зеркало из https://github.com/github/ruby.git
* complex.c, ratioanl.c: reverted experimental r24565.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@27485 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
Родитель
21b716f9a5
Коммит
3502114507
|
@ -1,3 +1,7 @@
|
|||
Sun Apr 25 15:51:00 2010 Tadayoshi Funaba <tadf@dotrb.org>
|
||||
|
||||
* complex.c, ratioanl.c: reverted experimental r24565.
|
||||
|
||||
Sun Apr 25 15:34:48 2010 Tadayoshi Funaba <tadf@dotrb.org>
|
||||
|
||||
* lib/date.rb, lib/date/delta*: reverted experimental r24567 and
|
||||
|
|
15
complex.c
15
complex.c
|
@ -1333,20 +1333,6 @@ nucomp_to_r(VALUE self)
|
|||
return f_to_r(dat->real);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* cmp.rationalize([eps]) -> rational
|
||||
*
|
||||
* Returns the value as a rational if possible. An optional argument
|
||||
* eps is always ignored.
|
||||
*/
|
||||
static VALUE
|
||||
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
rb_scan_args(argc, argv, "01", NULL);
|
||||
return nucomp_to_r(self);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* nil.to_c -> (0+0i)
|
||||
|
@ -1937,7 +1923,6 @@ Init_Complex(void)
|
|||
rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
|
||||
rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
|
||||
rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
|
||||
rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
|
||||
rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
|
||||
rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
|
||||
|
||||
|
|
225
rational.c
225
rational.c
|
@ -1354,141 +1354,6 @@ nurat_to_r(VALUE self)
|
|||
return self;
|
||||
}
|
||||
|
||||
#define id_ceil rb_intern("ceil")
|
||||
#define f_ceil(x) rb_funcall(x, id_ceil, 0)
|
||||
|
||||
#define id_quo rb_intern("quo")
|
||||
#define f_quo(x,y) rb_funcall(x, id_quo, 1, y)
|
||||
|
||||
#define f_reciprocal(x) f_quo(ONE, x)
|
||||
|
||||
/*
|
||||
The algorithm here is the method described in CLISP. Bruno Haible has
|
||||
graciously given permission to use this algorithm. He says, "You can use
|
||||
it, if you present the following explanation of the algorithm."
|
||||
|
||||
Algorithm (recursively presented):
|
||||
If x is a rational number, return x.
|
||||
If x = 0.0, return 0.
|
||||
If x < 0.0, return (- (rationalize (- x))).
|
||||
If x > 0.0:
|
||||
Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
|
||||
exponent, sign).
|
||||
If m = 0 or e >= 0: return x = m*2^e.
|
||||
Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
|
||||
with smallest possible numerator and denominator.
|
||||
Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
|
||||
But in this case the result will be x itself anyway, regardless of
|
||||
the choice of a. Therefore we can simply ignore this case.
|
||||
Note 2: At first, we need to consider the closed interval [a,b].
|
||||
but since a and b have the denominator 2^(|e|+1) whereas x itself
|
||||
has a denominator <= 2^|e|, we can restrict the search to the open
|
||||
interval (a,b).
|
||||
So, for given a and b (0 < a < b) we are searching a rational number
|
||||
y with a <= y <= b.
|
||||
Recursive algorithm fraction_between(a,b):
|
||||
c := (ceiling a)
|
||||
if c < b
|
||||
then return c ; because a <= c < b, c integer
|
||||
else
|
||||
; a is not integer (otherwise we would have had c = a < b)
|
||||
k := c-1 ; k = floor(a), k < a < b <= k+1
|
||||
return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
|
||||
; note 1 <= 1/(b-k) < 1/(a-k)
|
||||
|
||||
You can see that we are actually computing a continued fraction expansion.
|
||||
|
||||
Algorithm (iterative):
|
||||
If x is rational, return x.
|
||||
Call (integer-decode-float x). It returns a m,e,s (mantissa,
|
||||
exponent, sign).
|
||||
If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
|
||||
Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
|
||||
(positive and already in lowest terms because the denominator is a
|
||||
power of two and the numerator is odd).
|
||||
Start a continued fraction expansion
|
||||
p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
|
||||
Loop
|
||||
c := (ceiling a)
|
||||
if c >= b
|
||||
then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
|
||||
goto Loop
|
||||
finally partial_quotient(c).
|
||||
Here partial_quotient(c) denotes the iteration
|
||||
i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
|
||||
At the end, return s * (p[i]/q[i]).
