This commit improves the set ivar implementation.
This commit is contained in:
Aaron Patterson 2021-04-21 13:01:03 -07:00 коммит произвёл Alan Wu
Родитель 035b5ac3bb
Коммит 435d7c5088
3 изменённых файлов: 212 добавлений и 56 удалений

Просмотреть файл

@ -239,6 +239,91 @@ assert_normal_exit %q{
end end
} }
# test setinstancevariable on extended objects
assert_equal '1', %q{
class Extended
attr_reader :one
def write_many
@a = 1
@b = 2
@c = 3
@d = 4
@one = 1
end
end
foo = Extended.new
foo.write_many
foo.write_many
foo.write_many
}
# test setinstancevariable on embedded objects
assert_equal '1', %q{
class Embedded
attr_reader :one
def write_one
@one = 1
end
end
foo = Embedded.new
foo.write_one
foo.write_one
foo.write_one
}
# test setinstancevariable after extension
assert_equal '[10, 11, 12, 13, 1]', %q{
class WillExtend
attr_reader :one
def make_extended
@foo1 = 10
@foo2 = 11
@foo3 = 12
@foo4 = 13
end
def write_one
@one = 1
end
def read_all
[@foo1, @foo2, @foo3, @foo4, @one]
end
end
foo = WillExtend.new
foo.write_one
foo.write_one
foo.make_extended
foo.write_one
foo.read_all
}
# test setinstancevariable on frozen object
assert_equal 'object was not modified', %q{
class WillFreeze
def write
@ivar = 1
end
end
wf = WillFreeze.new
wf.write
wf.write
wf.freeze
begin
wf.write
rescue FrozenError
"object was not modified"
end
}
# Test getinstancevariable and inline caches # Test getinstancevariable and inline caches
assert_equal '6', %q{ assert_equal '6', %q{
class Foo class Foo

