thread_pthread.c: eliminate timer thread by restructuring GVL

This reverts commit 194a6a2c68 (r64203).

Race conditions which caused the original reversion will be fixed
in the subsequent commit.

[ruby-core:88360] [Misc #14937]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@64352 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
normal 2018-08-13 21:34:20 +00:00
Родитель 4d2e0fffb0
Коммит 48b6bd74e2
11 изменённых файлов: 738 добавлений и 576 удалений

Просмотреть файл

@ -77,6 +77,9 @@ extern "C" {
# define __has_extension __has_feature
#endif
/* Prevent compiler from reordering access */
#define ACCESS_ONCE(type,x) (*((volatile type *)&(x)))
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
# define STATIC_ASSERT(name, expr) _Static_assert(expr, #name ": " #expr)
#elif GCC_VERSION_SINCE(4, 6, 0) || __has_extension(c_static_assert)

140
process.c
Просмотреть файл

@ -924,6 +924,7 @@ struct waitpid_state {
int status;
int options;
int errnum;
int sigwait_fd;
};
void rb_native_mutex_lock(rb_nativethread_lock_t *);
@ -932,13 +933,65 @@ void rb_native_cond_signal(rb_nativethread_cond_t *);
void rb_native_cond_wait(rb_nativethread_cond_t *, rb_nativethread_lock_t *);
rb_nativethread_cond_t *rb_sleep_cond_get(const rb_execution_context_t *);
void rb_sleep_cond_put(rb_nativethread_cond_t *);
int rb_sigwait_fd_get(const rb_thread_t *);
void rb_sigwait_sleep(const rb_thread_t *, int fd, const struct timespec *);
void rb_sigwait_fd_put(const rb_thread_t *, int fd);
static int
sigwait_fd_migrate_signaled_p(struct waitpid_state *w)
{
int signaled = FALSE;
rb_thread_t *th = w->ec ? rb_ec_thread_ptr(w->ec) : 0;
if (th) rb_native_mutex_lock(&th->interrupt_lock);
if (w->cond) {
rb_native_cond_signal(w->cond);
signaled = TRUE;
}
if (th) rb_native_mutex_unlock(&th->interrupt_lock);
return signaled;
}
/*
* When a thread is done using sigwait_fd and there are other threads
* sleeping on waitpid, we must kick one of the threads out of
* rb_native_cond_wait so it can switch to rb_sigwait_sleep
*/
static void
sigwait_fd_migrate_sleeper(rb_vm_t *vm)
{
struct waitpid_state *w = 0;
list_for_each(&vm->waiting_pids, w, wnode) {
if (sigwait_fd_migrate_signaled_p(w)) return;
}
list_for_each(&vm->waiting_grps, w, wnode) {
if (sigwait_fd_migrate_signaled_p(w)) return;
}
}
void
rb_sigwait_fd_migrate(rb_vm_t *vm)
{
rb_native_mutex_lock(&vm->waitpid_lock);
sigwait_fd_migrate_sleeper(vm);
rb_native_mutex_unlock(&vm->waitpid_lock);
}
static void
waitpid_notify(struct waitpid_state *w, rb_pid_t ret)
{
w->ret = ret;
list_del_init(&w->wnode);
rb_native_cond_signal(w->cond);
if (w->cond) {
rb_native_cond_signal(w->cond);
}
else {
/* w is owned by this thread */
}
}
#ifdef _WIN32 /* for spawnvp result from mjit.c */
@ -950,7 +1003,7 @@ waitpid_notify(struct waitpid_state *w, rb_pid_t ret)
#endif
extern volatile unsigned int ruby_nocldwait; /* signal.c */
/* called by timer thread */
/* called by timer thread or thread which acquired sigwait_fd */
static void
waitpid_each(struct list_head *head)
{
@ -1004,6 +1057,17 @@ waitpid_state_init(struct waitpid_state *w, rb_pid_t pid, int options)
w->options = options;
}
static const struct timespec *
sigwait_sleep_time(void)
{
if (SIGCHLD_LOSSY) {
static const struct timespec busy_wait = { 0, 100000000 };
return &busy_wait;
}
return 0;
}
/*
* must be called with vm->waitpid_lock held, this is not interruptible
*/
@ -1022,13 +1086,31 @@ ruby_waitpid_locked(rb_vm_t *vm, rb_pid_t pid, int *status, int options,
if (w.ret == -1) w.errnum = errno;
}
else {
w.cond = cond;
w.ec = 0;
w.sigwait_fd = -1;
list_add(w.pid > 0 ? &vm->waiting_pids : &vm->waiting_grps, &w.wnode);
do {
rb_native_cond_wait(w.cond, &vm->waitpid_lock);
if (w.sigwait_fd < 0)
w.sigwait_fd = rb_sigwait_fd_get(0);
if (w.sigwait_fd >= 0) {
w.cond = 0;
rb_native_mutex_unlock(&vm->waitpid_lock);
rb_sigwait_sleep(0, w.sigwait_fd, sigwait_sleep_time());
rb_native_mutex_lock(&vm->waitpid_lock);
}
else {
w.cond = cond;
rb_native_cond_wait(w.cond, &vm->waitpid_lock);
}
} while (!w.ret);
list_del(&w.wnode);
/* we're done, maybe other waitpid callers are not: */
if (w.sigwait_fd >= 0) {
rb_sigwait_fd_put(0, w.sigwait_fd);
sigwait_fd_migrate_sleeper(vm);
}
}
if (status) {
*status = w.status;
@ -1043,7 +1125,10 @@ waitpid_wake(void *x)
struct waitpid_state *w = x;
/* th->interrupt_lock is already held by rb_threadptr_interrupt_common */
rb_native_cond_signal(w->cond);
if (w->cond)
rb_native_cond_signal(w->cond);
else
rb_thread_wakeup_timer_thread(0); /* kick sigwait_fd */
}
static void *
@ -1058,11 +1143,40 @@ waitpid_nogvl(void *x)
* by the time we enter this. And we may also be interrupted.
*/
if (!w->ret && !RUBY_VM_INTERRUPTED_ANY(w->ec)) {
if (SIGCHLD_LOSSY) {
rb_thread_wakeup_timer_thread();
if (w->sigwait_fd < 0)
w->sigwait_fd = rb_sigwait_fd_get(th);
if (w->sigwait_fd >= 0) {
rb_nativethread_cond_t *cond = w->cond;
w->cond = 0;
rb_native_mutex_unlock(&th->interrupt_lock);
rb_sigwait_sleep(th, w->sigwait_fd, sigwait_sleep_time());
rb_native_mutex_lock(&th->interrupt_lock);
w->cond = cond;
}
else {
if (!w->cond)
w->cond = rb_sleep_cond_get(w->ec);
/* another thread calling rb_sigwait_sleep will process
* signals for us */
if (SIGCHLD_LOSSY) {
rb_thread_wakeup_timer_thread(0);
}
rb_native_cond_wait(w->cond, &th->interrupt_lock);
}
rb_native_cond_wait(w->cond, &th->interrupt_lock);
}
/*
* we must release th->native_thread_data.sleep_cond when
* re-acquiring GVL:
*/
if (w->cond) {
rb_sleep_cond_put(w->cond);
w->cond = 0;
}
rb_native_mutex_unlock(&th->interrupt_lock);
return 0;
@ -1092,8 +1206,15 @@ waitpid_cleanup(VALUE x)
list_del(&w->wnode);
rb_native_mutex_unlock(&vm->waitpid_lock);
}
rb_sleep_cond_put(w->cond);
/* we may have never released and re-acquired GVL */
if (w->cond)
rb_sleep_cond_put(w->cond);
if (w->sigwait_fd >= 0) {
rb_sigwait_fd_put(rb_ec_thread_ptr(w->ec), w->sigwait_fd);
rb_sigwait_fd_migrate(rb_ec_vm_ptr(w->ec));
}
return Qfalse;
}
@ -1120,6 +1241,7 @@ waitpid_wait(struct waitpid_state *w)
}
else {
w->cond = rb_sleep_cond_get(w->ec);
w->sigwait_fd = -1;
/* order matters, favor specified PIDs rather than -1 or 0 */
list_add(w->pid > 0 ? &vm->waiting_pids : &vm->waiting_grps, &w->wnode);
}

