------------------------------------------------------------------------

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@6329 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
ser 2004-05-16 15:17:31 +00:00
Родитель ac1d9e7c2d
Коммит 8fd29e2019
8 изменённых файлов: 923 добавлений и 878 удалений

Просмотреть файл

@ -146,6 +146,12 @@ module REXML
def node_type
:attribute
end
def inspect
rv = ""
write( rv )
rv
end
end
end
#vim:ts=2 sw=2 noexpandtab:

Просмотреть файл

@ -176,68 +176,72 @@ module REXML
tag_stack = []
in_doctype = false
entities = nil
while true
event = parser.pull
case event[0]
when :end_document
return
when :start_element
tag_stack.push(event[1])
# find the observers for namespaces
build_context = build_context.add_element( event[1], event[2] )
when :end_element
tag_stack.pop
build_context = build_context.parent
when :text
if not in_doctype
if build_context[-1].instance_of? Text
build_context[-1] << event[1]
else
build_context.add(
Text.new( event[1], build_context.whitespace, nil, true )
) unless (
event[1].strip.size==0 and
build_context.ignore_whitespace_nodes
)
end
end
when :comment
c = Comment.new( event[1] )
build_context.add( c )
when :cdata
c = CData.new( event[1] )
build_context.add( c )
when :processing_instruction
build_context.add( Instruction.new( event[1], event[2] ) )
when :end_doctype
in_doctype = false
entities.each { |k,v| entities[k] = build_context.entities[k].value }
build_context = build_context.parent
when :start_doctype
doctype = DocType.new( event[1..-1], build_context )
build_context = doctype
entities = {}
in_doctype = true
when :attlistdecl
n = AttlistDecl.new( event[1..-1] )
build_context.add( n )
when :externalentity
n = ExternalEntity.new( event[1] )
build_context.add( n )
when :elementdecl
n = ElementDecl.new( event[1] )
build_context.add(n)
when :entitydecl
entities[ event[1] ] = event[2] unless event[2] =~ /PUBLIC|SYSTEM/
build_context.add(Entity.new(event))
when :notationdecl
n = NotationDecl.new( *event[1..-1] )
build_context.add( n )
when :xmldecl
x = XMLDecl.new( event[1], event[2], event[3] )
build_context.add( x )
end
end
begin
while true
event = parser.pull
case event[0]
when :end_document
return
when :start_element
tag_stack.push(event[1])
# find the observers for namespaces
build_context = build_context.add_element( event[1], event[2] )
when :end_element
tag_stack.pop
build_context = build_context.parent
when :text
if not in_doctype
if build_context[-1].instance_of? Text
build_context[-1] << event[1]
else
build_context.add(
Text.new( event[1], build_context.whitespace, nil, true )
) unless (
event[1].strip.size==0 and
build_context.ignore_whitespace_nodes
)
end
end
when :comment
c = Comment.new( event[1] )
build_context.add( c )
when :cdata
c = CData.new( event[1] )
build_context.add( c )
when :processing_instruction
build_context.add( Instruction.new( event[1], event[2] ) )
when :end_doctype
in_doctype = false
entities.each { |k,v| entities[k] = build_context.entities[k].value }
build_context = build_context.parent
when :start_doctype
doctype = DocType.new( event[1..-1], build_context )
build_context = doctype
entities = {}
in_doctype = true
when :attlistdecl
n = AttlistDecl.new( event[1..-1] )
build_context.add( n )
when :externalentity
n = ExternalEntity.new( event[1] )
build_context.add( n )
when :elementdecl
n = ElementDecl.new( event[1] )
build_context.add(n)
when :entitydecl
entities[ event[1] ] = event[2] unless event[2] =~ /PUBLIC|SYSTEM/
build_context.add(Entity.new(event))
when :notationdecl
n = NotationDecl.new( *event[1..-1] )
build_context.add( n )
when :xmldecl
x = XMLDecl.new( event[1], event[2], event[3] )
build_context.add( x )
end
end
rescue
raise ParseException.new( $!.message, parser.source, parser, $! )
end
end
end
end

Просмотреть файл

@ -67,6 +67,22 @@ module REXML
end
end
def inspect
rv = "<#@expanded_name"
@attributes.each_attribute do |attr|
rv << " "
attr.write( rv, 0 )
end unless @attributes.empty?
if children.size > 0
rv << " ... </>"
else
rv << "/>"
end
end
# Creates a shallow copy of self.
# d = Document.new "<a><b/><b/><c><d/></c></a>"
# new_a = d.root.clone

Просмотреть файл

@ -6,7 +6,7 @@ module REXML
array_utf8 = content.unpack('U*')
array_enc = []
array_utf8.each do |num|
if num <= 0xFF
if num <= 0x7F
array_enc << num
else
# Numeric entity (&#nnnn;); shard by Stefan Scholl

