* array.c (rb_ary_product): generalized product, now takes

arbitrary number of arrays.  a patch from David Flanagan
  <david AT davidflanagan.com>.  [ruby-core:12346]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@13598 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
matz 2007-10-02 03:33:53 +00:00
Родитель 437565235f
Коммит 77a6c82eab
3 изменённых файлов: 70 добавлений и 14 удалений

Просмотреть файл

@ -1,3 +1,9 @@
Tue Oct 2 12:30:40 2007 Yukihiro Matsumoto <matz@ruby-lang.org>
* array.c (rb_ary_product): generalized product, now takes
arbitrary number of arrays. a patch from David Flanagan
<david AT davidflanagan.com>. [ruby-core:12346]
Tue Oct 2 08:25:50 2007 Yukihiro Matsumoto <matz@ruby-lang.org>
* array.c (rb_ary_permutation): implementation contributed from

72
array.c
Просмотреть файл

@ -2967,7 +2967,8 @@ rb_ary_cycle(VALUE ary)
* values: the Ruby array that holds the actual values to permute
*/
static void
permute0(long n, long r, long p[], long index, int used[], VALUE values) {
permute0(long n, long r, long *p, long index, int *used, VALUE values)
{
long i,j;
for(i = 0; i < n; i++) {
if (used[i] == 0) {
@ -3132,30 +3133,73 @@ rb_ary_combination(VALUE ary, VALUE num)
/*
* call-seq:
* ary.product(ary2)
* ary.product(other_ary, ...)
*
* Returns an array of all combinations of elements from both arrays.
*
* [1,2,3].product([4,5]) #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
* [1,2].product([1,2]) #=> [[1,1],[1,2],[2,1],[2,2]]
* Returns an array of all combinations of elements from all arrays.
* The length of the returned array is the product of the length
* of ary and the argument arrays
*
* [1,2,3].product([4,5]) # => [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
* [1,2].product([1,2]) # => [[1,1],[1,2],[2,1],[2,2]]
* [1,2].product([3,4],[5,6]) # => [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
* # [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
* [1,2].product() # => [[1],[2]]
* [1,2].product([]) # => []
*/
static VALUE
rb_ary_product(VALUE ary, VALUE a2)
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
VALUE result = rb_ary_new2(RARRAY_LEN(ary));
long i, j;
int n = argc+1; /* How many arrays we're operating on */
VALUE arrays[n]; /* The arrays we're computing the product of */
int counters[n]; /* The current position in each one */
VALUE result; /* The array we'll be returning */
long i,j;
for (i=0; i<RARRAY_LEN(ary); i++) {
for (j=0; j<RARRAY_LEN(a2); j++) {
rb_ary_push(result, rb_ary_new3(2, rb_ary_entry(ary, i),
rb_ary_entry(a2, j)));
/* initialize the arrays of arrays */
arrays[0] = ary;
for(i = 1; i < n; i++) arrays[i] = argv[i-1];
/* initialize the counters for the arrays */
for(i = 0; i < n; i++) counters[i] = 0;
/* Compute the length of the result array; return [] if any is empty */
long resultlen = 1;
for(i = 0; i < n; i++) {
resultlen *= RARRAY_LEN(arrays[i]);
if (resultlen == 0) return rb_ary_new2(0);
}
/* Otherwise, allocate and fill in an array of results */
result = rb_ary_new2(resultlen);
for(i = 0; i < resultlen; i++) {
/* fill in one subarray */
VALUE subarray = rb_ary_new2(n);
for(j = 0; j < n; j++) {
rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
}
/* put it on the result array */
rb_ary_push(result, subarray);
/*
* Increment the last counter. If it overflows, reset to 0
* and increment the one before it.
*/
int m = n-1;
counters[m]++;
while(m >= 0 && counters[m] == RARRAY_LEN(arrays[m])) {
counters[m] = 0;
m--;
counters[m]++;
}
}
return result;
}
/* Arrays are ordered, integer-indexed collections of any object.
* Array indexing starts at 0, as in C or Java. A negative index is
* assumed to be relative to the end of the array---that is, an index of -1
@ -3256,7 +3300,7 @@ Init_Array(void)
rb_define_method(rb_cArray, "cycle", rb_ary_cycle, 0);
rb_define_method(rb_cArray, "permutation", rb_ary_permutation, 1);
rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
rb_define_method(rb_cArray, "product", rb_ary_product, 1);
rb_define_method(rb_cArray, "product", rb_ary_product, -1);
id_cmp = rb_intern("<=>");
}

Просмотреть файл

@ -1190,6 +1190,12 @@ class TestArray < Test::Unit::TestCase
assert_equal(@cls[[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]],
@cls[1,2,3].product([4,5]))
assert_equal(@cls[[1,1],[1,2],[2,1],[2,2]], @cls[1,2].product([1,2]))
assert_equal(@cls[[1,3,5],[1,3,6],[1,4,5],[1,4,6],
[2,3,5],[2,3,6],[2,4,5],[2,4,6]],
@cls[1,2].product([3,4],[5,6]))
assert_equal(@cls[[1],[2]], @cls[1,2].product)
assert_equal(@cls[], @cls[1,2].product([]))
end
def test_permutation