o = Object.new
|
||||
def o.coerce(x); [2**100, x]; end
|
||||
assert_equal(2**180, (2**80) * o)
|
||||
end
|
||||
|
||||
def test_mul_balance
|
||||
assert_equal(3**7000, (3**5000) * (3**2000))
|
||||
end
|
||||
|
||||
def test_divrem
|
||||
|
|
Загрузка…
Ссылка в новой задаче