Просмотреть файл

@ -1,366 +1,372 @@
module REXML
# If you add a method, keep in mind two things:
# (1) the first argument will always be a list of nodes from which to
# filter. In the case of context methods (such as position), the function
# should return an array with a value for each child in the array.
# (2) all method calls from XML will have "-" replaced with "_".
# Therefore, in XML, "local-name()" is identical (and actually becomes)
# "local_name()"
module Functions
@@node = nil
# If you add a method, keep in mind two things:
# (1) the first argument will always be a list of nodes from which to
# filter. In the case of context methods (such as position), the function
# should return an array with a value for each child in the array.
# (2) all method calls from XML will have "-" replaced with "_".
# Therefore, in XML, "local-name()" is identical (and actually becomes)
# "local_name()"
module Functions
@@node = nil
@@index = nil
@@size = nil
@@variables = {}
@@namespace_context = {}
@@variables = {}
@@namespace_context = {}
def Functions::node=(value); @@node = value; end
def Functions::index=(value); @@index = value; end
def Functions::size=(value); @@size = value; end
def Functions::variables=(value); @@variables = value; end
def Functions::namespace_context=(value)
@@namespace_context = value
end
def Functions::node; @@node; end
def Functions::index; @@index; end
def Functions::size; @@size; end
def Functions::variables; @@variables; end
def Functions::namespace_context; @@namespace_context; end
def Functions::node=(value); @@node = value; end
def Functions::index=(value); @@index = value; end
def Functions::size=(value); @@size = value; end
def Functions::variables=(value); @@variables = value; end
def Functions::namespace_context=(value)
@@namespace_context = value
end
def Functions::node; @@node; end
def Functions::index; @@index; end
def Functions::size; @@size; end
def Functions::variables; @@variables; end
def Functions::namespace_context; @@namespace_context; end
def Functions::text( )
if @@node.node_type == :element
return @@node.text
elsif @@node.node_type == :text
return @@node.value
else
return false
end
end
def Functions::text( )
if @@node.node_type == :element
return @@node.text
elsif @@node.node_type == :text
return @@node.value
else
return false
end
end
def Functions::last( )
@@size
end
def Functions::last( )
@@size
end
def Functions::position( )
@@index
end
def Functions::position( )
@@index
end
def Functions::count( node_set )
node_set.size
end
def Functions::count( node_set )
node_set.size
end
# Since REXML is non-validating, this method is not implemented as it
# requires a DTD
def Functions::id( object )
end
# Since REXML is non-validating, this method is not implemented as it
# requires a DTD
def Functions::id( object )
end
# UNTESTED
def Functions::local_name( node_set=nil )
get_namespace( node_set ) do |node|
return node.local_name
end
end
# UNTESTED
def Functions::local_name( node_set=nil )
get_namespace( node_set ) do |node|
return node.local_name
end
end
def Functions::namespace_uri( node_set=nil )
get_namespace( node_set ) {|node| node.namespace}
end
def Functions::namespace_uri( node_set=nil )
get_namespace( node_set ) {|node| node.namespace}
end
def Functions::name( node_set=nil )
get_namespace( node_set ) do |node|
node.expanded_name
end
end
def Functions::name( node_set=nil )
get_namespace( node_set ) do |node|
node.expanded_name
end
end
# Helper method.
def Functions::get_namespace( node_set = nil )
if node_set == nil
yield @@node if defined? @@node.namespace
else
if node_set.namespace
yield node_set
else
return unless node_set.kind_of? Enumerable
node_set.each { |node| yield node if defined? node.namespace }
end
end
end
# Helper method.
def Functions::get_namespace( node_set = nil )
if node_set == nil
yield @@node if defined? @@node.namespace
else
if node_set.namespace
yield node_set
else
return unless node_set.kind_of? Enumerable
node_set.each { |node| yield node if defined? node.namespace }
end
end
end
# A node-set is converted to a string by returning the string-value of the
# node in the node-set that is first in document order. If the node-set is
# empty, an empty string is returned.
#
# A number is converted to a string as follows
#
# NaN is converted to the string NaN
#
# positive zero is converted to the string 0
#
# negative zero is converted to the string 0
#
# positive infinity is converted to the string Infinity
#
# negative infinity is converted to the string -Infinity
#
# if the number is an integer, the number is represented in decimal form
# as a Number with no decimal point and no leading zeros, preceded by a
# minus sign (-) if the number is negative
#
# otherwise, the number is represented in decimal form as a Number
# including a decimal point with at least one digit before the decimal
# point and at least one digit after the decimal point, preceded by a
# minus sign (-) if the number is negative; there must be no leading zeros
# before the decimal point apart possibly from the one required digit
# immediately before the decimal point; beyond the one required digit
# after the decimal point there must be as many, but only as many, more
# digits as are needed to uniquely distinguish the number from all other
# IEEE 754 numeric values.
#
# The boolean false value is converted to the string false. The boolean
# true value is converted to the string true.
#
# An object of a type other than the four basic types is converted to a
# string in a way that is dependent on that type.
def Functions::string( object=nil )
#object = @context unless object
if object.instance_of? Array
string( object[0] )
elsif defined? object.node_type
if object.node_type == :attribute
object.value
elsif object.node_type == :element
object.text
else
object.to_s
end
else
object.to_s
end
end
# A node-set is converted to a string by returning the string-value of the
# node in the node-set that is first in document order. If the node-set is
# empty, an empty string is returned.
#
# A number is converted to a string as follows
#
# NaN is converted to the string NaN
#
# positive zero is converted to the string 0
#
# negative zero is converted to the string 0
#
# positive infinity is converted to the string Infinity
#
# negative infinity is converted to the string -Infinity
#
# if the number is an integer, the number is represented in decimal form
# as a Number with no decimal point and no leading zeros, preceded by a
# minus sign (-) if the number is negative
#
# otherwise, the number is represented in decimal form as a Number
# including a decimal point with at least one digit before the decimal
# point and at least one digit after the decimal point, preceded by a
# minus sign (-) if the number is negative; there must be no leading zeros
# before the decimal point apart possibly from the one required digit
# immediately before the decimal point; beyond the one required digit
# after the decimal point there must be as many, but only as many, more
# digits as are needed to uniquely distinguish the number from all other
# IEEE 754 numeric values.
#
# The boolean false value is converted to the string false. The boolean
# true value is converted to the string true.
#
# An object of a type other than the four basic types is converted to a
# string in a way that is dependent on that type.
def Functions::string( object=nil )
#object = @context unless object
if object.instance_of? Array
string( object[0] )
elsif defined? object.node_type
if object.node_type == :attribute
object.value
elsif object.node_type == :element
object.text
else
object.to_s
end
else
object.to_s
end
end
# UNTESTED
def Functions::concat( *objects )
objects.join
end
# UNTESTED
def Functions::concat( *objects )
objects.join
end
# Fixed by Mike Stok
def Functions::starts_with( string, test )
string(string).index(string(test)) == 0
end
# Fixed by Mike Stok
def Functions::starts_with( string, test )
string(string).index(string(test)) == 0
end
# Fixed by Mike Stok
def Functions::contains( string, test )
string(string).include? string(test)
end
# Fixed by Mike Stok
def Functions::contains( string, test )
string(string).include? string(test)
end
# Kouhei fixed this
def Functions::substring_before( string, test )
ruby_string = string(string)
ruby_index = ruby_string.index(string(test))
if ruby_index.nil?
""
else
ruby_string[ 0...ruby_index ]
end
end
# Kouhei fixed this
def Functions::substring_before( string, test )
ruby_string = string(string)
ruby_index = ruby_string.index(string(test))
if ruby_index.nil?
""
else
ruby_string[ 0...ruby_index ]
end
end
