From 350211450714f6cbf7482e59253f851cf80a5538 Mon Sep 17 00:00:00 2001 From: tadf Date: Sun, 25 Apr 2010 06:52:24 +0000 Subject: [PATCH] * complex.c, ratioanl.c: reverted experimental r24565. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@27485 b2dd03c8-39d4-4d8f-98ff-823fe69b080e --- ChangeLog | 4 + complex.c | 15 --- rational.c | 225 ------------------------------------- test/ruby/test_rational.rb | 55 --------- 4 files changed, 4 insertions(+), 295 deletions(-) diff --git a/ChangeLog b/ChangeLog index 87560297a4..f029a0ce10 100644 --- a/ChangeLog +++ b/ChangeLog @@ -1,3 +1,7 @@ +Sun Apr 25 15:51:00 2010 Tadayoshi Funaba + + * complex.c, ratioanl.c: reverted experimental r24565. + Sun Apr 25 15:34:48 2010 Tadayoshi Funaba * lib/date.rb, lib/date/delta*: reverted experimental r24567 and diff --git a/complex.c b/complex.c index 64ea345862..dc9e506022 100644 --- a/complex.c +++ b/complex.c @@ -1333,20 +1333,6 @@ nucomp_to_r(VALUE self) return f_to_r(dat->real); } -/* - * call-seq: - * cmp.rationalize([eps]) -> rational - * - * Returns the value as a rational if possible. An optional argument - * eps is always ignored. - */ -static VALUE -nucomp_rationalize(int argc, VALUE *argv, VALUE self) -{ - rb_scan_args(argc, argv, "01", NULL); - return nucomp_to_r(self); -} - /* * call-seq: * nil.to_c -> (0+0i) @@ -1937,7 +1923,6 @@ Init_Complex(void) rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0); rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0); rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0); - rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1); rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0); rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0); diff --git a/rational.c b/rational.c index f5a6d2655f..e42abcfe20 100644 --- a/rational.c +++ b/rational.c @@ -1354,141 +1354,6 @@ nurat_to_r(VALUE self) return self; } -#define id_ceil rb_intern("ceil") -#define f_ceil(x) rb_funcall(x, id_ceil, 0) - -#define id_quo rb_intern("quo") -#define f_quo(x,y) rb_funcall(x, id_quo, 1, y) - -#define f_reciprocal(x) f_quo(ONE, x) - -/* - The algorithm here is the method described in CLISP. Bruno Haible has - graciously given permission to use this algorithm. He says, "You can use - it, if you present the following explanation of the algorithm." - - Algorithm (recursively presented): - If x is a rational number, return x. - If x = 0.0, return 0. - If x < 0.0, return (- (rationalize (- x))). - If x > 0.0: - Call (integer-decode-float x). It returns a m,e,s=1 (mantissa, - exponent, sign). - If m = 0 or e >= 0: return x = m*2^e. - Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e - with smallest possible numerator and denominator. - Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e. - But in this case the result will be x itself anyway, regardless of - the choice of a. Therefore we can simply ignore this case. - Note 2: At first, we need to consider the closed interval [a,b]. - but since a and b have the denominator 2^(|e|+1) whereas x itself - has a denominator <= 2^|e|, we can restrict the search to the open - interval (a,b). - So, for given a and b (0 < a < b) we are searching a rational number - y with a <= y <= b. - Recursive algorithm fraction_between(a,b): - c := (ceiling a) - if c < b - then return c ; because a <= c < b, c integer - else - ; a is not integer (otherwise we would have had c = a < b) - k := c-1 ; k = floor(a), k < a < b <= k+1 - return y = k + 1/fraction_between(1/(b-k), 1/(a-k)) - ; note 1 <= 1/(b-k) < 1/(a-k) - - You can see that we are actually computing a continued fraction expansion. - - Algorithm (iterative): - If x is rational, return x. - Call (integer-decode-float x). It returns a m,e,s (mantissa, - exponent, sign). - If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.) - Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1) - (positive and already in lowest terms because the denominator is a - power of two and the numerator is odd). - Start a continued fraction expansion - p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0. - Loop - c := (ceiling a) - if c >= b - then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)), - goto Loop - finally partial_quotient(c). - Here partial_quotient(c) denotes the iteration - i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2]. - At the end, return s * (p[i]/q[i]). - This rational number is already in lowest terms because - p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i. -*/ - -static void -nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q) -{ - VALUE c, k, t, p0, p1, p2, q0, q1, q2; - - p0 = ZERO; - p1 = ONE; - q0 = ONE; - q1 = ZERO; - - while (1) { - c = f_ceil(a); - if (f_lt_p(c, b)) - break; - k = f_sub(c, ONE); - p2 = f_add(f_mul(k, p1), p0); - q2 = f_add(f_mul(k, q1), q0); - t = f_reciprocal(f_sub(b, k)); - b = f_reciprocal(f_sub(a, k)); - a = t; - p0 = p1; - q0 = q1; - p1 = p2; - q1 = q2; - } - *p = f_add(f_mul(c, p1), p0); - *q = f_add(f_mul(c, q1), q0); -} - -/* - * call-seq: - * rat.rationalize -> self - * rat.rationalize(eps) -> rational - * - * Returns a simpler approximation of the value if an optional - * argument eps is given (rat-|eps| <= result <= rat+|eps|), self - * otherwise. - * - * For example: - * - * r = Rational(5033165, 16777216) - * r.rationalize #=> (5033165/16777216) - * r.rationalize(Rational('0.01')) #=> (3/10) - * r.rationalize(Rational('0.1')) #=> (1/3) - */ -static VALUE -nurat_rationalize(int argc, VALUE *argv, VALUE self) -{ - VALUE e, a, b, p, q; - - if (argc == 0) - return self; - - if (f_negative_p(self)) - return f_negate(nurat_rationalize(argc, argv, f_abs(self))); - - rb_scan_args(argc, argv, "01", &e); - e = f_abs(e); - a = f_sub(self, e); - b = f_add(self, e); - - if (f_eqeq_p(a, b)) - return self; - - nurat_rationalize_internal(a, b, &p, &q); - return f_rational_new2(CLASS_OF(self), p, q); -} - /* :nodoc: */ static VALUE nurat_hash(VALUE self) @@ -1786,20 +1651,6 @@ nilclass_to_r(VALUE self) return rb_rational_new1(INT2FIX(0)); } -/* - * call-seq: - * nil.rationalize([eps]) -> (0/1) - * - * Returns zero as a rational. An optional argument eps is always - * ignored. - */ -static VALUE -nilclass_rationalize(int argc, VALUE *argv, VALUE self) -{ - rb_scan_args(argc, argv, "01", NULL); - return nilclass_to_r(self); -} - /* * call-seq: * int.to_r -> rational @@ -1817,20 +1668,6 @@ integer_to_r(VALUE self) return rb_rational_new1(self); } -/* - * call-seq: - * int.rationalize([eps]) -> rational - * - * Returns the value as a rational. An optional argument eps is - * always ignored. - */ -static VALUE -integer_rationalize(int argc, VALUE *argv, VALUE self) -{ - rb_scan_args(argc, argv, "01", NULL); - return integer_to_r(self); -} - static void float_decode_internal(VALUE self, VALUE *rf, VALUE *rn) { @@ -1896,64 +1733,6 @@ float_to_r(VALUE self) #endif } -/* - * call-seq: - * flt.rationalize([eps]) -> rational - * - * Returns a simpler approximation of the value (flt-|eps| <= result - * <= flt+|eps|). if eps is not given, it will be chosen - * automatically. - * - * For example: - * - * 0.3.rationalize #=> (3/10) - * 1.333.rationalize #=> (1333/1000) - * 1.333.rationalize(0.01) #=> (4/3) - */ -static VALUE -float_rationalize(int argc, VALUE *argv, VALUE self) -{ - VALUE e, a, b, p, q; - - if (f_negative_p(self)) - return f_negate(float_rationalize(argc, argv, f_abs(self))); - - rb_scan_args(argc, argv, "01", &e); - - if (argc != 