Просмотреть файл

@ -745,6 +745,112 @@ enum {
OSWB_MAX_DEPTH = 5, // up to 5 different classes OSWB_MAX_DEPTH = 5, // up to 5 different classes
}; };
// Codegen for setting an instance variable.
// Preconditions:
// - receiver is in REG0
// - receiver has the same class as CLASS_OF(comptime_receiver)
// - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled
static codegen_status_t
gen_set_ivar(jitstate_t *jit, ctx_t *ctx, const int max_chain_depth, VALUE comptime_receiver, ID ivar_name, insn_opnd_t reg0_opnd, uint8_t *side_exit)
{
VALUE comptime_val_klass = CLASS_OF(comptime_receiver);
const ctx_t starting_context = *ctx; // make a copy for use with jit_chain_guard
// If the class uses the default allocator, instances should all be T_OBJECT
// NOTE: This assumes nobody changes the allocator of the class after allocation.
// Eventually, we can encode whether an object is T_OBJECT or not
// inside object shapes.
if (rb_get_alloc_func(comptime_val_klass) != rb_class_allocate_instance) {
GEN_COUNTER_INC(cb, setivar_not_object);
return YJIT_CANT_COMPILE;
}
RUBY_ASSERT(BUILTIN_TYPE(comptime_receiver) == T_OBJECT); // because we checked the allocator
// ID for the name of the ivar
ID id = ivar_name;
struct rb_iv_index_tbl_entry *ent;
struct st_table *iv_index_tbl = ROBJECT_IV_INDEX_TBL(comptime_receiver);
// Bail if this is a heap object, because this needs a write barrier
ADD_COMMENT(cb, "guard value is immediate");
test(cb, REG1, imm_opnd(RUBY_IMMEDIATE_MASK));
jz_ptr(cb, COUNTED_EXIT(side_exit, setivar_val_heapobject));
// Lookup index for the ivar the instruction loads
if (iv_index_tbl && rb_iv_index_tbl_lookup(iv_index_tbl, id, &ent)) {
uint32_t ivar_index = ent->index;
x86opnd_t val_to_write = ctx_stack_pop(ctx, 1);
mov(cb, REG1, val_to_write);
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
// Bail if this object is frozen
ADD_COMMENT(cb, "guard self is not frozen");
test(cb, flags_opnd, imm_opnd(RUBY_FL_FREEZE));
jz_ptr(cb, COUNTED_EXIT(side_exit, setivar_frozen));
// Pop receiver if it's on the temp stack
if (!reg0_opnd.is_self) {
(void)ctx_stack_pop(ctx, 1);
}
// Compile time self is embedded and the ivar index lands within the object
if (RB_FL_TEST_RAW(comptime_receiver, ROBJECT_EMBED) && ivar_index < ROBJECT_EMBED_LEN_MAX) {
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
// Guard that self is embedded
// TODO: BT and JC is shorter
ADD_COMMENT(cb, "guard embedded setivar");
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
jit_chain_guard(JCC_JZ, jit, &starting_context, max_chain_depth, side_exit);
// Load the variable
x86opnd_t ivar_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.ary) + ivar_index * SIZEOF_VALUE);
mov(cb, ivar_opnd, REG1);
// Push the ivar on the stack
// For attr_writer we'll need to push the value on the stack
//x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN);
}
else {
// Compile time value is *not* embeded.
// Guard that value is *not* embedded
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
ADD_COMMENT(cb, "guard extended setivar");
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
jit_chain_guard(JCC_JNZ, jit, &starting_context, max_chain_depth, side_exit);
// check that the extended table is big enough
if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) {
// Check that the slot is inside the extended table (num_slots > index)
x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
cmp(cb, num_slots, imm_opnd(ivar_index));
jle_ptr(cb, COUNTED_EXIT(side_exit, setivar_idx_out_of_range));
}
// Get a pointer to the extended table
x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
mov(cb, REG0, tbl_opnd);
// Write the ivar to the extended table
x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
mov(cb, REG1, val_to_write);
mov(cb, ivar_opnd, REG1);
}
// Jump to next instruction. This allows guard chains to share the same successor.
jit_jump_to_next_insn(jit, ctx);
return YJIT_END_BLOCK;
}
GEN_COUNTER_INC(cb, setivar_name_not_mapped);
return YJIT_CANT_COMPILE;
}
// Codegen for getting an instance variable. // Codegen for getting an instance variable.
// Preconditions: // Preconditions:
// - receiver is in REG0 // - receiver is in REG0
@ -867,7 +973,7 @@ gen_getinstancevariable(jitstate_t *jit, ctx_t *ctx)
// Guard that the receiver has the same class as the one from compile time. // Guard that the receiver has the same class as the one from compile time.
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self)); mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
guard_self_is_heap(cb, REG0, side_exit, ctx); guard_self_is_heap(cb, REG0, COUNTED_EXIT(side_exit, getivar_se_self_not_heap), ctx);
jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, GETIVAR_MAX_DEPTH, side_exit); jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, GETIVAR_MAX_DEPTH, side_exit);
@ -877,69 +983,27 @@ gen_getinstancevariable(jitstate_t *jit, ctx_t *ctx)
static codegen_status_t static codegen_status_t
gen_setinstancevariable(jitstate_t* jit, ctx_t* ctx) gen_setinstancevariable(jitstate_t* jit, ctx_t* ctx)
{ {
IVC ic = (IVC)jit_get_arg(jit, 1); // Defer compilation so we can specialize on a runtime `self`
if (!jit_at_current_insn(jit)) {
// Check that the inline cache has been set, slot index is known defer_compilation(jit->block, jit->insn_idx, ctx);
if (!ic->entry) { return YJIT_END_BLOCK;
return YJIT_CANT_COMPILE;
} }
// If the class uses the default allocator, instances should all be T_OBJECT ID ivar_name = (ID)jit_get_arg(jit, 0);
// NOTE: This assumes nobody changes the allocator of the class after allocation.
// Eventually, we can encode whether an object is T_OBJECT or not
// inside object shapes.
if (rb_get_alloc_func(ic->entry->class_value) != rb_class_allocate_instance) {
return YJIT_CANT_COMPILE;
}
uint32_t ivar_index = ic->entry->index; VALUE comptime_val = jit_peek_at_self(jit, ctx);
VALUE comptime_val_klass = CLASS_OF(comptime_val);
// Create a size-exit to fall back to the interpreter // Generate a side exit
uint8_t* side_exit = yjit_side_exit(jit, ctx); uint8_t *side_exit = yjit_side_exit(jit, ctx);
// Load self from CFP // Guard that the receiver has the same class as the one from compile time.
mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self)); mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
guard_self_is_heap(cb, REG0, COUNTED_EXIT(side_exit, setivar_se_self_not_heap), ctx);
guard_self_is_heap(cb, REG0, side_exit, ctx); jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, GETIVAR_MAX_DEPTH, side_exit);
// Bail if receiver class is different from compiled time call cache class return gen_set_ivar(jit, ctx, GETIVAR_MAX_DEPTH, comptime_val, ivar_name, OPND_SELF, side_exit);
x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
mov(cb, REG1, klass_opnd);
x86opnd_t serial_opnd = mem_opnd(64, REG1, offsetof(struct RClass, class_serial));
cmp(cb, serial_opnd, imm_opnd(ic->entry->class_serial));
jne_ptr(cb, side_exit);
// Bail if the ivars are not on the extended table
// See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
jnz_ptr(cb, side_exit);
// If we can't guarantee that the extended table is big enoughg
if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) {
// Check that the slot is inside the extended table (num_slots > index)
x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
cmp(cb, num_slots, imm_opnd(ivar_index));
jle_ptr(cb, side_exit);
}
// Get a pointer to the extended table
x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
mov(cb, REG0, tbl_opnd);
// Pop the value to write from the stack
x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
mov(cb, REG1, stack_top);
// Bail if this is a heap object, because this needs a write barrier
test(cb, REG1, imm_opnd(RUBY_IMMEDIATE_MASK));
jz_ptr(cb, side_exit);
// Write the ivar to the extended table
x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
mov(cb, ivar_opnd, REG1);
return YJIT_KEEP_COMPILING;
} }
static void static void

Просмотреть файл

@ -57,6 +57,13 @@ YJIT_DECLARE_COUNTERS(
getivar_name_not_mapped, getivar_name_not_mapped,
getivar_not_object, getivar_not_object,
setivar_se_self_not_heap,
setivar_idx_out_of_range,
setivar_val_heapobject,
setivar_name_not_mapped,
setivar_not_object,
setivar_frozen,
oaref_argc_not_one, oaref_argc_not_one,
oaref_arg_not_fixnum, oaref_arg_not_fixnum,