# Kouhei fixed this too
def Functions::substring_after( string, test )
ruby_string = string(string)
ruby_index = ruby_string.index(string(test))
if ruby_index.nil?
""
else
ruby_string[ ruby_index+1..-1 ]
end
end
# Kouhei fixed this too
def Functions::substring_after( string, test )
ruby_string = string(string)
ruby_index = ruby_string.index(string(test))
if ruby_index.nil?
""
else
ruby_string[ ruby_index+1..-1 ]
end
end
# Take equal portions of Mike Stok and Sean Russell; mix
# vigorously, and pour into a tall, chilled glass. Serves 10,000.
def Functions::substring( string, start, length=nil )
ruby_string = string(string)
ruby_length = if length.nil?
ruby_string.length.to_f
else
number(length)
end
ruby_start = number(start)
# Take equal portions of Mike Stok and Sean Russell; mix
# vigorously, and pour into a tall, chilled glass. Serves 10,000.
def Functions::substring( string, start, length=nil )
ruby_string = string(string)
ruby_length = if length.nil?
ruby_string.length.to_f
else
number(length)
end
ruby_start = number(start)
# Handle the special cases
return '' if (
ruby_length.nan? or
ruby_start.nan? or
ruby_start.infinite?
)
# Handle the special cases
return '' if (
ruby_length.nan? or
ruby_start.nan? or
ruby_start.infinite?
)
infinite_length = ruby_length.infinite? == 1
ruby_length = ruby_string.length if infinite_length
# Now, get the bounds. The XPath bounds are 1..length; the ruby bounds
# are 0..length. Therefore, we have to offset the bounds by one.
ruby_start = ruby_start.round - 1
ruby_length = ruby_length.round
infinite_length = ruby_length.infinite? == 1
ruby_length = ruby_string.length if infinite_length
# Now, get the bounds. The XPath bounds are 1..length; the ruby bounds
# are 0..length. Therefore, we have to offset the bounds by one.
ruby_start = ruby_start.round - 1
ruby_length = ruby_length.round
if ruby_start < 0
ruby_length += ruby_start unless infinite_length
ruby_start = 0
end
return '' if ruby_length <= 0
ruby_string[ruby_start,ruby_length]
end
if ruby_start < 0
ruby_length += ruby_start unless infinite_length
ruby_start = 0
end
return '' if ruby_length <= 0
ruby_string[ruby_start,ruby_length]
end
# UNTESTED
def Functions::string_length( string )
string(string).length
end
# UNTESTED
def Functions::string_length( string )
string(string).length
end
# UNTESTED
def Functions::normalize_space( string=nil )
string = string(@@node) if string.nil?
if string.kind_of? Array
string.collect{|x| string.to_s.strip.gsub(/\s+/um, ' ') if string}
else
string.to_s.strip.gsub(/\s+/um, ' ')
end
end
# UNTESTED
def Functions::normalize_space( string=nil )
string = string(@@node) if string.nil?
if string.kind_of? Array
string.collect{|x| string.to_s.strip.gsub(/\s+/um, ' ') if string}
else
string.to_s.strip.gsub(/\s+/um, ' ')
end
end
# This is entirely Mike Stok's beast
def Functions::translate( string, tr1, tr2 )
from = string(tr1)
to = string(tr2)
# This is entirely Mike Stok's beast
def Functions::translate( string, tr1, tr2 )
from = string(tr1)
to = string(tr2)
# the map is our translation table.
#
# if a character occurs more than once in the
# from string then we ignore the second &
# subsequent mappings
#
# if a charactcer maps to nil then we delete it
# in the output. This happens if the from
# string is longer than the to string
#
# there's nothing about - or ^ being special in
# http://www.w3.org/TR/xpath#function-translate
# so we don't build ranges or negated classes
# the map is our translation table.
#
# if a character occurs more than once in the
# from string then we ignore the second &
# subsequent mappings
#
# if a charactcer maps to nil then we delete it
# in the output. This happens if the from
# string is longer than the to string
#
# there's nothing about - or ^ being special in
# http://www.w3.org/TR/xpath#function-translate
# so we don't build ranges or negated classes
map = Hash.new
0.upto(from.length - 1) { |pos|
from_char = from[pos]
unless map.has_key? from_char
map[from_char] =
if pos < to.length
to[pos]
else
nil
end
end
}
map = Hash.new
0.upto(from.length - 1) { |pos|
from_char = from[pos]
unless map.has_key? from_char
map[from_char] =
if pos < to.length
to[pos]
else
nil
end
end
}
string(string).unpack('U*').collect { |c|
if map.has_key? c then map[c] else c end
}.compact.pack('U*')
end
string(string).unpack('U*').collect { |c|
if map.has_key? c then map[c] else c end
}.compact.pack('U*')
end
# UNTESTED
def Functions::boolean( object=nil )
if object.kind_of? String
if object =~ /\d+/u
return object.to_f != 0
else
return object.size > 0
end
elsif object.kind_of? Array
object = object.find{|x| x and true}
end
return object ? true : false
end
# UNTESTED
def Functions::boolean( object=nil )
if object.kind_of? String
if object =~ /\d+/u
return object.to_f != 0
else
return object.size > 0
end
elsif object.kind_of? Array
object = object.find{|x| x and true}
end
return object ? true : false
end
# UNTESTED
def Functions::not( object )
not boolean( object )
end
# UNTESTED
def Functions::not( object )
not boolean( object )
end
# UNTESTED
def Functions::true( )
true
end
# UNTESTED
def Functions::true( )
true
end
# UNTESTED
def Functions::false( )
false
end
# UNTESTED
def Functions::false( )
false
end
# UNTESTED
def Functions::lang( language )
lang = false
node = @@node
attr = nil
until node.nil?
if node.node_type == :element
attr = node.attributes["xml:lang"]
unless attr.nil?
lang = compare_language(string(language), attr)
break
else
end
end
node = node.parent
end
lang
end
# UNTESTED
def Functions::lang( language )
lang = false
node = @@node
attr = nil
until node.nil?
if node.node_type == :element
attr = node.attributes["xml:lang"]
unless attr.nil?
lang = compare_language(string(language), attr)
break
else
end
end
node = node.parent
end
lang
end
def Functions::compare_language lang1, lang2
lang2.downcase.index(lang1.downcase) == 0
end
def Functions::compare_language lang1, lang2
lang2.downcase.index(lang1.downcase) == 0
end
# a string that consists of optional whitespace followed by an optional
# minus sign followed by a Number followed by whitespace is converted to
# the IEEE 754 number that is nearest (according to the IEEE 754
# round-to-nearest rule) to the mathematical value represented by the
# string; any other string is converted to NaN
#
# boolean true is converted to 1; boolean false is converted to 0
#
# a node-set is first converted to a string as if by a call to the string
# function and then converted in the same way as a string argument
#
# an object of a type other than the four basic types is converted to a
# number in a way that is dependent on that type
def Functions::number( object=nil )
object = @@node unless object
if object == true
Float(1)
elsif object == false
Float(0)
elsif object.kind_of? Array
string( object ).to_f
elsif object.kind_of? Float
object
else
object.to_s.to_f
end
end
# a string that consists of optional whitespace followed by an optional
# minus sign followed by a Number followed by whitespace is converted to
# the IEEE 754 number that is nearest (according to the IEEE 754
# round-to-nearest rule) to the mathematical value represented by the
# string; any other string is converted to NaN
#
# boolean true is converted to 1; boolean false is converted to 0
#
# a node-set is first converted to a string as if by a call to the string
# function and then converted in the same way as a string argument
#
# an object of a type other than the four basic types is converted to a
# number in a way that is dependent on that type
def Functions::number( object=nil )
object = @@node unless object
if object == true
Float(1)
elsif object == false
Float(0)
elsif object.kind_of? Array
number(string( object ))
elsif object.kind_of? Float
object
else
str = string( object )
#puts "STRING OF #{object.inspect} = #{str}"
if str =~ /^\d+/
object.to_s.to_f
else
(0.0 / 0.0)
end
end
end
def Functions::sum( nodes )
end
def Functions::floor( number )
number(number).floor
end
def Functions::sum( nodes )
end
def Functions::floor( number )
number(number).floor
end
def Functions::ceiling( number )
number(number).ceil
end
def Functions::ceiling( number )
number(number).ceil
end
def Functions::round( number )
begin
number(number).round
rescue FloatDomainError
number(number)
end
end
def Functions::round( number )
begin
number(number).round
rescue FloatDomainError
number(number)
end
end
def Functions::method_missing( id )
puts "METHOD MISSING #{id.id2name}"
XPath.match( @@node, id.id2name )
end
end
def Functions::method_missing( id )
puts "METHOD MISSING #{id.id2name}"
XPath.match( @@node, id.id2name )
end
end
end