0) { - e = f_abs(e); - a = f_sub(self, e); - b = f_add(self, e); - } - else { - VALUE f, n; - - float_decode_internal(self, &f, &n); - if (f_zero_p(f) || f_positive_p(n)) - return rb_rational_new1(f_lshift(f, n)); - -#if FLT_RADIX == 2 - a = rb_rational_new2(f_sub(f_mul(TWO, f), ONE), - f_lshift(ONE, f_sub(ONE, n))); - b = rb_rational_new2(f_add(f_mul(TWO, f), ONE), - f_lshift(ONE, f_sub(ONE, n))); -#else - a = rb_rational_new2(f_sub(f_mul(INT2FIX(FLT_RADIX), f), - INT2FIX(FLT_RADIX - 1)), - f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n))); - b = rb_rational_new2(f_add(f_mul(INT2FIX(FLT_RADIX), f), - INT2FIX(FLT_RADIX - 1)), - f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n))); -#endif - } - - if (f_eqeq_p(a, b)) - return f_to_r(self); - - nurat_rationalize_internal(a, b, &p, &q); - return rb_rational_new2(p, q); -} - static VALUE rat_pat, an_e_pat, a_dot_pat, underscores_pat, an_underscore; #define WS "\\s*" @@ -2322,7 +2101,6 @@ Init_Rational(void) rb_define_method(rb_cRational, "to_i", nurat_truncate, 0); rb_define_method(rb_cRational, "to_f", nurat_to_f, 0); rb_define_method(rb_cRational, "to_r", nurat_to_r, 0); - rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1); rb_define_method(rb_cRational, "hash", nurat_hash, 0); @@ -2348,11 +2126,8 @@ Init_Rational(void) rb_define_method(rb_cFloat, "denominator", float_denominator, 0); rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0); - rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1); rb_define_method(rb_cInteger, "to_r", integer_to_r, 0); - rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1); rb_define_method(rb_cFloat, "to_r", float_to_r, 0); - rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1); make_patterns(); diff --git a/test/ruby/test_rational.rb b/test/ruby/test_rational.rb index 02d8bd61ed..2401069032 100644 --- a/test/ruby/test_rational.rb +++ b/test/ruby/test_rational.rb @@ -965,61 +965,6 @@ class Rational_Test < Test::Unit::TestCase end end - def test_rationalize - c = nil.rationalize - assert_equal([0,1], [c.numerator, c.denominator]) - - c = 0.rationalize - assert_equal([0,1], [c.numerator, c.denominator]) - - c = 1.rationalize - assert_equal([1,1], [c.numerator, c.denominator]) - - c = 1.1.rationalize - assert_equal([11, 10], [c.numerator, c.denominator]) - - c = Rational(1,2).rationalize - assert_equal([1,2], [c.numerator, c.denominator]) - - assert_equal(nil.rationalize(Rational(1,10)), Rational(0)) - assert_equal(0.rationalize(Rational(1,10)), Rational(0)) - assert_equal(10.rationalize(Rational(1,10)), Rational(10)) - - r = 0.3333 - assert_equal(r.rationalize, Rational(3333, 10000)) - assert_equal(r.rationalize(Rational(1,10)), Rational(1,3)) - assert_equal(r.rationalize(Rational(-1,10)), Rational(1,3)) - - r = Rational(5404319552844595,18014398509481984) - assert_equal(r.rationalize, r) - assert_equal(r.rationalize(Rational(1,10)), Rational(1,3)) - assert_equal(r.rationalize(Rational(-1,10)), Rational(1,3)) - - r = -0.3333 - assert_equal(r.rationalize, Rational(-3333, 10000)) - assert_equal(r.rationalize(Rational(1,10)), Rational(-1,3)) - assert_equal(r.rationalize(Rational(-1,10)), Rational(-1,3)) - - r = Rational(-5404319552844595,18014398509481984) - assert_equal(r.rationalize, r) - assert_equal(r.rationalize(Rational(1,10)), Rational(-1,3)) - assert_equal(r.rationalize(Rational(-1,10)), Rational(-1,3)) - - if @complex - if @keiju - else - assert_raise(RangeError){Complex(1,2).rationalize} - end - end - - if (0.0/0).nan? - assert_raise(FloatDomainError){(0.0/0).rationalize} - end - if (1.0/0).infinite? - assert_raise(FloatDomainError){(1.0/0).rationalize} - end - end - def test_gcdlcm assert_equal(7, 91.gcd(-49)) assert_equal(5, 5.gcd(0))