* gc.c (free_unused_heaps): preserve last used heap segment to

reduce malloc() call.

* gc.c (HEAP_SIZE): use smaller heap segment (2K) for more chance
  to be freed.  based on patch from authorNari <authornari at gmail.com>.

* gc.c (rb_newobj_from_heap): eventually allocate heap segments.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@16194 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
matz 2008-04-25 09:03:32 +00:00
Родитель 0023e16865
Коммит 4d93af26df
2 изменённых файлов: 150 добавлений и 55 удалений

Просмотреть файл

@ -1,3 +1,15 @@
Fri Apr 25 17:56:25 2008 Yukihiro Matsumoto <matz@ruby-lang.org>
* gc.c (free_unused_heaps): preserve last used heap segment to
reduce malloc() call.
Fri Apr 25 17:54:10 2008 Yukihiro Matsumoto <matz@ruby-lang.org>
* gc.c (HEAP_SIZE): use smaller heap segment (2K) for more chance
to be freed. based on patch from authorNari <authornari at gmail.com>.
* gc.c (rb_newobj_from_heap): eventually allocate heap segments.
Fri Apr 25 15:35:36 2008 Nobuyoshi Nakada <nobu@ruby-lang.org>
* process.c (rb_spawn): rb_exec_initarg() returns new argc and argv in