Просмотреть файл

@ -1,49 +1,51 @@
module REXML
class ParseException < RuntimeError
attr_accessor :source, :parser, :continued_exception
class ParseException < RuntimeError
attr_accessor :source, :parser, :continued_exception
def initialize( message, source=nil, parser=nil, exception=nil )
super(message)
@source = source
@parser = parser
@continued_exception = exception
end
def initialize( message, source=nil, parser=nil, exception=nil )
super(message)
@source = source
@parser = parser
@continued_exception = exception
end
def to_s
# Quote the original exception, if there was one
if @continued_exception
err = @continued_exception.inspect
err << "\n"
err << @continued_exception.backtrace.join("\n")
err << "\n...\n"
else
err = ""
end
def to_s
# Quote the original exception, if there was one
if @continued_exception
err = @continued_exception.inspect
err << "\n"
err << @continued_exception.backtrace.join("\n")
err << "\n...\n"
else
err = ""
end
# Get the stack trace and error message
err << super
# Get the stack trace and error message
err << super
# Add contextual information
if @source
err << "\nLine: #{line}\n"
err << "Position: #{position}\n"
err << "Last 80 unconsumed characters:\n"
err << @source.buffer[0..80].gsub(/\n/, ' ')
end
err
end
# Add contextual information
if @source
err << "\nLine: #{line}\n"
err << "Position: #{position}\n"
err << "Last 80 unconsumed characters:\n"
err << @source.buffer[0..80].gsub(/\n/, ' ')
end
err
end
def position
@source.current_line[0] if @source and @source.current_line
end
def position
@source.current_line[0] if @source and defined? @source.current_line and
@source.current_line
end
def line
@source.current_line[2] if @source and @source.current_line
end
def line
@source.current_line[2] if @source and defined? @source.current_line and
@source.current_line
end
def context
@source.current_line
end
end
def context
@source.current_line
end
end
end

Просмотреть файл

@ -100,6 +100,8 @@ module REXML
self.stream = source
end
attr_reader :source
def stream=( source )
if source.kind_of? String
@source = Source.new(source)