Просмотреть файл

@ -709,9 +709,6 @@ signal_enque(int sig)
static rb_atomic_t sigchld_hit;
/* Prevent compiler from reordering access */
#define ACCESS_ONCE(type,x) (*((volatile type *)&(x)))
static RETSIGTYPE
sighandler(int sig)
{
@ -730,7 +727,7 @@ sighandler(int sig)
else {
signal_enque(sig);
}
rb_thread_wakeup_timer_thread();
rb_thread_wakeup_timer_thread(sig);
#if !defined(BSD_SIGNAL) && !defined(POSIX_SIGNAL)
ruby_signal(sig, sighandler);
#endif
@ -764,7 +761,6 @@ rb_enable_interrupt(void)
#ifdef HAVE_PTHREAD_SIGMASK
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, RUBY_SIGCHLD); /* timer-thread handles this */
pthread_sigmask(SIG_SETMASK, &mask, NULL);
#endif
}
@ -1077,7 +1073,6 @@ rb_trap_exit(void)
void ruby_waitpid_all(rb_vm_t *); /* process.c */
/* only runs in the timer-thread */
void
ruby_sigchld_handler(rb_vm_t *vm)
{

Просмотреть файл

@ -3564,7 +3564,8 @@ __END__
end
def test_race_gets_and_close
assert_separately([], "#{<<-"begin;"}\n#{<<-"end;"}")
opt = { signal: :ABRT, timeout: 200 }
assert_separately([], "#{<<-"begin;"}\n#{<<-"end;"}", opt)
bug13076 = '[ruby-core:78845] [Bug #13076]'
begin;
10.times do |i|
@ -3586,9 +3587,9 @@ __END__
w.close
r.close
end
assert_nothing_raised(IOError, bug13076) {
t.each(&:join)
}
t.each do |th|
assert_same(th, th.join(2), bug13076)
end
end
end;
end

Просмотреть файл

@ -1767,7 +1767,7 @@ class TestProcess < Test::Unit::TestCase
puts Dir.entries("/proc/self/task") - %W[. ..]
end
bug4920 = '[ruby-dev:43873]'
assert_equal(2, data.size, bug4920)
assert_include(1..2, data.size, bug4920)
assert_not_include(data.map(&:to_i), pid)
end
else # darwin

Просмотреть файл

@ -952,15 +952,16 @@ _eom
def test_thread_timer_and_interrupt
bug5757 = '[ruby-dev:44985]'
pid = nil
cmd = 'Signal.trap(:INT, "DEFAULT"); r,=IO.pipe; Thread.start {Thread.pass until Thread.main.stop?; puts; STDOUT.flush}; r.read'
cmd = 'Signal.trap(:INT, "DEFAULT"); pipe=IO.pipe; Thread.start {Thread.pass until Thread.main.stop?; puts; STDOUT.flush}; pipe[0].read'
opt = {}
opt[:new_pgroup] = true if /mswin|mingw/ =~ RUBY_PLATFORM
s, t, _err = EnvUtil.invoke_ruby(['-e', cmd], "", true, true, opt) do |in_p, out_p, err_p, cpid|
assert IO.select([out_p], nil, nil, 10), 'subprocess not ready'
out_p.gets
pid = cpid
t0 = Time.now.to_f
Process.kill(:SIGINT, pid)
Process.wait(pid)
Timeout.timeout(10) { Process.wait(pid) }
t1 = Time.now.to_f
[$?, t1 - t0, err_p.read]
end