193
gc.c
Просмотреть файл

@ -129,7 +129,6 @@ typedef struct RVALUE {
#pragma pack(pop)
#endif
#define HEAPS_INCREMENT 10
struct heaps_slot {
void *membase;
RVALUE *slot;
@ -150,12 +149,14 @@ typedef struct {
unsigned long increase;
} params;
struct {
int slots;
int delta;
int increment;
struct heaps_slot *ptr;
int length;
int used;
RVALUE *freelist;
RVALUE *range[2];
RVALUE *freed;
} heap;
struct {
int dont_gc;
@ -185,6 +186,9 @@ static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT}, {HEAP_MIN_SLOTS}};
#define freelist objspace->heap.freelist
#define lomem objspace->heap.range[0]
#define himem objspace->heap.range[1]
#define objects_delta objspace->heap.delta
#define heaps_inc objspace->heap.increment
#define heaps_freed objspace->heap.freed
#define dont_gc objspace->flags.dont_gc
#define during_gc objspace->flags.during_gc
#define need_call_final objspace->final.need_call
@ -201,10 +205,30 @@ rb_objspace_alloc(void)
rb_objspace_t *objspace = ALLOC(rb_objspace_t);
memset(objspace, 0, sizeof(*objspace));
malloc_limit = GC_MALLOC_LIMIT;
heap_slots = HEAP_MIN_SLOTS;
objects_delta = HEAP_MIN_SLOTS;
return objspace;
}
/* tiny heap size */
/* 32KB */
/*#define HEAP_SIZE 0x8000 */
/* 128KB */
/*#define HEAP_SIZE 0x20000 */
/* 64KB */
/*#define HEAP_SIZE 0x10000 */
/* 16KB */
#define HEAP_SIZE 0x4000
/* 8KB */
/*#define HEAP_SIZE 0x2000 */
/* 4KB */
/*#define HEAP_SIZE 0x1000 */
/* 2KB */
/*#define HEAP_SIZE 0x800 */
#define HEAP_OBJ_LIMIT (HEAP_SIZE / sizeof(struct RVALUE))
#define FREE_MIN 4096
#define objspace (&rb_objspace)
extern st_table *rb_class_tbl;
@ -227,8 +251,6 @@ size_t rb_gc_stack_maxsize = 65535*sizeof(VALUE);
size_t rb_gc_stack_maxsize = 655300*sizeof(VALUE);
#endif
static void run_final(VALUE obj);
static int garbage_collect(void);
@ -460,42 +482,38 @@ rb_gc_unregister_address(VALUE *addr)
}
}
static void
add_heap(void)
allocate_heaps(void)
{
struct heaps_slot *p;
int length;
heaps_length += objects_delta / HEAP_OBJ_LIMIT;
length = heaps_length*sizeof(struct heaps_slot);
RUBY_CRITICAL(
if (heaps_used > 0) {
p = (struct heaps_slot *)realloc(heaps, length);
if (p) heaps = p;
}
else {
p = heaps = (struct heaps_slot *)malloc(length);
}
);
if (p == 0) rb_memerror();
}
static void
assign_heap_slot(void)
{
RVALUE *p, *pend, *membase;
long hi, lo, mid;
if (heaps_used == heaps_length) {
/* Realloc heaps */
struct heaps_slot *p;
int length;
heaps_length += HEAPS_INCREMENT;
length = heaps_length*sizeof(struct heaps_slot);
RUBY_CRITICAL(
if (heaps_used > 0) {
p = (struct heaps_slot *)realloc(heaps, length);
if (p) heaps = p;
}
else {
p = heaps = (struct heaps_slot *)malloc(length);
});
if (p == 0) rb_memerror();
}
for (;;) {
RUBY_CRITICAL(p = (RVALUE*)malloc(sizeof(RVALUE)*(heap_slots+1)));
if (p == 0) {
if (heap_slots == HEAP_MIN_SLOTS) {
rb_memerror();
}
heap_slots = HEAP_MIN_SLOTS;
}
else {
break;
}
}
int objs;
objs = HEAP_OBJ_LIMIT;
RUBY_CRITICAL(p = (RVALUE*)malloc(HEAP_SIZE));
if (p == 0)
rb_memerror();
lo = 0;
hi = heaps_used;
@ -514,21 +532,25 @@ add_heap(void)
}
membase = p;
if ((VALUE)p % sizeof(RVALUE) == 0)
heap_slots += 1;
else
if ((VALUE)p % sizeof(RVALUE) != 0) {
p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE)));
if ((membase + HEAP_SIZE) < (p + HEAP_SIZE)) {
objs--;
}
}
if (hi < heaps_used) {
MEMMOVE(&heaps[hi+1], &heaps[hi], struct heaps_slot, heaps_used - hi);
}
heaps[hi].membase = membase;
heaps[hi].slot = p;
heaps[hi].limit = heap_slots;
pend = p + heap_slots;
heaps[hi].limit = objs;
pend = p + objs;
if (lomem == 0 || lomem > p) lomem = p;
if (himem < pend) himem = pend;
heaps_used++;
heap_slots *= 1.8;
while (p < pend) {
p->as.free.flags = 0;
@ -538,15 +560,56 @@ add_heap(void)
}
}
static void
add_heap(void)
{
int add, i;
add = objects_delta / HEAP_OBJ_LIMIT;
objects_delta *= 1.8;
if ((heaps_used + add) > heaps_length) {
allocate_heaps();
}
for (i = 0; i < add; i++) {
assign_heap_slot();
}
heaps_inc = 0;
}
static void
set_heaps_increment(void)
{
heaps_inc += objects_delta / HEAP_OBJ_LIMIT;
objects_delta *= 1.8;
if ((heaps_used + heaps_inc) > heaps_length) {
allocate_heaps();
}
}
static int
heaps_increment(void)
{
if (heaps_inc > 0) {
assign_heap_slot();
heaps_inc--;
return Qtrue;
}
return Qfalse;
}
#define RANY(o) ((RVALUE*)(o))
static VALUE
rb_newobj_from_heap(void)
{
VALUE obj;
if (ruby_gc_stress || !freelist) {
if(!garbage_collect()) {
if (!heaps_increment() && !garbage_collect()) {
rb_memerror();
}
}
@ -559,6 +622,7 @@ rb_newobj_from_heap(void)
RANY(obj)->file = rb_sourcefile();
RANY(obj)->line = rb_sourceline();
#endif
return obj;
}
@ -1191,10 +1255,16 @@ static void
free_unused_heaps(void)
{
int i, j;
RVALUE *last = 0;
for (i = j = 1; j < heaps_used; i++) {
if (heaps[i].limit == 0) {
free(heaps[i].membase);
if (!last) {
last = heaps[i].membase;
}
else {
free(heaps[i].membase);
}
heaps_used--;
}
else {
@ -1204,6 +1274,18 @@ free_unused_heaps(void)
j++;
}
}
if (last) {
if (last < heaps_freed) {
free(heaps_freed);
heaps_freed = last;
}
else {
free(last);
}
}
if (i != j) {
objects_delta = heaps_used * HEAP_OBJ_LIMIT;
}
}
void rb_gc_abort_threads(void);
@ -1214,15 +1296,14 @@ gc_sweep(void)
RVALUE *p, *pend, *final_list;
int freed = 0;
int i;
unsigned long live = 0;
unsigned long free_min = 0;
unsigned long live = 0, free_min = 0, do_heap_free = 0;
for (i = 0; i < heaps_used; i++) {
free_min += heaps[i].limit;
}
free_min = free_min * 0.2;
if (free_min < FREE_MIN)
do_heap_free = (heaps_used * HEAP_OBJ_LIMIT) * 0.65;
free_min = (heaps_used * HEAP_OBJ_LIMIT) * 0.2;
if (free_min < FREE_MIN) {
do_heap_free = heaps_used * HEAP_OBJ_LIMIT;
free_min = FREE_MIN;
}
freelist = 0;
final_list = deferred_final_list;
@ -1261,7 +1342,7 @@ gc_sweep(void)
}
p++;
}
if (n == heaps[i].limit && freed > free_min) {
if (n == heaps[i].limit && freed > do_heap_free) {
RVALUE *pp;
heaps[i].limit = 0;
@ -1280,7 +1361,8 @@ gc_sweep(void)
}
malloc_increase = 0;
if (freed < free_min) {
add_heap();
set_heaps_increment();
heaps_increment();
}
during_gc = 0;
@ -1566,6 +1648,7 @@ garbage_collect(void)
}
gc_sweep();
if (GC_NOTIFY) printf("end garbage_collect()\n");
return Qtrue;
}