Просмотреть файл

@ -3,309 +3,308 @@ require 'rexml/xmltokens'
require 'rexml/parsers/xpathparser'
module REXML
# You don't want to use this class. Really. Use XPath, which is a wrapper
# for this class. Believe me. You don't want to poke around in here.
# There is strange, dark magic at work in this code. Beware. Go back! Go
# back while you still can!
class XPathParser
include XMLTokens
LITERAL = /^'([^']*)'|^"([^"]*)"/u
# You don't want to use this class. Really. Use XPath, which is a wrapper
# for this class. Believe me. You don't want to poke around in here.
# There is strange, dark magic at work in this code. Beware. Go back! Go
# back while you still can!
class XPathParser
include XMLTokens
LITERAL = /^'([^']*)'|^"([^"]*)"/u
def initialize( )
@parser = REXML::Parsers::XPathParser.new
@namespaces = {}
@variables = {}
end
def initialize( )
@parser = REXML::Parsers::XPathParser.new
@namespaces = {}
@variables = {}
end
def namespaces=( namespaces={} )
Functions::namespace_context = namespaces
@namespaces = namespaces
end
def namespaces=( namespaces={} )
Functions::namespace_context = namespaces
@namespaces = namespaces
end
def variables=( vars={} )
Functions::variables = vars
@variables = vars
end
def variables=( vars={} )
Functions::variables = vars
@variables = vars
end
def parse path, nodeset
path_stack = @parser.parse( path )
def parse path, nodeset
path_stack = @parser.parse( path )
#puts "PARSE: #{path} => #{path_stack.inspect}"
#puts "PARSE: nodeset = #{nodeset.collect{|x|x.to_s}.inspect}"
match( path_stack, nodeset )
end
match( path_stack, nodeset )
end
def predicate path, nodeset
path_stack = @parser.predicate( path )
return Predicate( path_stack, nodeset )
end
def predicate path, nodeset
path_stack = @parser.predicate( path )
return Predicate( path_stack, nodeset )
end
def []=( variable_name, value )
@variables[ variable_name ] = value
end
def []=( variable_name, value )
@variables[ variable_name ] = value
end
private
private
def match( path_stack, nodeset )
while ( path_stack.size > 0 and nodeset.size > 0 )
#puts "PARSE: #{path_stack.inspect} '#{nodeset.collect{|n|n.class}.inspect}'"
nodeset = internal_parse( path_stack, nodeset )
#puts "NODESET: #{nodeset.size}"
#puts "PATH_STACK: #{path_stack.inspect}"
end
nodeset
end
def match( path_stack, nodeset )
while ( path_stack.size > 0 and nodeset.size > 0 )
#puts "PARSE: #{path_stack.inspect} '#{nodeset.collect{|n|n.class}.inspect}'"
nodeset = internal_parse( path_stack, nodeset )
#puts "NODESET: #{nodeset}"
#puts "PATH_STACK: #{path_stack.inspect}"
end
nodeset
end
def internal_parse path_stack, nodeset
def internal_parse path_stack, nodeset
#puts "INTERNAL_PARSE RETURNING WITH NO RESULTS" if nodeset.size == 0 or path_stack.size == 0
return nodeset if nodeset.size == 0 or path_stack.size == 0
#puts "INTERNAL_PARSE: #{path_stack.inspect}, #{nodeset.collect{|n| n.class}.inspect}"
case path_stack.shift
when :document
return [ nodeset[0].root.parent ]
return nodeset if nodeset.size == 0 or path_stack.size == 0
#puts "INTERNAL_PARSE: #{path_stack.inspect}, #{nodeset.collect{|n| n.class}.inspect}"
case path_stack.shift
when :document
return [ nodeset[0].root.parent ]
when :qname
prefix = path_stack.shift
name = path_stack.shift
#puts "QNAME #{prefix}#{prefix.size>0?':':''}#{name}"
n = nodeset.clone
ns = @namespaces[prefix]
ns = ns ? ns : ''
n.delete_if do |node|
# FIXME: This DOUBLES the time XPath searches take
ns = node.namespace( prefix ) if node.node_type == :element and ns == ''
#puts "NODE: '#{node.to_s}'; node.has_name?( #{name.inspect}, #{ns.inspect} ): #{ node.has_name?( name, ns )}; node.namespace() = #{node.namespace().inspect}; node.prefix = #{node.prefix().inspect}" if node.node_type == :element
!(node.node_type == :element and node.name == name and node.namespace == ns )
end
return n
when :qname
prefix = path_stack.shift
name = path_stack.shift
#puts "QNAME #{prefix}#{prefix.size>0?':':''}#{name}"
n = nodeset.clone
ns = @namespaces[prefix]
ns = ns ? ns : ''
n.delete_if do |node|
# FIXME: This DOUBLES the time XPath searches take
ns = node.namespace( prefix ) if node.node_type == :element and ns == ''
#puts "NODE: '#{node.to_s}'; node.has_name?( #{name.inspect}, #{ns.inspect} ): #{ node.has_name?( name, ns )}; node.namespace() = #{node.namespace().inspect}; node.prefix = #{node.prefix().inspect}" if node.node_type == :element
!(node.node_type == :element and node.name == name and node.namespace == ns )
end
return n
when :any
n = nodeset.clone
n.delete_if { |node| node.node_type != :element }
return n
when :any
n = nodeset.clone
n.delete_if { |node| node.node_type != :element }
return n
when :self
# THIS SPACE LEFT INTENTIONALLY BLANK
when :self
# THIS SPACE LEFT INTENTIONALLY BLANK
when :processing_instruction
target = path_stack.shift
n = nodeset.clone
n.delete_if do |node|
(node.node_type != :processing_instruction) or
( !target.nil? and ( node.target != target ) )
end
return n
when :processing_instruction
target = path_stack.shift
n = nodeset.clone
n.delete_if do |node|
(node.node_type != :processing_instruction) or
( !target.nil? and ( node.target != target ) )
end
return n
when :text
#puts ":TEXT"
n = nodeset.clone
n.delete_if do |node|
#puts "#{node} :: #{node.node_type}"
node.node_type != :text
end
return n
when :text
#puts ":TEXT"
n = nodeset.clone
n.delete_if do |node|
#puts "#{node} :: #{node.node_type}"
node.node_type != :text
end
return n
when :comment
n = nodeset.clone
n.delete_if do |node|
node.node_type != :comment
end
return n
when :comment
n = nodeset.clone
n.delete_if do |node|
node.node_type != :comment
end
return n
when :node
return nodeset
# FIXME: I suspect the following XPath will fail:
# /a/*/*[1]
when :child
#puts "CHILD"
new_nodeset = []
nt = nil
for node in nodeset
nt = node.node_type
new_nodeset += node.children if nt == :element or nt == :document
end
#path_stack[0,(path_stack.size-ps_clone.size)] = []
return new_nodeset
when :node
return nodeset
# FIXME: I suspect the following XPath will fail:
# /a/*/*[1]
when :child
#puts "CHILD"
new_nodeset = []
nt = nil
for node in nodeset
nt = node.node_type