395
thread.c
Просмотреть файл

@ -106,8 +106,13 @@ static int rb_threadptr_pending_interrupt_empty_p(const rb_thread_t *th);
static const char *thread_status_name(rb_thread_t *th, int detail);
static void timespec_add(struct timespec *, const struct timespec *);
static void timespec_sub(struct timespec *, const struct timespec *);
static int timespec_cmp(const struct timespec *a, const struct timespec *b);
static int timespec_update_expire(struct timespec *, const struct timespec *);
static void getclockofday(struct timespec *);
NORETURN(static void async_bug_fd(const char *mesg, int errno_arg, int fd));
static int consume_communication_pipe(int fd);
static int check_signals_nogvl(rb_thread_t *, int sigwait_fd);
void rb_sigwait_fd_migrate(rb_vm_t *); /* process.c */
#define eKillSignal INT2FIX(0)
#define eTerminateSignal INT2FIX(1)
@ -348,7 +353,14 @@ rb_thread_s_debug_set(VALUE self, VALUE val)
#endif
NOINLINE(static int thread_start_func_2(rb_thread_t *th, VALUE *stack_start,
VALUE *register_stack_start));
static void timer_thread_function(void *);
static void timer_thread_function(void);
void ruby_sigchld_handler(rb_vm_t *); /* signal.c */
static void
ubf_sigwait(void *ignore)
{
rb_thread_wakeup_timer_thread(0);
}
#if defined(_WIN32)
#include "thread_win32.c"
@ -373,6 +385,15 @@ static void timer_thread_function(void *);
#error "unsupported thread type"
#endif
/*
* TODO: somebody with win32 knowledge should be able to get rid of
* timer-thread by busy-waiting on signals. And it should be possible
* to make the GVL in thread_pthread.c be platform-independent.
*/
#ifndef BUSY_WAIT_SIGNALS
# define BUSY_WAIT_SIGNALS (0)
#endif
#if THREAD_DEBUG
static int debug_mutex_initialized = 1;
static rb_nativethread_lock_t debug_mutex;
@ -412,7 +433,6 @@ rb_vm_gvl_destroy(rb_vm_t *vm)
{
gvl_release(vm);
gvl_destroy(vm);
rb_native_mutex_destroy(&vm->thread_destruct_lock);
if (0) {
/* may be held by running threads */
rb_native_mutex_destroy(&vm->waitpid_lock);
@ -773,10 +793,6 @@ thread_start_func_2(rb_thread_t *th, VALUE *stack_start, VALUE *register_stack_s
rb_fiber_close(th->ec->fiber_ptr);
}
rb_native_mutex_lock(&th->vm->thread_destruct_lock);
/* make sure vm->running_thread never point me after this point.*/
th->vm->running_thread = NULL;
rb_native_mutex_unlock(&th->vm->thread_destruct_lock);
thread_cleanup_func(th, FALSE);
gvl_release(th->vm);
@ -2163,6 +2179,14 @@ rb_threadptr_execute_interrupts(rb_thread_t *th, int blocking_timing)
/* signal handling */
if (trap_interrupt && (th == th->vm->main_thread)) {
enum rb_thread_status prev_status = th->status;
int sigwait_fd = rb_sigwait_fd_get(th);
if (sigwait_fd >= 0) {
(void)consume_communication_pipe(sigwait_fd);
ruby_sigchld_handler(th->vm);
rb_sigwait_fd_put(th, sigwait_fd);
rb_sigwait_fd_migrate(th->vm);
}
th->status = THREAD_RUNNABLE;
while ((sig = rb_get_next_signal()) != 0) {
rb_signal_exec(th, sig);
@ -3840,86 +3864,95 @@ wait_retryable(int *result, int errnum, struct timespec *timeout,
return FALSE;
}
#define restore_fdset(fds1, fds2) \
((fds1) ? rb_fd_dup(fds1, fds2) : (void)0)
struct select_set {
rb_fdset_t read;
rb_fdset_t write;
rb_fdset_t except;
int max;
int sigwait_fd;
rb_thread_t *th;
rb_fdset_t *rset;
rb_fdset_t *wset;
rb_fdset_t *eset;
rb_fdset_t orig_rset;
rb_fdset_t orig_wset;
rb_fdset_t orig_eset;
struct timeval *timeout;
};
static size_t
select_set_memsize(const void *p)
static VALUE
select_set_free(VALUE p)
{
return sizeof(struct select_set);
struct select_set *set = (struct select_set *)p;
if (set->sigwait_fd >= 0) {
rb_sigwait_fd_put(set->th, set->sigwait_fd);
rb_sigwait_fd_migrate(set->th->vm);
}
rb_fd_term(&set->orig_rset);
rb_fd_term(&set->orig_wset);
rb_fd_term(&set->orig_eset);
return Qfalse;
}
static void
select_set_free(void *p)
static const struct timespec *
sigwait_timeout(rb_thread_t *th, int sigwait_fd, const struct timespec *orig,
int *drained_p)
{
struct select_set *orig = p;
static const struct timespec quantum = { 0, TIME_QUANTUM_USEC * 1000 };
rb_fd_term(&orig->read);
rb_fd_term(&orig->write);
rb_fd_term(&orig->except);
xfree(orig);
if (sigwait_fd >= 0 && (!ubf_threads_empty() || BUSY_WAIT_SIGNALS)) {
*drained_p = check_signals_nogvl(th, sigwait_fd);
if (!orig || timespec_cmp(orig, &quantum) > 0)
return &quantum;
}
return orig;
}
static const rb_data_type_t select_set_type = {
"select_set",
{NULL, select_set_free, select_set_memsize,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static int
do_select(int n, rb_fdset_t *const readfds, rb_fdset_t *const writefds,
rb_fdset_t *const exceptfds, struct timeval *timeout)
static VALUE
do_select(VALUE p)
{
struct select_set *set = (struct select_set *)p;
int MAYBE_UNUSED(result);
int lerrno;
struct timespec ts, end, *tsp;
rb_thread_t *th = GET_THREAD();
VALUE o;
struct select_set *orig;
const struct timespec *to;
struct timeval tv;
o = TypedData_Make_Struct(0, struct select_set, &select_set_type, orig);
timeout_prepare(&tsp, &ts, &end, timeout);
timeout_prepare(&tsp, &ts, &end, set->timeout);
#define restore_fdset(dst, src) \
((dst) ? rb_fd_dup(dst, src) : (void)0)
#define do_select_update() \
(restore_fdset(readfds, &orig->read), \
restore_fdset(writefds, &orig->write), \
restore_fdset(exceptfds, &orig->except), \
(restore_fdset(set->rset, &set->orig_rset), \
restore_fdset(set->wset, &set->orig_wset), \
restore_fdset(set->eset, &set->orig_eset), \
TRUE)
#define fd_init_copy(f) \
(f##fds) ? rb_fd_init_copy(&orig->f, f##fds) : rb_fd_no_init(&orig->f)
fd_init_copy(read);
fd_init_copy(write);
fd_init_copy(except);
#undef fd_init_copy
do {
int drained;
lerrno = 0;
BLOCKING_REGION(th, {
result = native_fd_select(n, readfds, writefds, exceptfds,
timeval_for(timeout, tsp), th);
BLOCKING_REGION(set->th, {
to = sigwait_timeout(set->th, set->sigwait_fd, tsp, &drained);
result = native_fd_select(set->max, set->rset, set->wset, set->eset,
timeval_for(&tv, to), set->th);
if (result < 0) lerrno = errno;
}, ubf_select, th, FALSE);
}, set->sigwait_fd >= 0 ? ubf_sigwait : ubf_select, set->th, FALSE);
RUBY_VM_CHECK_INTS_BLOCKING(th->ec); /* may raise */
if (set->sigwait_fd >= 0) {
if (result > 0 && rb_fd_isset(set->sigwait_fd, set->rset))
result--;
(void)check_signals_nogvl(set->th, set->sigwait_fd);
}
RUBY_VM_CHECK_INTS_BLOCKING(set->th->ec); /* may raise */
} while (wait_retryable(&result, lerrno, tsp, &end) && do_select_update());
/* didn't raise, perform cleanup ourselves */
select_set_free(orig);
rb_gc_force_recycle(o);
if (result < 0) {
errno = lerrno;
}
return result;
return (VALUE)result;
}
static void
@ -3955,11 +3988,42 @@ rb_thread_fd_writable(int fd)
return TRUE;
}
static rb_fdset_t *
init_set_fd(int fd, rb_fdset_t *fds)
{
if (fd < 0) {
return 0;
}
rb_fd_init(fds);
rb_fd_set(fd, fds);
return fds;
}
int
rb_thread_fd_select(int max, rb_fdset_t * read, rb_fdset_t * write, rb_fdset_t * except,
struct timeval *timeout)
{
if (!read && !write && !except) {
