*ext/openssl/ossl_pkey.c: Add documentation.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@31639 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
emboss 2011-05-18 22:22:34 +00:00
Родитель b205e55953
Коммит 7f7fef1813
2 изменённых файлов: 113 добавлений и 0 удалений

Просмотреть файл

@ -1,3 +1,7 @@
Thu May 19 07:19:16 2011 Martin Bosslet <Martin.Bosslet@googlemail.com>
* ext/openssl/ossl_pkey.c: Add documentation.
Thu May 19 07:06:56 2011 Eric Hodel <drbrain@segment7.net>
* lib/benchmark.rb: Fix indentation.

Просмотреть файл

@ -150,6 +150,13 @@ ossl_pkey_alloc(VALUE klass)
return obj;
}
/*
* call-seq:
* PKeyClass.new -> self
*
* Because PKey is an abstract class, actually calling this method explicitly
* will raise a +NotImplementedError+.
*/
static VALUE
ossl_pkey_initialize(VALUE self)
{
@ -159,6 +166,23 @@ ossl_pkey_initialize(VALUE self)
return self;
}
/*
* call-seq:
* pkey.sign(digest, data) -> String
*
* To sign the +String+ +data+, +digest+, an instance of OpenSSL::Digest, must
* be provided. The return value is again a +String+ containing the signature.
* A PKeyError is raised should errors occur.
* Any previous state of the +Digest+ instance is irrelevant to the signature
* outcome, the digest instance is reset to its initial state during the
* operation.
*
* == Example
* data = 'Sign me!'
* digest = OpenSSL::Digest::SHA256.new
* pkey = OpenSSL::PKey::RSA.new(2048)
* signature = pkey.sign(digest, data)
*/
static VALUE
ossl_pkey_sign(VALUE self, VALUE digest, VALUE data)
{
@ -183,6 +207,27 @@ ossl_pkey_sign(VALUE self, VALUE digest, VALUE data)
return str;
}
/*
* call-seq:
* pkey.verify(digest, signature, data) -> String
*
* To verify the +String+ +signature+, +digest+, an instance of
* OpenSSL::Digest, must be provided to re-compute the message digest of the
* original +data+, also a +String+. The return value is +true+ if the
* signature is valid, +false+ otherwise. A PKeyError is raised should errors
* occur.
* Any previous state of the +Digest+ instance is irrelevant to the validation
* outcome, the digest instance is reset to its initial state during the
* operation.
*
* == Example
* data = 'Sign me!'
* digest = OpenSSL::Digest::SHA256.new
* pkey = OpenSSL::PKey::RSA.new(2048)
* signature = pkey.sign(digest, data)
* pub_key = pkey.public_key
* puts pub_key.verify(digest, signature, data) # => true
*/
static VALUE
ossl_pkey_verify(VALUE self, VALUE digest, VALUE sig, VALUE data)
{
@ -215,10 +260,74 @@ Init_ossl_pkey()
mOSSL = rb_define_module("OpenSSL"); /* let rdoc know about mOSSL */
#endif
/* Document-module: OpenSSL::PKey
*
* == Asymmetric Public Key Algorithms
*
* Asymmetric public key algorithms solve the problem of establishing and
* sharing secret keys to en-/decrypt messages. The key in such an
* algorithm consists of two parts: a public key that may be distributed
* to others and a private key that needs to remain secret.
*
* Messages encrypted with a public key can only be encrypted by
* recipients that are in possession of the associated private key.
* Since public key algorithms are considerably slower than symmetric
* key algorithms (cf. OpenSSL::Cipher) they are often used to establish
* a symmetric key shared between two parties that are in possession of
* each other's public key.
*
* Asymmetric algorithms offer a lot of nice features that are used in a
* lot of different areas. A very common application is the creation and
* validation of digital signatures. To sign a document, the signatory
* generally uses a message digest algorithm (cf. OpenSSL::Digest) to
* compute a digest of the document that is then encrypted (i.e. signed)
* using the private key. Anyone in possession of the public key may then
* verify the signature by computing the message digest of the original
* document on their own, decrypting the signature using the signatory's
* public key and comparing the result to the message digest they
* previously computed. The signature is valid if and only if the
* decrypted signature is equal to this message digest.
*
* The PKey module offers support for three popular public/private key
* algorithms:
* * RSA (OpenSSL::PKey::RSA)
* * DSA (OpenSSL::PKey::DSA)
* * Elliptic Curve Cryptography (OpenSSL::PKey::EC)
* Each of these implementations is in fact a sub-class of the abstract
* PKey class which offers the interface for supporting digital signatures
* in the form of PKey#sign and PKey#verify.
*
* == Diffie-Hellman Key Exchange
*
* Finally PKey also features OpenSSL::PKey::DH, an implementation of
* the Diffie-Hellman key exchange protocol based on discrete logarithms
* in finite fields, the same basis that DSA is built on.
* The Diffie-Hellman protocol can be used to exchange (symmetric) keys
* over insecure channels without needing any prior joint knowledge
* between the participating parties. As the security of DH demands
* relatively long "public keys" (i.e. the part that is overtly
* transmitted between participants) DH tends to be quite slow. If
* security or speed is your primary concern, OpenSSL::PKey::EC offers
* another implementation of the Diffie-Hellman protocol.
*
*/
mPKey = rb_define_module_under(mOSSL, "PKey");
/* Document-class: OpenSSL::PKey::PKeyError
*
*Raised when errors occur during PKey#sign or PKey#verify.
*/
ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);
/* Document-class: OpenSSL::PKey::PKey
*
* An abstract class that bundles signature creation (PKey#sign) and
* validation (PKey#verify) that is common to all implementations:
* * OpenSSL::PKey::RSA
* * OpenSSL::PKey::DSA
* * OpenSSL::PKey::EC
* * OpenSSL::PKey::DH
*/
cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);
rb_define_alloc_func(cPKey, ossl_pkey_alloc);