|
||||
This rational number is already in lowest terms because
|
||||
p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
|
||||
*/
|
||||
|
||||
static void
|
||||
nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
|
||||
{
|
||||
VALUE c, k, t, p0, p1, p2, q0, q1, q2;
|
||||
|
||||
p0 = ZERO;
|
||||
p1 = ONE;
|
||||
q0 = ONE;
|
||||
q1 = ZERO;
|
||||
|
||||
while (1) {
|
||||
c = f_ceil(a);
|
||||
if (f_lt_p(c, b))
|
||||
break;
|
||||
k = f_sub(c, ONE);
|
||||
p2 = f_add(f_mul(k, p1), p0);
|
||||
q2 = f_add(f_mul(k, q1), q0);
|
||||
t = f_reciprocal(f_sub(b, k));
|
||||
b = f_reciprocal(f_sub(a, k));
|
||||
a = t;
|
||||
p0 = p1;
|
||||
q0 = q1;
|
||||
p1 = p2;
|
||||
q1 = q2;
|
||||
}
|
||||
*p = f_add(f_mul(c, p1), p0);
|
||||
*q = f_add(f_mul(c, q1), q0);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* rat.rationalize -> self
|
||||
* rat.rationalize(eps) -> rational
|
||||
*
|
||||
* Returns a simpler approximation of the value if an optional
|
||||
* argument eps is given (rat-|eps| <= result <= rat+|eps|), self
|
||||
* otherwise.
|
||||
*
|
||||
* For example:
|
||||
*
|
||||
* r = Rational(5033165, 16777216)
|
||||
* r.rationalize #=> (5033165/16777216)
|
||||
* r.rationalize(Rational('0.01')) #=> (3/10)
|
||||
* r.rationalize(Rational('0.1')) #=> (1/3)
|
||||
*/
|
||||
static VALUE
|
||||
nurat_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
VALUE e, a, b, p, q;
|
||||
|
||||
if (argc == 0)
|
||||
return self;
|
||||
|
||||
if (f_negative_p(self))
|
||||
return f_negate(nurat_rationalize(argc, argv, f_abs(self)));
|
||||
|
||||
rb_scan_args(argc, argv, "01", &e);
|
||||
e = f_abs(e);
|
||||
a = f_sub(self, e);
|
||||
b = f_add(self, e);
|
||||
|
||||
if (f_eqeq_p(a, b))
|
||||
return self;
|
||||
|
||||
nurat_rationalize_internal(a, b, &p, &q);
|
||||
return f_rational_new2(CLASS_OF(self), p, q);
|
||||
}
|
||||
|
||||
/* :nodoc: */
|
||||
static VALUE
|
||||
nurat_hash(VALUE self)
|
||||
|
@ -1786,20 +1651,6 @@ nilclass_to_r(VALUE self)
|
|||
return rb_rational_new1(INT2FIX(0));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* nil.rationalize([eps]) -> (0/1)
|
||||
*
|
||||
* Returns zero as a rational. An optional argument eps is always
|
||||
* ignored.
|
||||
*/
|
||||
static VALUE
|
||||
nilclass_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
rb_scan_args(argc, argv, "01", NULL);
|
||||
return nilclass_to_r(self);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* int.to_r -> rational
|
||||
|
@ -1817,20 +1668,6 @@ integer_to_r(VALUE self)
|
|||
return rb_rational_new1(self);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* int.rationalize([eps]) -> rational
|
||||
*
|
||||
* Returns the value as a rational. An optional argument eps is
|
||||
* always ignored.
|
||||
*/
|
||||
static VALUE
|
||||
integer_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
rb_scan_args(argc, argv, "01", NULL);
|
||||
return integer_to_r(self);
|
||||
}
|
||||
|
||||
static void
|
||||
float_decode_internal(VALUE self, VALUE *rf, VALUE *rn)
|
||||
{
|
||||
|
@ -1896,64 +1733,6 @@ float_to_r(VALUE self)
|
|||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* flt.rationalize([eps]) -> rational
|
||||
*
|
||||
* Returns a simpler approximation of the value (flt-|eps| <= result
|
||||
* <= flt+|eps|). if eps is not given, it will be chosen
|
||||
* automatically.