struct select_set set;
set.th = GET_THREAD();
set.max = max;
set.sigwait_fd = rb_sigwait_fd_get(set.th);
set.rset = read;
set.wset = write;
set.eset = except;
set.timeout = timeout;
if (set.sigwait_fd >= 0) {
if (set.rset)
rb_fd_set(set.sigwait_fd, set.rset);
else
set.rset = init_set_fd(set.sigwait_fd, &set.orig_rset);
if (set.sigwait_fd > set.max) {
set.max = set.sigwait_fd + 1;
}
}
if (!set.rset && !set.wset && !set.eset) {
if (!timeout) {
rb_thread_sleep_forever();
return 0;
@ -3968,16 +4032,23 @@ rb_thread_fd_select(int max, rb_fdset_t * read, rb_fdset_t * write, rb_fdset_t *
return 0;
}
if (read) {
rb_fd_resize(max - 1, read);
}
if (write) {
rb_fd_resize(max - 1, write);
}
if (except) {
rb_fd_resize(max - 1, except);
}
return do_select(max, read, write, except, timeout);
#define fd_init_copy(f) do { \
if (set.f) { \
rb_fd_resize(set.max - 1, set.f); \
if (&set.orig_##f != set.f) { /* sigwait_fd */ \
rb_fd_init_copy(&set.orig_##f, set.f); \
} \
} \
else { \
rb_fd_no_init(&set.orig_##f); \
} \
} while (0)
fd_init_copy(rset);
fd_init_copy(wset);
fd_init_copy(eset);
#undef fd_init_copy
return (int)rb_ensure(do_select, (VALUE)&set, select_set_free, (VALUE)&set);
}
#ifdef USE_POLL
@ -3991,68 +4062,64 @@ rb_thread_fd_select(int max, rb_fdset_t * read, rb_fdset_t * write, rb_fdset_t *
# define POLLERR_SET (0)
#endif
#ifndef HAVE_PPOLL
/* TODO: don't ignore sigmask */
static int
ruby_ppoll(struct pollfd *fds, nfds_t nfds,
const struct timespec *ts, const sigset_t *sigmask)
{
int timeout_ms;
if (ts) {
int tmp, tmp2;
if (ts->tv_sec > INT_MAX/1000)
timeout_ms = INT_MAX;
else {
tmp = (int)(ts->tv_sec * 1000);
/* round up 1ns to 1ms to avoid excessive wakeups for <1ms sleep */
tmp2 = (int)((ts->tv_nsec + 999999L) / (1000L * 1000L));
if (INT_MAX - tmp < tmp2)
timeout_ms = INT_MAX;
else
timeout_ms = (int)(tmp + tmp2);
}
}
else
timeout_ms = -1;
return poll(fds, nfds, timeout_ms);
}
# define ppoll(fds,nfds,ts,sigmask) ruby_ppoll((fds),(nfds),(ts),(sigmask))
#endif
/*
* returns a mask of events
*/
int
rb_wait_for_single_fd(int fd, int events, struct timeval *timeout)
{
struct pollfd fds;
struct pollfd fds[2];
int result = 0, lerrno;
struct timespec ts, end, *tsp;
const struct timespec *to;
int drained;
rb_thread_t *th = GET_THREAD();
nfds_t nfds;
rb_unblock_function_t *ubf;
timeout_prepare(&tsp, &ts, &end, timeout);
fds.fd = fd;
fds.events = (short)events;
fds[0].fd = fd;
fds[0].events = (short)events;
do {
fds.revents = 0;
fds[0].revents = 0;
fds[1].fd = rb_sigwait_fd_get(th);
if (fds[1].fd >= 0) {
fds[1].events = POLLIN;
fds[1].revents = 0;
nfds = 2;
ubf = ubf_sigwait;
}
else {
nfds = 1;
ubf = ubf_select;
}
lerrno = 0;
BLOCKING_REGION(th, {
result = ppoll(&fds, 1, tsp, NULL);
to = sigwait_timeout(th, fds[1].fd, tsp, &drained);
result = ppoll(fds, nfds, to, NULL);
if (result < 0) lerrno = errno;
}, ubf_select, th, FALSE);
}, ubf, th, FALSE);
if (fds[1].fd >= 0) {
if (result > 0 && fds[1].revents) {
result--;
fds[1].revents = 0;
}
(void)check_signals_nogvl(th, fds[1].fd);
rb_sigwait_fd_put(th, fds[1].fd);
rb_sigwait_fd_migrate(th->vm);
}
RUBY_VM_CHECK_INTS_BLOCKING(th->ec);
} while (wait_retryable(&result, lerrno, tsp, &end));
if (result < 0) {
errno = lerrno;
return -1;
}
if (fds.revents & POLLNVAL) {
if (fds[0].revents & POLLNVAL) {
errno = EBADF;
return -1;
}
@ -4062,32 +4129,20 @@ rb_wait_for_single_fd(int fd, int events, struct timeval *timeout)
* Therefore we need to fix it up.
*/
result = 0;
if (fds.revents & POLLIN_SET)
if (fds[0].revents & POLLIN_SET)
result |= RB_WAITFD_IN;
if (fds.revents & POLLOUT_SET)
if (fds[0].revents & POLLOUT_SET)
result |= RB_WAITFD_OUT;
if (fds.revents & POLLEX_SET)
if (fds[0].revents & POLLEX_SET)
result |= RB_WAITFD_PRI;
/* all requested events are ready if there is an error */
if (fds.revents & POLLERR_SET)
if (fds[0].revents & POLLERR_SET)
result |= events;
return result;
}
#else /* ! USE_POLL - implement rb_io_poll_fd() using select() */
static rb_fdset_t *
init_set_fd(int fd, rb_fdset_t *fds)
{
if (fd < 0) {
return 0;
}
rb_fd_init(fds);
rb_fd_set(fd, fds);
return fds;
}
struct select_args {
union {
int fd;
@ -4168,10 +4223,6 @@ rb_gc_set_stack_end(VALUE **stack_end_p)
}
#endif
/* signal.c */
void ruby_sigchld_handler(rb_vm_t *);
/*
*
*/
@ -4187,36 +4238,81 @@ rb_threadptr_check_signal(rb_thread_t *mth)
}
static void
timer_thread_function(void *arg)
timer_thread_function(void)
{
rb_vm_t *vm = GET_VM(); /* TODO: fix me for Multi-VM */
volatile rb_execution_context_t *ec;
/*
* Tricky: thread_destruct_lock doesn't close a race against
* vm->running_thread switch. however it guarantees th->running_thread
* point to valid pointer or NULL.
*/
rb_native_mutex_lock(&vm->thread_destruct_lock);
/* for time slice */
if (vm->running_thread) {
RUBY_VM_SET_TIMER_INTERRUPT(vm->running_thread->ec);
ec = ACCESS_ONCE(rb_execution_context_t *,
ruby_current_execution_context_ptr);
if (ec) RUBY_VM_SET_TIMER_INTERRUPT(ec);
}
static void
async_bug_fd(const char *mesg, int errno_arg, int fd)
{
char buff[64];
size_t n = strlcpy(buff, mesg, sizeof(buff));
if (n < sizeof(buff)-3) {
ruby_snprintf(buff+n, sizeof(buff)-n, "(%d)", fd);
}
rb_native_mutex_unlock(&vm->thread_destruct_lock);
rb_async_bug_errno(buff, errno_arg);
}
/* check signal */
ruby_sigchld_handler(vm);
rb_threadptr_check_signal(vm->main_thread);
/* VM-dependent API is not available for this function */
static int
consume_communication_pipe(int fd)
{
#define CCP_READ_BUFF_SIZE 1024
/* buffer can be shared because no one refers to them. */
static char buff[CCP_READ_BUFF_SIZE];
ssize_t result;
int ret = FALSE; /* for rb_sigwait_sleep */
#if 0
/* prove profiler */
if (vm->prove_profile.enable) {
rb_thread_t *th = vm->running_thread;
if (vm->during_gc) {
/* GC prove profiling */
while (1) {
result = read(fd, buff, sizeof(buff));
if (result > 0) {
ret = TRUE;
if (result < (ssize_t)sizeof(buff)) {
return ret;
}
}
else if (result == 0) {
return ret;
}
else if (result < 0) {
int e = errno;
switch (e) {
case EINTR:
continue; /* retry */
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
return ret;
default:
async_bug_fd("consume_communication_pipe: read", e, fd);
}
}
}
#endif
}
static int
check_signals_nogvl(rb_thread_t *th, int sigwait_fd)
{
rb_vm_t *vm = GET_VM(); /* th may be 0 */
int ret = consume_communication_pipe(sigwait_fd);
ubf_wakeup_all_threads();
ruby_sigchld_handler(vm);
if (rb_signal_buff_size()) {
if (th == vm->main_thread)
/* no need to lock + wakeup if already in main thread */
RUBY_VM_SET_TRAP_INTERRUPT(th->ec);
else
threadptr_trap_interrupt(vm->main_thread);
ret = TRUE; /* for SIGCHLD_LOSSY && rb_sigwait_sleep */
}
return ret;
}
void
@ -5046,7 +5142,6 @@ Init_Thread(void)
/* acquire global vm lock */
gvl_init(th->vm);
gvl_acquire(th->vm, th);
rb_native_mutex_initialize(&th->vm->thread_destruct_lock);
rb_native_mutex_initialize(&th->vm->waitpid_lock);
rb_native_mutex_initialize(&th->interrupt_lock);

