* string.c (hash): replaced by MurmurHash described in

<http://murmurhash.googlepages.com/>.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@15743 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
matz 2008-03-11 01:20:25 +00:00
Родитель 923a661a7a
Коммит 3e51715596
2 изменённых файлов: 35 добавлений и 111 удалений

Просмотреть файл

@ -1,3 +1,8 @@
Tue Mar 11 10:19:10 2008 Yukihiro Matsumoto <matz@ruby-lang.org>
* string.c (hash): replaced by MurmurHash described in
<http://murmurhash.googlepages.com/>.
Tue Mar 11 09:52:49 2008 Yukihiro Matsumoto <matz@ruby-lang.org>
* string.c (rb_str_comparable): empty strings in any encoding are

141
string.c
Просмотреть файл

@ -1685,122 +1685,41 @@ rb_str_concat(VALUE str1, VALUE str2)
return rb_str_append(str1, str2);
}
typedef unsigned int ub4; /* unsigned 4-byte quantities */
typedef unsigned char ub1; /* unsigned 1-byte quantities */
#define hashsize(n) ((ub4)1<<(n))
#define hashmask(n) (hashsize(n)-1)
/*
--------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.
For every delta with one or two bits set, and the deltas of all three
high bits or all three low bits, whether the original value of a,b,c
is almost all zero or is uniformly distributed,
* If mix() is run forward or backward, at least 32 bits in a,b,c
have at least 1/4 probability of changing.
* If mix() is run forward, every bit of c will change between 1/3 and
2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
mix() was built out of 36 single-cycle latency instructions in a
structure that could supported 2x parallelism, like so:
a -= b;
a -= c; x = (c>>13);
b -= c; a ^= x;
b -= a; x = (a<<8);
c -= a; b ^= x;
c -= b; x = (b>>13);
...
Unfortunately, superscalar Pentiums and Sparcs can't take advantage
of that parallelism. They've also turned some of those single-cycle
latency instructions into multi-cycle latency instructions. Still,
this is the fastest good hash I could find. There were about 2^^68
to choose from. I only looked at a billion or so.
--------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
a -= b; a -= c; a ^= (c>>13); \
b -= c; b -= a; b ^= (a<<8); \
c -= a; c -= b; c ^= (b>>13); \
a -= b; a -= c; a ^= (c>>12); \
b -= c; b -= a; b ^= (a<<16); \
c -= a; c -= b; c ^= (b>>5); \
a -= b; a -= c; a ^= (c>>3); \
b -= c; b -= a; b ^= (a<<10); \
c -= a; c -= b; c ^= (b>>15); \
}
/*
--------------------------------------------------------------------
hash() -- hash a variable-length key into a 32-bit value
k : the key (the unaligned variable-length array of bytes)
len : the length of the key, counting by bytes
initval : can be any 4-byte value
Returns a 32-bit value. Every bit of the key affects every bit of
the return value. Every 1-bit and 2-bit delta achieves avalanche.
About 6*len+35 instructions.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 32 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (ub1 **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
code any way you wish, private, educational, or commercial. It's free.
See http://burtleburtle.net/bob/hash/evahash.html
Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable. Do NOT use for cryptographic purposes.
--------------------------------------------------------------------
*/
static ub4
hash(const ub1 *k, ub4 length, ub4 initval)
/* k: the key */
/* length: the length of the key */
/* initval: the previous hash, or an arbitrary value */
/* MurmurHash described in http://murmurhash.googlepages.com/ */
unsigned int
hash(const unsigned char * data, int len, unsigned int h)
{
register ub4 a,b,c,len;
const unsigned int m = 0x7fd652ad;
const int r = 16;
/* Set up the internal state */
len = length;
a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
c = initval; /* the previous hash value */
h += 0xdeadbeef;
/*---------------------------------------- handle most of the key */
while (len >= 12) {
a += (k[0] +((ub4)k[1]<<8) +((ub4)k[2]<<16) +((ub4)k[3]<<24));
b += (k[4] +((ub4)k[5]<<8) +((ub4)k[6]<<16) +((ub4)k[7]<<24));
c += (k[8] +((ub4)k[9]<<8) +((ub4)k[10]<<16)+((ub4)k[11]<<24));
mix(a,b,c);
k += 12; len -= 12;
while(len >= 4) {
h += *(unsigned int *)data;
h *= m;
h ^= h >> r;
data += 4;
len -= 4;
}
/*------------------------------------- handle the last 11 bytes */
c += length;
switch(len) /* all the case statements fall through */
{
case 11: c+=((ub4)k[10]<<24);
case 10: c+=((ub4)k[9]<<16);
case 9 : c+=((ub4)k[8]<<8);
/* the first byte of c is reserved for the length */
case 8 : b+=((ub4)k[7]<<24);
case 7 : b+=((ub4)k[6]<<16);
case 6 : b+=((ub4)k[5]<<8);
case 5 : b+=k[4];
case 4 : a+=((ub4)k[3]<<24);
case 3 : a+=((ub4)k[2]<<16);
case 2 : a+=((ub4)k[1]<<8);
case 1 : a+=k[0];
/* case 0: nothing left to add */
}
mix(a,b,c);
/*-------------------------------------------- report the result */
return c;
switch(len) {
case 3:
h += data[2] << 16;
case 2:
h += data[1] << 8;
case 1:
h += data[0];
h *= m;
h ^= h >> r;
};
h *= m;
h ^= h >> 10;
h *= m;
h ^= h >> 17;
return h;
}
int