|
||||
*
|
||||
* For example:
|
||||
*
|
||||
* 0.3.rationalize #=> (3/10)
|
||||
* 1.333.rationalize #=> (1333/1000)
|
||||
* 1.333.rationalize(0.01) #=> (4/3)
|
||||
*/
|
||||
static VALUE
|
||||
float_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
VALUE e, a, b, p, q;
|
||||
|
||||
if (f_negative_p(self))
|
||||
return f_negate(float_rationalize(argc, argv, f_abs(self)));
|
||||
|
||||
rb_scan_args(argc, argv, "01", &e);
|
||||
|
||||
if (argc != 0) {
|
||||
e = f_abs(e);
|
||||
a = f_sub(self, e);
|
||||
b = f_add(self, e);
|
||||
}
|
||||
else {
|
||||
VALUE f, n;
|
||||
|
||||
float_decode_internal(self, &f, &n);
|
||||
if (f_zero_p(f) || f_positive_p(n))
|
||||
return rb_rational_new1(f_lshift(f, n));
|
||||
|
||||
#if FLT_RADIX == 2
|
||||
a = rb_rational_new2(f_sub(f_mul(TWO, f), ONE),
|
||||
f_lshift(ONE, f_sub(ONE, n)));
|
||||
b = rb_rational_new2(f_add(f_mul(TWO, f), ONE),
|
||||
f_lshift(ONE, f_sub(ONE, n)));
|
||||
#else
|
||||
a = rb_rational_new2(f_sub(f_mul(INT2FIX(FLT_RADIX), f),
|
||||
INT2FIX(FLT_RADIX - 1)),
|
||||
f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
|
||||
b = rb_rational_new2(f_add(f_mul(INT2FIX(FLT_RADIX), f),
|
||||
INT2FIX(FLT_RADIX - 1)),
|
||||
f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
|
||||
#endif
|
||||
}
|
||||
|
||||
if (f_eqeq_p(a, b))
|
||||
return f_to_r(self);
|
||||
|
||||
nurat_rationalize_internal(a, b, &p, &q);
|
||||
return rb_rational_new2(p, q);
|
||||
}
|
||||
|
||||
static VALUE rat_pat, an_e_pat, a_dot_pat, underscores_pat, an_underscore;
|
||||
|
||||
#define WS "\\s*"
|
||||
|
@ -2322,7 +2101,6 @@ Init_Rational(void)
|
|||
rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
|
||||
rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
|
||||
rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
|
||||
rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1);
|
||||
|
||||
rb_define_method(rb_cRational, "hash", nurat_hash, 0);
|
||||
|
||||
|
@ -2348,11 +2126,8 @@ Init_Rational(void)
|
|||
rb_define_method(rb_cFloat, "denominator", float_denominator, 0);
|
||||
|
||||
rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
|
||||
rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1);
|
||||
rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
|
||||
rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1);
|
||||
rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
|
||||
rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1);
|
||||
|
||||
make_patterns();
|
||||
|
||||
|
|
|
@ -965,61 +965,6 @@ class Rational_Test < Test::Unit::TestCase
|
|||
end
|
||||
end
|
||||
|
||||
def test_rationalize
|
||||
c = nil.rationalize
|
||||
assert_equal([0,1], [c.numerator, c.denominator])
|
||||
|
||||
c = 0.rationalize
|
||||
assert_equal([0,1], [c.numerator, c.denominator])
|
||||
|
||||
c = 1.rationalize
|
||||
assert_equal([1,1], [c.numerator, c.denominator])
|
||||
|
||||
c = 1.1.rationalize
|
||||
assert_equal([11, 10], [c.numerator, c.denominator])
|
||||
|
||||
c = Rational(1,2).rationalize
|
||||
assert_equal([1,2], [c.numerator, c.denominator])
|
||||
|
||||
assert_equal(nil.rationalize(Rational(1,10)), Rational(0))
|
||||
assert_equal(0.rationalize(Rational(1,10)), Rational(0))
|
||||
assert_equal(10.rationalize(Rational(1,10)), Rational(10))
|
||||
|
||||
r = 0.3333
|
||||
assert_equal(r.rationalize, Rational(3333, 10000))
|
||||
assert_equal(r.rationalize(Rational(1,10)), Rational(1,3))
|
||||
assert_equal(r.rationalize(Rational(-1,10)), Rational(1,3))
|
||||
|
||||
r = Rational(5404319552844595,18014398509481984)
|
||||
assert_equal(r.rationalize, r)
|
||||
assert_equal(r.rationalize(Rational(1,10)), Rational(1,3))
|
||||
assert_equal(r.rationalize(Rational(-1,10)), Rational(1,3))
|
||||
|
||||
r = -0.3333
|
||||
assert_equal(r.rationalize, Rational(-3333, 10000))
|
||||
assert_equal(r.rationalize(Rational(1,10)), Rational(-1,3))
|
||||
assert_equal(r.rationalize(Rational(-1,10)), Rational(-1,3))
|
||||
|
||||
r = Rational(-5404319552844595,18014398509481984)
|
||||
assert_equal(r.rationalize, r)
|
||||
assert_equal(r.rationalize(Rational(1,10)), Rational(-1,3))
|
||||
assert_equal(r.rationalize(Rational(-1,10)), Rational(-1,3))
|
||||
|
||||
if @complex
|
||||
if @keiju
|
||||
else
|
||||
assert_raise(RangeError){Complex(1,2).rationalize}
|
||||
end
|
||||
end
|
||||
|
||||
if (0.0/0).nan?
|
||||
assert_raise(FloatDomainError){(0.0/0).rationalize}
|
||||
end
|
||||
if (1.0/0).infinite?
|
||||
assert_raise(FloatDomainError){(1.0/0).rationalize}
|
||||
end
|
||||
end
|
||||
|
||||
def test_gcdlcm
|
||||
assert_equal(7, 91.gcd(-49))
|
||||
assert_equal(5, 5.gcd(0))
|
||||
|
|
Загрузка…
Ссылка в новой задаче