Просмотреть файл

@ -45,27 +45,21 @@ void rb_native_cond_broadcast(rb_nativethread_cond_t *cond);
void rb_native_cond_wait(rb_nativethread_cond_t *cond, rb_nativethread_lock_t *mutex);
void rb_native_cond_initialize(rb_nativethread_cond_t *cond);
void rb_native_cond_destroy(rb_nativethread_cond_t *cond);
static void rb_thread_wakeup_timer_thread_low(void);
static void clear_thread_cache_altstack(void);
static void ubf_wakeup_all_threads(void);
static int ubf_threads_empty(void);
static int native_cond_timedwait(rb_nativethread_cond_t *, pthread_mutex_t *,
const struct timespec *);
static const struct timespec *sigwait_timeout(rb_thread_t *, int sigwait_fd,
const struct timespec *,
int *drained_p);
#define TIMER_THREAD_MASK (1)
#define TIMER_THREAD_SLEEPY (2|TIMER_THREAD_MASK)
#define TIMER_THREAD_BUSY (4|TIMER_THREAD_MASK)
#define TIMER_THREAD_CREATED_P() (timer_thread_pipe.owner_process == getpid())
#if defined(HAVE_POLL) && defined(HAVE_FCNTL) && defined(F_GETFL) && \
defined(F_SETFL) && defined(O_NONBLOCK) && \
defined(F_GETFD) && defined(F_SETFD) && defined(FD_CLOEXEC)
/* The timer thread sleeps while only one Ruby thread is running. */
# define TIMER_IMPL TIMER_THREAD_SLEEPY
#else
# define TIMER_IMPL TIMER_THREAD_BUSY
#endif
static struct {
pthread_t id;
int created;
} timer_thread;
#define TIMER_THREAD_CREATED_P() (timer_thread.created != 0)
/* for testing, and in case we come across a platform w/o pipes: */
#define BUSY_WAIT_SIGNALS (0)
#define THREAD_INVALID ((const rb_thread_t *)-1)
static const rb_thread_t *sigwait_th;
#ifdef HAVE_SCHED_YIELD
#define native_thread_yield() (void)sched_yield()
@ -82,49 +76,96 @@ static pthread_condattr_t *condattr_monotonic = &condattr_mono;
static const void *const condattr_monotonic = NULL;
#endif
/* 100ms. 10ms is too small for user level thread scheduling
* on recent Linux (tested on 2.6.35)
*/
#define TIME_QUANTUM_USEC (100 * 1000)
static struct timespec native_cond_timeout(rb_nativethread_cond_t *,
struct timespec rel);
static void
gvl_acquire_common(rb_vm_t *vm)
gvl_acquire_common(rb_vm_t *vm, rb_thread_t *th)
{
if (vm->gvl.acquired) {
native_thread_data_t *nd = &th->native_thread_data;
if (!vm->gvl.waiting++) {
/*
* Wake up timer thread iff timer thread is slept.
* When timer thread is polling mode, we don't want to
* make confusing timer thread interval time.
*/
rb_thread_wakeup_timer_thread_low();
}
VM_ASSERT(th->unblock.func == 0 && "we reuse ubf_list for GVL waitq");
while (vm->gvl.acquired) {
rb_native_cond_wait(&vm->gvl.cond, &vm->gvl.lock);
}
list_add_tail(&vm->gvl.waitq, &nd->ubf_list);
do {
if (!vm->gvl.timer) {
static struct timespec ts;
static int err = ETIMEDOUT;
--vm->gvl.waiting;
/*
* become designated timer thread to kick vm->gvl.acquired
* periodically. Continue on old timeout if it expired:
*/
if (err == ETIMEDOUT) {
ts.tv_sec = 0;
ts.tv_nsec = TIME_QUANTUM_USEC * 1000;
ts = native_cond_timeout(&nd->cond.gvlq, ts);
}
vm->gvl.timer = th;
err = native_cond_timedwait(&nd->cond.gvlq, &vm->gvl.lock, &ts);
vm->gvl.timer = 0;
ubf_wakeup_all_threads();
if (vm->gvl.need_yield) {
vm->gvl.need_yield = 0;
/*
* Timeslice. We can't touch thread_destruct_lock here,
* as the process may fork while this thread is contending
* for GVL:
*/
if (vm->gvl.acquired) timer_thread_function();
}
else {
rb_native_cond_wait(&nd->cond.gvlq, &vm->gvl.lock);
}
} while (vm->gvl.acquired);
list_del_init(&nd->ubf_list);
if (vm->gvl.need_yield) {
vm->gvl.need_yield = 0;
rb_native_cond_signal(&vm->gvl.switch_cond);
}
}
}
vm->gvl.acquired = th;
/*
* Designate the next gvl.timer thread, favor the last thread in
* the waitq since it will be in waitq longest
*/
if (!vm->gvl.timer) {
native_thread_data_t *last;
vm->gvl.acquired = 1;
last = list_tail(&vm->gvl.waitq, native_thread_data_t, ubf_list);
if (last) {
rb_native_cond_signal(&last->cond.gvlq);
}
else if (!ubf_threads_empty()) {
rb_thread_wakeup_timer_thread(0);
}
}
}
static void
gvl_acquire(rb_vm_t *vm, rb_thread_t *th)
{
rb_native_mutex_lock(&vm->gvl.lock);
gvl_acquire_common(vm);
gvl_acquire_common(vm, th);
rb_native_mutex_unlock(&vm->gvl.lock);
}
static void
static native_thread_data_t *
gvl_release_common(rb_vm_t *vm)
{
native_thread_data_t *next;
vm->gvl.acquired = 0;
if (vm->gvl.waiting > 0)
rb_native_cond_signal(&vm->gvl.cond);
next = list_top(&vm->gvl.waitq, native_thread_data_t, ubf_list);
if (next) rb_native_cond_signal(&next->cond.gvlq);
return next;
}
static void
@ -138,34 +179,38 @@ gvl_release(rb_vm_t *vm)
static void
gvl_yield(rb_vm_t *vm, rb_thread_t *th)
{
rb_native_mutex_lock(&vm->gvl.lock);
native_thread_data_t *next;
gvl_release_common(vm);
rb_native_mutex_lock(&vm->gvl.lock);
next = gvl_release_common(vm);
/* An another thread is processing GVL yield. */
if (UNLIKELY(vm->gvl.wait_yield)) {
while (vm->gvl.wait_yield)
while (vm->gvl.wait_yield)
rb_native_cond_wait(&vm->gvl.switch_wait_cond, &vm->gvl.lock);
goto acquire;
}
if (vm->gvl.waiting > 0) {
/* Wait until another thread task take GVL. */
vm->gvl.need_yield = 1;
vm->gvl.wait_yield = 1;
while (vm->gvl.need_yield)
else if (next) {
/* Wait until another thread task takes GVL. */
vm->gvl.need_yield = 1;
vm->gvl.wait_yield = 1;
while (vm->gvl.need_yield)
rb_native_cond_wait(&vm->gvl.switch_cond, &vm->gvl.lock);
vm->gvl.wait_yield = 0;
vm->gvl.wait_yield = 0;
rb_native_cond_broadcast(&vm->gvl.switch_wait_cond);
}
else {
rb_native_mutex_unlock(&vm->gvl.lock);
sched_yield();
rb_native_mutex_unlock(&vm->gvl.lock);
/*
* GVL was not contended when we released, so we have no potential
* contenders for reacquisition. Perhaps they are stuck in blocking
* region w/o GVL, too, so we kick them:
*/
ubf_wakeup_all_threads();
native_thread_yield();
rb_native_mutex_lock(&vm->gvl.lock);
rb_native_cond_broadcast(&vm->gvl.switch_wait_cond);
}
rb_native_cond_broadcast(&vm->gvl.switch_wait_cond);
acquire:
gvl_acquire_common(vm);
gvl_acquire_common(vm, th);
rb_native_mutex_unlock(&vm->gvl.lock);
}
@ -173,11 +218,11 @@ static void
gvl_init(rb_vm_t *vm)
{
rb_native_mutex_initialize(&vm->gvl.lock);
rb_native_cond_initialize(&vm->gvl.cond);
rb_native_cond_initialize(&vm->gvl.switch_cond);
rb_native_cond_initialize(&vm->gvl.switch_wait_cond);
list_head_init(&vm->gvl.waitq);
vm->gvl.acquired = 0;
vm->gvl.waiting = 0;
vm->gvl.timer = 0;
vm->gvl.need_yield = 0;
vm->gvl.wait_yield = 0;
}
@ -185,10 +230,16 @@ gvl_init(rb_vm_t *vm)
static void
gvl_destroy(rb_vm_t *vm)
{
rb_native_cond_destroy(&vm->gvl.switch_wait_cond);
rb_native_cond_destroy(&vm->gvl.switch_cond);
rb_native_cond_destroy(&vm->gvl.cond);
rb_native_mutex_destroy(&vm->gvl.lock);
/*
* only called once at VM shutdown (not atfork), another thread
* may still grab vm->gvl.lock when calling gvl_release at
* the end of thread_start_func_2
*/
if (0) {
rb_native_cond_destroy(&vm->gvl.switch_wait_cond);
rb_native_cond_destroy(&vm->gvl.switch_cond);
rb_native_mutex_destroy(&vm->gvl.lock);
}
clear_thread_cache_altstack();
}
@ -433,7 +484,9 @@ native_thread_init(rb_thread_t *th)
#ifdef USE_UBF_LIST
list_node_init(&nd->ubf_list);
#endif
rb_native_cond_initialize(&nd->sleep_cond);
rb_native_cond_initialize(&nd->cond.gvlq);
if (&nd->cond.gvlq != &nd->cond.intr)
rb_native_cond_initialize(&nd->cond.intr);
ruby_thread_set_native(th);
}
@ -444,7 +497,11 @@ native_thread_init(rb_thread_t *th)
static void
native_thread_destroy(rb_thread_t *th)
{
rb_native_cond_destroy(&th->native_thread_data.sleep_cond);
native_thread_data_t *nd = &th->native_thread_data;
rb_native_cond_destroy(&nd->cond.gvlq);
if (&nd->cond.gvlq != &nd->cond.intr)
rb_native_cond_destroy(&nd->cond.intr);
/*
* prevent false positive from ruby_thread_has_gvl_p if that
@ -1012,17 +1069,6 @@ native_thread_create(rb_thread_t *th)
return err;
}
#if (TIMER_IMPL & TIMER_THREAD_MASK)