new_nodeset += node.children if nt == :element or nt == :document
end
#path_stack[0,(path_stack.size-ps_clone.size)] = []
return new_nodeset
when :literal
literal = path_stack.shift
if literal =~ /^\d+(\.\d+)?$/
return ($1 ? literal.to_f : literal.to_i)
end
#puts "RETURNING '#{literal}'"
return literal
when :attribute
#puts ":ATTRIBUTE"
new_nodeset = []
case path_stack.shift
when :qname
prefix = path_stack.shift
name = path_stack.shift
for element in nodeset
if element.node_type == :element
#puts element.name
#puts "looking for attribute #{name} in '#{@namespaces[prefix]}'"
attr = element.attribute( name, @namespaces[prefix] )
#puts ":ATTRIBUTE: attr => #{attr}"
new_nodeset << attr if attr
end
end
when :any
for element in nodeset
if element.node_type == :element
attr = element.attributes
end
end
end
#puts "RETURNING #{new_nodeset.collect{|n|n.to_s}.inspect}"
return new_nodeset
when :literal
literal = path_stack.shift
if literal =~ /^\d+(\.\d+)?$/
return ($1 ? literal.to_f : literal.to_i)
end
#puts "RETURNING '#{literal}'"
return literal
when :attribute
new_nodeset = []
case path_stack.shift
when :qname
prefix = path_stack.shift
name = path_stack.shift
for element in nodeset
if element.node_type == :element
#puts element.name
#puts "looking for attribute #{name} in '#{@namespaces[prefix]}'"
attr = element.attribute( name, @namespaces[prefix] )
#puts ":ATTRIBUTE: attr => #{attr}"
new_nodeset << attr if attr
end
end
when :any
for element in nodeset
if element.node_type == :element
attr = element.attributes
end
end
end
#puts "RETURNING #{new_nodeset.collect{|n|n.to_s}.inspect}"
return new_nodeset
when :parent
return internal_parse( path_stack, nodeset.collect{|n| n.parent}.compact )
when :parent
return internal_parse( path_stack, nodeset.collect{|n| n.parent}.compact )
when :ancestor
#puts "ANCESTOR"
new_nodeset = []
for node in nodeset
while node.parent
node = node.parent
new_nodeset << node unless new_nodeset.include? node
end
end
#nodeset = new_nodeset.uniq
return new_nodeset
when :ancestor
#puts "ANCESTOR"
new_nodeset = []
for node in nodeset
while node.parent
node = node.parent
new_nodeset << node unless new_nodeset.include? node
end
end
#nodeset = new_nodeset.uniq
return new_nodeset
when :ancestor_or_self
new_nodeset = []
for node in nodeset
if node.node_type == :element
new_nodeset << node
while ( node.parent )
node = node.parent
new_nodeset << node unless new_nodeset.includes? node
end
end
end
#nodeset = new_nodeset.uniq
return new_nodeset
when :ancestor_or_self
new_nodeset = []
for node in nodeset
if node.node_type == :element
new_nodeset << node
while ( node.parent )
node = node.parent
new_nodeset << node unless new_nodeset.includes? node
end
end
end
#nodeset = new_nodeset.uniq
return new_nodeset
when :predicate
#puts "@"*80
#puts "NODESET = #{nodeset.collect{|n|n.to_s}.inspect}"
predicate = path_stack.shift
new_nodeset = []
Functions::size = nodeset.size
nodeset.size.times do |index|
node = nodeset[index]
Functions::node = node
Functions::index = index+1
#puts "Node #{node} and index=#{index+1}"
result = Predicate( predicate, node )
#puts "Predicate returned #{result} (#{result.class}) for #{node.class}"
if result.kind_of? Numeric
#puts "#{result} == #{index} => #{result == index}"
new_nodeset << node if result == (index+1)
elsif result.instance_of? Array
new_nodeset << node if result.size > 0
else
new_nodeset << node if result
end
end
#puts "Nodeset after predicate #{predicate.inspect} has #{new_nodeset.size} nodes"
#puts "NODESET: #{new_nodeset.collect{|n|n.to_s}.inspect}"
return new_nodeset
when :predicate
#puts "@"*80
#puts "NODESET = #{nodeset.collect{|n|n.to_s}.inspect}"
predicate = path_stack.shift
new_nodeset = []
Functions::size = nodeset.size
nodeset.size.times do |index|
node = nodeset[index]
Functions::node = node
Functions::index = index+1
#puts "Node #{node} and index=#{index+1}"
result = Predicate( predicate, node )
#puts "Predicate returned #{result} (#{result.class}) for #{node.class}"
if result.kind_of? Numeric
#puts "#{result} == #{index} => #{result == index}"
new_nodeset << node if result == (index+1)
elsif result.instance_of? Array
new_nodeset << node if result.size > 0
else
new_nodeset << node if result
end
end
#puts "Nodeset after predicate #{predicate.inspect} has #{new_nodeset.size} nodes"
#puts "NODESET: #{new_nodeset.collect{|n|n.to_s}.inspect}"
return new_nodeset
when :descendant_or_self
rv = descendant_or_self( path_stack, nodeset )
path_stack.clear
return rv
when :descendant_or_self
rv = descendant_or_self( path_stack, nodeset )
path_stack.clear
return rv
when :descendant
#puts ":DESCENDANT"
results = []
nt = nil
for node in nodeset
nt = node.node_type
results += internal_parse( path_stack.clone.unshift( :descendant_or_self ),
node.children ) if nt == :element or nt == :document
end
return results
when :descendant
#puts ":DESCENDANT"
results = []
nt = nil
for node in nodeset
nt = node.node_type
results += internal_parse( path_stack.clone.unshift( :descendant_or_self ),
node.children ) if nt == :element or nt == :document
end
return results
when :following_sibling
results = []
for node in nodeset
all_siblings = node.parent.children
current_index = all_siblings.index( node )
following_siblings = all_siblings[ current_index+1 .. -1 ]
results += internal_parse( path_stack.clone, following_siblings )
end
return results
when :following_sibling
results = []
for node in nodeset
all_siblings = node.parent.children
current_index = all_siblings.index( node )
following_siblings = all_siblings[ current_index+1 .. -1 ]
results += internal_parse( path_stack.clone, following_siblings )
end
return results
when :preceding_sibling
results = []
for node in nodeset
all_siblings = node.parent.children
current_index = all_siblings.index( node )
preceding_siblings = all_siblings[ 0 .. current_index-1 ]
results += internal_parse( path_stack.clone, preceding_siblings )
end
return results
when :preceding_sibling
results = []
for node in nodeset
all_siblings = node.parent.children
current_index = all_siblings.index( node )
preceding_siblings = all_siblings[ 0 .. current_index-1 ]
results += internal_parse( path_stack.clone, preceding_siblings )