static void
native_thread_join(pthread_t th)
{
int err = pthread_join(th, 0);
if (err) {
rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err);
}
}
#endif /* TIMER_THREAD_MASK */
#if USE_NATIVE_THREAD_PRIORITY
static void
@ -1064,15 +1110,15 @@ ubf_pthread_cond_signal(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
thread_debug("ubf_pthread_cond_signal (%p)\n", (void *)th);
rb_native_cond_signal(&th->native_thread_data.sleep_cond);
rb_native_cond_signal(&th->native_thread_data.cond.intr);
}
static void
native_sleep(rb_thread_t *th, struct timespec *timeout_rel)
native_cond_sleep(rb_thread_t *th, struct timespec *timeout_rel)
{
struct timespec timeout;
rb_nativethread_lock_t *lock = &th->interrupt_lock;
rb_nativethread_cond_t *cond = &th->native_thread_data.sleep_cond;
rb_nativethread_cond_t *cond = &th->native_thread_data.cond.intr;
if (timeout_rel) {
/* Solaris cond_timedwait() return EINVAL if an argument is greater than
@ -1164,17 +1210,30 @@ static void
ubf_select(void *ptr)
{
rb_thread_t *th = (rb_thread_t *)ptr;
rb_vm_t *vm = th->vm;
register_ubf_list(th);
/*
* ubf_wakeup_thread() doesn't guarantee to wake up a target thread.
* Therefore, we repeatedly call ubf_wakeup_thread() until a target thread
* exit from ubf function.
* In the other hands, we shouldn't call rb_thread_wakeup_timer_thread()
* if running on timer thread because it may make endless wakeups.
* exit from ubf function. We must designate a timer-thread to perform
* this operation.
*/
if (!pthread_equal(pthread_self(), timer_thread.id))
rb_thread_wakeup_timer_thread();
rb_native_mutex_lock(&vm->gvl.lock);
if (!vm->gvl.timer) {
native_thread_data_t *last;
last = list_tail(&vm->gvl.waitq, native_thread_data_t, ubf_list);
if (last) {
rb_native_cond_signal(&last->cond.gvlq);
}
else {
rb_thread_wakeup_timer_thread(0);
}
}
rb_native_mutex_unlock(&vm->gvl.lock);
ubf_wakeup_thread(th);
}
@ -1211,39 +1270,16 @@ static int ubf_threads_empty(void) { return 1; }
#define TT_DEBUG 0
#define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0)
/* 100ms. 10ms is too small for user level thread scheduling
* on recent Linux (tested on 2.6.35)
*/
#define TIME_QUANTUM_USEC (100 * 1000)
#if TIMER_IMPL == TIMER_THREAD_SLEEPY
static struct {
/*
* Read end of each pipe is closed inside timer thread for shutdown
* Write ends are closed by a normal Ruby thread during shutdown
*/
/* pipes are closed in forked children when owner_process does not match */
int normal[2];
int low[2];
/* volatile for signal handler use: */
volatile rb_pid_t owner_process;
} timer_thread_pipe = {
{-1, -1},
{-1, -1}, /* low priority */
};
NORETURN(static void async_bug_fd(const char *mesg, int errno_arg, int fd));
static void
async_bug_fd(const char *mesg, int errno_arg, int fd)
{
char buff[64];
size_t n = strlcpy(buff, mesg, sizeof(buff));
if (n < sizeof(buff)-3) {
ruby_snprintf(buff+n, sizeof(buff)-n, "(%d)", fd);
}
rb_async_bug_errno(buff, errno_arg);
}
/* only use signal-safe system calls here */
static void
rb_thread_wakeup_timer_thread_fd(int fd)
@ -1275,49 +1311,33 @@ rb_thread_wakeup_timer_thread_fd(int fd)
}
void
rb_thread_wakeup_timer_thread(void)
rb_thread_wakeup_timer_thread(int sig)
{
/* must be safe inside sighandler, so no mutex */
if (timer_thread_pipe.owner_process == getpid()) {
rb_thread_wakeup_timer_thread_fd(timer_thread_pipe.normal[1]);
}
}
rb_thread_wakeup_timer_thread_fd(timer_thread_pipe.normal[1]);
static void
rb_thread_wakeup_timer_thread_low(void)
{
if (timer_thread_pipe.owner_process == getpid()) {
rb_thread_wakeup_timer_thread_fd(timer_thread_pipe.low[1]);
}
}
/*
* system_working check is required because vm and main_thread are
* freed during shutdown
*/
if (sig && system_working) {
volatile rb_execution_context_t *ec;
rb_vm_t *vm = GET_VM();
rb_thread_t *mth;
/* VM-dependent API is not available for this function */
static void
consume_communication_pipe(int fd)
{
#define CCP_READ_BUFF_SIZE 1024
/* buffer can be shared because no one refers to them. */
static char buff[CCP_READ_BUFF_SIZE];
ssize_t result;
/*
* FIXME: root VM and main_thread should be static and not
* on heap for maximum safety (and startup/shutdown speed)
*/
if (!vm) return;
mth = vm->main_thread;
if (!mth || !system_working) return;
while (1) {
result = read(fd, buff, sizeof(buff));
if (result == 0) {
return;
}
else if (result < 0) {
int e = errno;
switch (e) {
case EINTR:
continue; /* retry */
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
return;
default:
async_bug_fd("consume_communication_pipe: read", e, fd);
}
/* this relies on GC for grace period before cont_free */
ec = ACCESS_ONCE(rb_execution_context_t *, mth->ec);
if (ec) RUBY_VM_SET_TRAP_INTERRUPT(ec);
}
}
}
@ -1350,6 +1370,7 @@ set_nonblock(int fd)
rb_sys_fail(0);
}
/* communication pipe with timer thread and signal handler */
static int
setup_communication_pipe_internal(int pipes[2])
{
@ -1374,108 +1395,6 @@ setup_communication_pipe_internal(int pipes[2])
return 0;
}
/* communication pipe with timer thread and signal handler */
static int
setup_communication_pipe(void)
{
rb_pid_t owner = timer_thread_pipe.owner_process;
if (owner && owner != getpid()) {
CLOSE_INVALIDATE(normal[0]);
CLOSE_INVALIDATE(normal[1]);
CLOSE_INVALIDATE(low[0]);
CLOSE_INVALIDATE(low[1]);
}
if (setup_communication_pipe_internal(timer_thread_pipe.normal) < 0) {
return errno;
}
if (setup_communication_pipe_internal(timer_thread_pipe.low) < 0) {
return errno;
}
return 0;
}
/**
* Let the timer thread sleep a while.
*
* The timer thread sleeps until woken up by rb_thread_wakeup_timer_thread() if only one Ruby thread is running.
* @pre the calling context is in the timer thread.
*/
static inline void
timer_thread_sleep(rb_vm_t *vm)
{
int result;
int need_polling;
struct pollfd pollfds[2];
pollfds[0].fd = timer_thread_pipe.normal[0];
pollfds[0].events = POLLIN;
pollfds[1].fd = timer_thread_pipe.low[0];
pollfds[1].events = POLLIN;
need_polling = !ubf_threads_empty();
if (SIGCHLD_LOSSY && !need_polling) {
rb_native_mutex_lock(&vm->waitpid_lock);
if (!list_empty(&vm->waiting_pids) || !list_empty(&vm->waiting_grps)) {
need_polling = 1;
}
rb_native_mutex_unlock(&vm->waitpid_lock);
}
if (vm->gvl.waiting > 0 || need_polling) {
/* polling (TIME_QUANTUM_USEC usec) */
result = poll(pollfds, 1, TIME_QUANTUM_USEC/1000);
}
else {
/* wait (infinite) */
result = poll(pollfds, numberof(pollfds), -1);
}
if (result == 0) {
/* maybe timeout */
}
else if (result > 0) {
consume_communication_pipe(timer_thread_pipe.normal[0]);
consume_communication_pipe(timer_thread_pipe.low[0]);
}
else { /* result < 0 */
int e = errno;
switch (e) {
case EBADF:
case EINVAL:
case ENOMEM: /* from Linux man */
case EFAULT: /* from FreeBSD man */
rb_async_bug_errno("thread_timer: select", e);
default:
/* ignore */;
}
}
}
#endif /* TIMER_THREAD_SLEEPY */
#if TIMER_IMPL == TIMER_THREAD_BUSY
# define PER_NANO 1000000000
void rb_thread_wakeup_timer_thread(void) {}
static void rb_thread_wakeup_timer_thread_low(void) {}
static rb_nativethread_lock_t timer_thread_lock;
static rb_nativethread_cond_t timer_thread_cond;
static inline void
timer_thread_sleep(rb_vm_t *unused)
{
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = TIME_QUANTUM_USEC * 1000;
ts = native_cond_timeout(&timer_thread_cond, ts);
native_cond_timedwait(&timer_thread_cond, &timer_thread_lock, &ts);
}
#endif /* TIMER_IMPL == TIMER_THREAD_BUSY */
#if !defined(SET_CURRENT_THREAD_NAME) && defined(__linux__) && defined(PR_SET_NAME)
# define SET_CURRENT_THREAD_NAME(name) prctl(PR_SET_NAME, name)
#endif
@ -1526,137 +1445,26 @@ native_set_another_thread_name(rb_nativethread_id_t thread_id, VALUE name)
return name;
}
static void *
thread_timer(void *p)
{
rb_vm_t *vm = p;
#ifdef HAVE_PTHREAD_SIGMASK /* mainly to enable SIGCHLD */