end
return results
when :preceding
new_nodeset = []
for node in nodeset
new_nodeset += preceding( node )
end
return new_nodeset
when :preceding
new_nodeset = []
for node in nodeset
new_nodeset += preceding( node )
end
return new_nodeset
when :following
new_nodeset = []
for node in nodeset
new_nodeset += following( node )
end
return new_nodeset
when :following
new_nodeset = []
for node in nodeset
new_nodeset += following( node )
end
return new_nodeset
when :namespace
new_set = []
for node in nodeset
new_nodeset << node.namespace if node.node_type == :element or node.node_type == :attribute
end
return new_nodeset
when :namespace
new_set = []
for node in nodeset
new_nodeset << node.namespace if node.node_type == :element or node.node_type == :attribute
end
return new_nodeset
when :variable
var_name = path_stack.shift
return @variables[ var_name ]
when :variable
var_name = path_stack.shift
return @variables[ var_name ]
end
nodeset
end
end
nodeset
end
##########################################################
##########################################################
# FIXME
# The next two methods are BAD MOJO!
# This is my achilles heel. If anybody thinks of a better
# way of doing this, be my guest. This really sucks, but
# it took me three days to get it to work at all.
# ########################################################
def descendant_or_self( path_stack, nodeset )
rs = []
d_o_s( path_stack, nodeset, rs )
# The next two methods are BAD MOJO!
# This is my achilles heel. If anybody thinks of a better
# way of doing this, be my guest. This really sucks, but
# it took me three days to get it to work at all.
# ########################################################
def descendant_or_self( path_stack, nodeset )
rs = []
d_o_s( path_stack, nodeset, rs )
#puts "RS = #{rs.collect{|n|n.to_s}.inspect}"
document_order(rs.flatten.compact)
end
end
def d_o_s( p, ns, r )
nt = nil
ns.each_index do |i|
n = ns[i]
x = match( p.clone, [ n ] )
nt = n.node_type
d_o_s( p, n.children, x ) if nt == :element or nt == :document and n.children.size > 0
def d_o_s( p, ns, r )
nt = nil
ns.each_index do |i|
n = ns[i]
x = match( p.clone, [ n ] )
nt = n.node_type
d_o_s( p, n.children, x ) if nt == :element or nt == :document and n.children.size > 0
r.concat(x) if x.size > 0
end
end
end
end
# Reorders an array of nodes so that they are in document order
@ -327,221 +326,231 @@ module REXML
def recurse( nodeset, &block )
for node in nodeset
yield node
yield node
recurse( node, &block ) if node.node_type == :element
end
end
# Given a predicate, a node, and a context, evaluates to true or false.
def Predicate( predicate, node )
predicate = predicate.clone
#puts "#"*20
#puts "Predicate( #{predicate.inspect}, #{node.class} )"
results = []
case (predicate[0])
when :and, :or, :eq, :neq, :lt, :lteq, :gt, :gteq
eq = predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
return equality_relational_compare( left, eq, right )
# Given a predicate, a node, and a context, evaluates to true or false.
def Predicate( predicate, node )
predicate = predicate.clone
#puts "#"*20
#puts "Predicate( #{predicate.inspect}, #{node.class} )"
results = []
case (predicate[0])
when :and, :or, :eq, :neq, :lt, :lteq, :gt, :gteq
eq = predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
#puts "LEFT = #{left.inspect}"
#puts "RIGHT = #{right.inspect}"
return equality_relational_compare( left, eq, right )
when :div, :mod, :mult, :plus, :minus
op = predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
left = Functions::number( left )
right = Functions::number( right )
case op
when :div
return left.to_f / right.to_f
when :mod
return left % right
when :mult
return left * right
when :plus
return left + right
when :minus
return left - right
end
when :div, :mod, :mult, :plus, :minus
op = predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
#puts "LEFT = #{left.inspect}"
#puts "RIGHT = #{right.inspect}"
left = Functions::number( left )
right = Functions::number( right )
#puts "LEFT = #{left.inspect}"
#puts "RIGHT = #{right.inspect}"
case op
when :div
return left.to_f / right.to_f
when :mod
return left % right
when :mult
return left * right
when :plus
return left + right
when :minus
return left - right
end
when :union
predicate.shift
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
left = Predicate( predicate.shift, node )
right = Predicate( predicate.shift, node )
return (left | right)
when :neg
predicate.shift
operand = Functions::number(Predicate( predicate, node ))
return -operand
when :neg
predicate.shift
operand = Functions::number(Predicate( predicate, node ))
return -operand
when :not
predicate.shift
return !Predicate( predicate.shift, node )
when :not
predicate.shift
return !Predicate( predicate.shift, node )
when :function
predicate.shift
func_name = predicate.shift.tr('-', '_')
arguments = predicate.shift
#puts "\nFUNCTION: #{func_name}"
#puts "ARGUMENTS: #{arguments.inspect} #{node.to_s}"
args = arguments.collect { |arg| Predicate( arg, node ) }
#puts "FUNCTION: #{func_name}( #{args.collect{|n|n.to_s}.inspect} )"
result = Functions.send( func_name, *args )
#puts "RESULTS: #{result.inspect}"
return result
when :function
predicate.shift
func_name = predicate.shift.tr('-', '_')
arguments = predicate.shift
#puts "\nFUNCTION: #{func_name}"
#puts "ARGUMENTS: #{arguments.inspect} #{node.to_s}"
args = arguments.collect { |arg| Predicate( arg, node ) }
#puts "FUNCTION: #{func_name}( #{args.collect{|n|n.to_s}.inspect} )"
result = Functions.send( func_name, *args )
#puts "RESULTS: #{result.inspect}"
return result
else
return match( predicate, [ node ] )
else
return match( predicate, [ node ] )
end
end
end
end
# Builds a nodeset of all of the following nodes of the supplied node,
# in document order
def following( node )
all_siblings = node.parent.children
current_index = all_siblings.index( node )
following_siblings = all_siblings[ current_index+1 .. -1 ]
following = []
recurse( following_siblings ) { |node| following << node }
following.shift
#puts "following is returning #{puta following}"
following
end
# Builds a nodeset of all of the following nodes of the supplied node,
# in document order
def following( node )
all_siblings = node.parent.children
current_index = all_siblings.index( node )
following_siblings = all_siblings[ current_index+1 .. -1 ]
following = []
recurse( following_siblings ) { |node| following << node }
following.shift
#puts "following is returning #{puta following}"
following
end
# Builds a nodeset of all of the preceding nodes of the supplied node,
# in reverse document order
def preceding( node )
all_siblings = node.parent.children
current_index = all_siblings.index( node )
preceding_siblings = all_siblings[ 0 .. current_index-1 ]
# Builds a nodeset of all of the preceding nodes of the supplied node,
# in reverse document order
def preceding( node )
all_siblings = node.parent.children
current_index = all_siblings.index( node )
preceding_siblings = all_siblings[ 0 .. current_index-1 ]
preceding_siblings.reverse!
preceding = []
recurse( preceding_siblings ) { |node| preceding << node }
preceding.reverse
end
preceding_siblings.reverse!
preceding = []
recurse( preceding_siblings ) { |node| preceding << node }
preceding.reverse
end
def equality_relational_compare( set1, op, set2 )
def equality_relational_compare( set1, op, set2 )
#puts "EQ_REL_COMP: #{set1.to_s}, #{op}, #{set2.to_s}"
#puts "#{set1.class.name} #{op} #{set2.class.name}"
if set1.kind_of? Array and set2.kind_of? Array
if set1.kind_of? Array and set2.kind_of? Array
#puts "#{set1.size} & #{set2.size}"
if set1.size == 1 and set2.size == 1
set1 = set1[0]
set2 = set2[0]
if set1.size == 1 and set2.size == 1
set1 = set1[0]
set2 = set2[0]
elsif set1.size == 0 or set2.size == 0
nd = set1.size==0 ? set2 : set1
nd.each { |il| return true if compare( il, op, nil ) }
else
set1.each do |i1|
i1 = i1.to_s
set2.each do |i2|
i2 = i2.to_s
return true if compare( i1, op, i2 )
end
end
return false
end
end
else
set1.each do |i1|
i1 = i1.to_s
set2.each do |i2|
i2 = i2.to_s
return true if compare( i1, op, i2 )
end
end
return false
end
end
#puts "COMPARING VALUES"
# If one is nodeset and other is number, compare number to each item
# in nodeset s.t. number op number(string(item))
# If one is nodeset and other is string, compare string to each item
# in nodeset s.t. string op string(item)
# If one is nodeset and other is boolean, compare boolean to each item
# in nodeset s.t. boolean op boolean(item)
if set1.kind_of? Array or set2.kind_of? Array
# If one is nodeset and other is number, compare number to each item
# in nodeset s.t. number op number(string(item))
# If one is nodeset and other is string, compare string to each item
# in nodeset s.t. string op string(item)
# If one is nodeset and other is boolean, compare boolean to each item
# in nodeset s.t. boolean op boolean(item)
if set1.kind_of? Array or set2.kind_of? Array
#puts "ISA ARRAY"
if set1.kind_of? Array
a = set1
b = set2.to_s
else
a = set2
b = set1.to_s
end
if set1.kind_of? Array
a = set1
b = set2.to_s
else
a = set2
b = set1.to_s
end
case b
when 'true', 'false'
b = Functions::boolean( b )
for v in a
v = Functions::boolean(v)
return true if compare( v, op, b )
end
when /^\d+(\.\d+)?$/
b = Functions::number( b )
for v in a
v = Functions::number(v)
return true if compare( v, op, b )
end
else
b = Functions::string( b )
for v in a
v = Functions::string(v)
return true if compare( v, op, b )
end
end
else
# If neither is nodeset,
# If op is = or !=
# If either boolean, convert to boolean
# If either number, convert to number
# Else, convert to string
# Else
# Convert both to numbers and compare
s1 = set1.to_s
s2 = set2.to_s
#puts "EQ_REL_COMP: #{set1}=>#{s1}, #{set2}=>#{s2}"
if s1 == 'true' or s1 == 'false' or s2 == 'true' or s2 == 'false'
#puts "Functions::boolean(#{set1})=>#{Functions::boolean(set1)}"
#puts "Functions::boolean(#{set2})=>#{Functions::boolean(set2)}"
set1 = Functions::boolean( set1 )
set2 = Functions::boolean( set2 )
else
if op == :eq or op == :neq
if s1 =~ /^\d+(\.\d+)?$/ or s2 =~ /^\d+(\.\d+)?$/
set1 = Functions::number( s1 )
set2 = Functions::number( s2 )
else
set1 = Functions::string( set1 )
set2 = Functions::string( set2 )
end
else
set1 = Functions::number( set1 )
set2 = Functions::number( set2 )
end
end
#puts "EQ_REL_COMP: #{set1} #{op} #{set2}"
case b
when 'true', 'false'
b = Functions::boolean( b )
for v in a
v = Functions::boolean(v)
return true if compare( v, op, b )
end
when /^\d+(\.\d+)?$/
b = Functions::number( b )
#puts "B = #{b.inspect}"
for v in a
#puts "v = #{v.inspect}"
v = Functions::number(v)
#puts "v = #{v.inspect}"
#puts compare(v,op,b)
return true if compare( v, op, b )
end
else
b = Functions::string( b )
for v in a
v = Functions::string(v)
return true if compare( v, op, b )
end
end
else
# If neither is nodeset,
# If op is = or !=
# If either boolean, convert to boolean
# If either number, convert to number
# Else, convert to string
# Else
# Convert both to numbers and compare
s1 = set1.to_s
s2 = set2.to_s
#puts "EQ_REL_COMP: #{set1}=>#{s1}, #{set2}=>#{s2}"
if s1 == 'true' or s1 == 'false' or s2 == 'true' or s2 == 'false'
#puts "Functions::boolean(#{set1})=>#{Functions::boolean(set1)}"
#puts "Functions::boolean(#{set2})=>#{Functions::boolean(set2)}"
set1 = Functions::boolean( set1 )
set2 = Functions::boolean( set2 )
else
if op == :eq or op == :neq
if s1 =~ /^\d+(\.\d+)?$/ or s2 =~ /^\d+(\.\d+)?$/
set1 = Functions::number( s1 )
set2 = Functions::number( s2 )
else
set1 = Functions::string( set1 )
set2 = Functions::string( set2 )
end
else
set1 = Functions::number( set1 )
set2 = Functions::number( set2 )
end
end
#puts "EQ_REL_COMP: #{set1} #{op} #{set2}"
#puts ">>> #{compare( set1, op, set2 )}"
return compare( set1, op, set2 )
end
return false
end
return compare( set1, op, set2 )
end
return false
end
def compare a, op, b
def compare a, op, b
#puts "COMPARE #{a.to_s} #{op} #{b.to_s}"
case op
when :eq
a == b
when :neq
a != b
when :lt
a < b
when :lteq
a <= b
when :gt
a > b
when :gteq
a >= b
when :and
a and b
when :or
a or b
else
false
end
end
end
case op
when :eq
a == b
when :neq
a != b
when :lt
a < b
when :lteq
a <= b
when :gt
a > b
when :gteq
a >= b
when :and
a and b
when :or
a or b
else
false
end
end
end
end