{
sigset_t mask;
sigemptyset(&mask);
pthread_sigmask(SIG_SETMASK, &mask, NULL);
}
#endif
if (TT_DEBUG) WRITE_CONST(2, "start timer thread\n");
#ifdef SET_CURRENT_THREAD_NAME
SET_CURRENT_THREAD_NAME("ruby-timer-thr");
#endif
#if TIMER_IMPL == TIMER_THREAD_BUSY
rb_native_mutex_initialize(&timer_thread_lock);
rb_native_cond_initialize(&timer_thread_cond);
rb_native_mutex_lock(&timer_thread_lock);
#endif
while (system_working > 0) {
/* timer function */
ubf_wakeup_all_threads();
timer_thread_function(0);
if (TT_DEBUG) WRITE_CONST(2, "tick\n");
/* wait */
timer_thread_sleep(vm);
}
#if TIMER_IMPL == TIMER_THREAD_BUSY
rb_native_mutex_unlock(&timer_thread_lock);
rb_native_cond_destroy(&timer_thread_cond);
rb_native_mutex_destroy(&timer_thread_lock);
#endif
if (TT_DEBUG) WRITE_CONST(2, "finish timer thread\n");
return NULL;
}
#if (TIMER_IMPL & TIMER_THREAD_MASK)
static void
rb_thread_create_timer_thread(void)
{
if (!timer_thread.created) {
size_t stack_size = 0;
int err;
pthread_attr_t attr;
rb_vm_t *vm = GET_VM();
/* we only create the pipe, and lazy-spawn */
rb_pid_t current = getpid();
rb_pid_t owner = timer_thread_pipe.owner_process;
err = pthread_attr_init(&attr);
if (err != 0) {
rb_warn("pthread_attr_init failed for timer: %s, scheduling broken",
strerror(err));
return;
}
# ifdef PTHREAD_STACK_MIN
{
size_t stack_min = PTHREAD_STACK_MIN; /* may be dynamic, get only once */
const size_t min_size = (4096 * 4);
/* Allocate the machine stack for the timer thread
* at least 16KB (4 pages). FreeBSD 8.2 AMD64 causes
* machine stack overflow only with PTHREAD_STACK_MIN.
*/
enum {
needs_more_stack =
#if defined HAVE_VALGRIND_MEMCHECK_H && defined __APPLE__
1
#else
THREAD_DEBUG != 0
#endif
};
stack_size = stack_min;
if (stack_size < min_size) stack_size = min_size;
if (needs_more_stack) {
stack_size += +((BUFSIZ - 1) / stack_min + 1) * stack_min;
}
err = pthread_attr_setstacksize(&attr, stack_size);
if (err != 0) {
rb_bug("pthread_attr_setstacksize(.., %"PRIuSIZE") failed: %s",
stack_size, strerror(err));
}
}
# endif
if (owner && owner != current) {
CLOSE_INVALIDATE(normal[0]);
CLOSE_INVALIDATE(normal[1]);
}
#if TIMER_IMPL == TIMER_THREAD_SLEEPY
err = setup_communication_pipe();
if (err) return;
#endif /* TIMER_THREAD_SLEEPY */
if (setup_communication_pipe_internal(timer_thread_pipe.normal) < 0) return;
/* create timer thread */
if (timer_thread.created) {
rb_bug("rb_thread_create_timer_thread: Timer thread was already created\n");
}
err = pthread_create(&timer_thread.id, &attr, thread_timer, vm);
pthread_attr_destroy(&attr);
if (err == EINVAL) {
/*
* Even if we are careful with our own stack use in thread_timer(),
* any third-party libraries (eg libkqueue) which rely on __thread
* storage can cause small stack sizes to fail. So lets hope the
* default stack size is enough for them:
*/
stack_size = 0;
err = pthread_create(&timer_thread.id, NULL, thread_timer, vm);
}
if (err != 0) {
rb_warn("pthread_create failed for timer: %s, scheduling broken",
strerror(err));
if (stack_size) {
rb_warn("timer thread stack size: %"PRIuSIZE, stack_size);
}
else {
rb_warn("timer thread stack size: system default");
}
VM_ASSERT(err == 0);
return;
}
#if TIMER_IMPL == TIMER_THREAD_SLEEPY
/* validate pipe on this process */
timer_thread_pipe.owner_process = getpid();
#endif /* TIMER_THREAD_SLEEPY */
timer_thread.created = 1;
if (owner != current) {
/* validate pipe on this process */
sigwait_th = THREAD_INVALID;
timer_thread_pipe.owner_process = current;
}
}
#endif /* TIMER_IMPL & TIMER_THREAD_MASK */
static int
native_stop_timer_thread(void)
@ -1665,24 +1473,6 @@ native_stop_timer_thread(void)
stopped = --system_working <= 0;
if (TT_DEBUG) fprintf(stderr, "stop timer thread\n");
if (stopped) {
#if TIMER_IMPL == TIMER_THREAD_SLEEPY
/* kick timer thread out of sleep */
rb_thread_wakeup_timer_thread_fd(timer_thread_pipe.normal[1]);
#endif
/* timer thread will stop looping when system_working <= 0: */
native_thread_join(timer_thread.id);
/*
* don't care if timer_thread_pipe may fill up at this point.
* If we restart timer thread, signals will be processed, if
* we don't, it's because we're in a different child
*/
if (TT_DEBUG) fprintf(stderr, "joined timer thread\n");
timer_thread.created = 0;
}
return stopped;
}
@ -1739,20 +1529,14 @@ ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
int
rb_reserved_fd_p(int fd)
{
#if TIMER_IMPL == TIMER_THREAD_SLEEPY
if ((fd == timer_thread_pipe.normal[0] ||
fd == timer_thread_pipe.normal[1] ||
fd == timer_thread_pipe.low[0] ||
fd == timer_thread_pipe.low[1]) &&
fd == timer_thread_pipe.normal[1]) &&
timer_thread_pipe.owner_process == getpid()) { /* async-signal-safe */
return 1;
}
else {
return 0;
}
#else
return 0;
#endif
}
rb_nativethread_id_t
@ -1803,7 +1587,7 @@ rb_sleep_cond_get(const rb_execution_context_t *ec)
{
rb_thread_t *th = rb_ec_thread_ptr(ec);
return &th->native_thread_data.sleep_cond;
return &th->native_thread_data.cond.intr;
}
void
@ -1813,4 +1597,126 @@ rb_sleep_cond_put(rb_nativethread_cond_t *cond)
}
#endif /* USE_NATIVE_SLEEP_COND */
int
rb_sigwait_fd_get(const rb_thread_t *th)
{
if (timer_thread_pipe.owner_process == getpid() &&
timer_thread_pipe.normal[0] >= 0) {
if (ATOMIC_PTR_CAS(sigwait_th, THREAD_INVALID, th) == THREAD_INVALID) {
return timer_thread_pipe.normal[0];
}
}
return -1; /* avoid thundering herd */
}
void
rb_sigwait_fd_put(const rb_thread_t *th, int fd)
{
const rb_thread_t *old;
VM_ASSERT(timer_thread_pipe.normal[0] == fd);
old = ATOMIC_PTR_EXCHANGE(sigwait_th, THREAD_INVALID);
if (old != th) assert(old == th);
}
#ifndef HAVE_PPOLL
/* TODO: don't ignore sigmask */
static int
ruby_ppoll(struct pollfd *fds, nfds_t nfds,
const struct timespec *ts, const sigset_t *sigmask)
{
int timeout_ms;
if (ts) {
int tmp, tmp2;
if (ts->tv_sec > INT_MAX/1000)
timeout_ms = INT_MAX;
else {
tmp = (int)(ts->tv_sec * 1000);
/* round up 1ns to 1ms to avoid excessive wakeups for <1ms sleep */
tmp2 = (int)((ts->tv_nsec + 999999L) / (1000L * 1000L));
if (INT_MAX - tmp < tmp2)
timeout_ms = INT_MAX;
else
timeout_ms = (int)(tmp + tmp2);
}
}
else
timeout_ms = -1;
return poll(fds, nfds, timeout_ms);
}
# define ppoll(fds,nfds,ts,sigmask) ruby_ppoll((fds),(nfds),(ts),(sigmask))
#endif
void
rb_sigwait_sleep(rb_thread_t *th, int sigwait_fd, const struct timespec *ts)
{
struct pollfd pfd;
pfd.fd = sigwait_fd;
pfd.events = POLLIN;
if (!BUSY_WAIT_SIGNALS && ubf_threads_empty()) {
(void)ppoll(&pfd, 1, ts, 0);
check_signals_nogvl(th, sigwait_fd);
}
else {
struct timespec end, diff;
const struct timespec *to;
int n = 0;
if (ts) {
getclockofday(&end);
timespec_add(&end, ts);
diff = *ts;
ts = &diff;
}
/*
* tricky: this needs to return on spurious wakeup (no auto-retry).
* But we also need to distinguish between periodic quantum
* wakeups, so we care about the result of consume_communication_pipe
*/
for (;;) {
to = sigwait_timeout(th, sigwait_fd, ts, &n);
if (n) return;
n = ppoll(&pfd, 1, to, 0);
if (check_signals_nogvl(th, sigwait_fd))
return;
if (n || (th && RUBY_VM_INTERRUPTED(th->ec)))
return;
if (ts && timespec_update_expire(&diff, &end))
return;
}
}
}
static void
native_sleep(rb_thread_t *th, struct timespec *timeout_rel)
{
int sigwait_fd = rb_sigwait_fd_get(th);
if (sigwait_fd >= 0) {
rb_native_mutex_lock(&th->interrupt_lock);
th->unblock.func = ubf_sigwait;
rb_native_mutex_unlock(&th->interrupt_lock);
GVL_UNLOCK_BEGIN(th);
if (!RUBY_VM_INTERRUPTED(th->ec)) {
rb_sigwait_sleep(th, sigwait_fd, timeout_rel);
}
else {
check_signals_nogvl(th, sigwait_fd);
}
unblock_function_clear(th);
GVL_UNLOCK_END(th);
rb_sigwait_fd_put(th, sigwait_fd);
rb_sigwait_fd_migrate(th->vm);
}
else {
native_cond_sleep(th, timeout_rel);
}
}
#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */

Просмотреть файл

@ -22,7 +22,19 @@ typedef pthread_cond_t rb_nativethread_cond_t;
typedef struct native_thread_data_struct {
struct list_node ubf_list;
rb_nativethread_cond_t sleep_cond;
#if defined(__GLIBC__) || defined(__FreeBSD__)
union
#else
/*
* assume the platform condvars are badly implemented and have a
* "memory" of which mutex they're associated with
*/
struct
#endif
{
rb_nativethread_cond_t intr; /* th->interrupt_lock */
rb_nativethread_cond_t gvlq; /* vm->gvl.lock */
} cond;
} native_thread_data_t;
#undef except
@ -32,12 +44,12 @@ typedef struct native_thread_data_struct {
typedef struct rb_global_vm_lock_struct {
/* fast path */
unsigned long acquired;
const struct rb_thread_struct *acquired;
rb_nativethread_lock_t lock;
/* slow path */
volatile unsigned long waiting;
rb_nativethread_cond_t cond;
struct list_head waitq;
const struct rb_thread_struct *timer;
/* yield */
rb_nativethread_cond_t switch_cond;

Просмотреть файл

@ -20,6 +20,8 @@
#define native_thread_yield() Sleep(0)
#define unregister_ubf_list(th)
#define ubf_wakeup_all_threads() do {} while (0)
#define ubf_threads_empty() (1)
static volatile DWORD ruby_native_thread_key = TLS_OUT_OF_INDEXES;
@ -680,18 +682,21 @@ static struct {
static unsigned long __stdcall
timer_thread_func(void *dummy)
{
rb_vm_t *vm = GET_VM();
thread_debug("timer_thread\n");
rb_w32_set_thread_description(GetCurrentThread(), L"ruby-timer-thread");
while (WaitForSingleObject(timer_thread.lock, TIME_QUANTUM_USEC/1000) ==
WAIT_TIMEOUT) {
timer_thread_function(dummy);
timer_thread_function();
ruby_sigchld_handler(vm); /* probably no-op */
rb_threadptr_check_signal(vm->main_thread);
}
thread_debug("timer killed\n");
return 0;
}
void
rb_thread_wakeup_timer_thread(void)
rb_thread_wakeup_timer_thread(int sig)
{
/* do nothing */
}
@ -768,6 +773,26 @@ rb_reserved_fd_p(int fd)
return 0;
}
int
rb_sigwait_fd_get(rb_thread_t *th)
{
return -1; /* TODO */
}
NORETURN(void rb_sigwait_fd_put(rb_thread_t *, int));
void
rb_sigwait_fd_put(rb_thread_t *th, int fd)
{
rb_bug("not implemented, should not be called");
}
NORETURN(void rb_sigwait_sleep(const rb_thread_t *, int, const struct timespec *));
void
rb_sigwait_sleep(const rb_thread_t *th, int fd, const struct timespec *ts)
{
rb_bug("not implemented, should not be called");
}
rb_nativethread_id_t
rb_nativethread_self(void)
{

Просмотреть файл

@ -564,10 +564,12 @@ typedef struct rb_vm_struct {
VALUE self;
rb_global_vm_lock_t gvl;
rb_nativethread_lock_t thread_destruct_lock;
struct rb_thread_struct *main_thread;
struct rb_thread_struct *running_thread;
/* persists across uncontended GVL release/acquire for time slice */
const struct rb_thread_struct *running_thread;
#ifdef USE_SIGALTSTACK
void *main_altstack;
#endif
@ -1583,7 +1585,7 @@ void rb_vm_pop_frame(rb_execution_context_t *ec);
void rb_thread_start_timer_thread(void);
void rb_thread_stop_timer_thread(void);
void rb_thread_reset_timer_thread(void);
void rb_thread_wakeup_timer_thread(void);
void rb_thread_wakeup_timer_thread(int);
static inline void
rb_vm_living_threads_init(rb_vm_t *vm)