YJIT: unify exits. Patch iseqs only when necessary

* YJIT: unify exits. Patch iseqs only when necessary

This fixes the gotcha that returning YJIT_CANT_COPMILE for an
instruction at entry position leading to infinite loop.

Also, iseq patching is only done only when necessary, which should make
most exits faster.

* Now that exits are the same, return YJIT_CANT_COMPILE
This commit is contained in:
Alan Wu 2021-03-17 11:54:49 -04:00
Родитель f505446d1f
Коммит 927ead9f75
1 изменённых файлов: 38 добавлений и 46 удалений

Просмотреть файл

@ -126,15 +126,32 @@ yjit_load_regs(codeblock_t* cb)
pop(cb, REG_CFP);
}
/**
Generate an inline exit to return to the interpreter
*/
static void
yjit_gen_exit(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb, VALUE* exit_pc)
// Generate an inline exit to return to the interpreter
static uint8_t *
yjit_gen_exit(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb)
{
uint8_t *code_ptr = cb_get_ptr(ocb, ocb->write_pos);
VALUE *exit_pc = jit->pc;
// YJIT only ever patches the first instruction in an iseq
if (jit->insn_idx == 0) {
// Table mapping opcodes to interpreter handlers
const void *const *handler_table = rb_vm_get_insns_address_table();
// Write back the old instruction at the exit PC
// Otherwise the interpreter may jump right back to the
// JITted code we're trying to exit
int exit_opcode = opcode_at_pc(jit->iseq, exit_pc);
void* handler_addr = (void*)handler_table[exit_opcode];
mov(cb, REG0, const_ptr_opnd(exit_pc));
mov(cb, REG1, const_ptr_opnd(handler_addr));
mov(cb, mem_opnd(64, REG0, 0), REG1);
}
// Generate the code to exit to the interpreters
// Write the adjusted SP back into the CFP
if (ctx->sp_offset != 0)
{
if (ctx->sp_offset != 0) {
x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
lea(cb, REG_SP, stack_pointer);
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
@ -143,7 +160,7 @@ yjit_gen_exit(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb, VALUE* exit_pc)
// Update the CFP on the EC
mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
// Directly return the next PC, which is a constant
// Put PC into the return register, which the post call bytes dispatches to
mov(cb, RAX, const_ptr_opnd(exit_pc));
mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);
@ -155,40 +172,19 @@ yjit_gen_exit(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb, VALUE* exit_pc)
}
#endif
// Write the post call bytes
cb_write_post_call_bytes(cb);
}
/**
Generate an out-of-line exit to return to the interpreter
*/
static uint8_t *
yjit_side_exit(jitstate_t* jit, ctx_t* ctx)
{
uint8_t* code_ptr = cb_get_ptr(ocb, ocb->write_pos);
// Table mapping opcodes to interpreter handlers
const void * const *handler_table = rb_vm_get_insns_address_table();
// FIXME: rewriting the old instruction is only necessary if we're
// exiting right at an interpreter entry point
// Write back the old instruction at the exit PC
// Otherwise the interpreter may jump right back to the
// JITted code we're trying to exit
VALUE* exit_pc = iseq_pc_at_idx(jit->iseq, jit->insn_idx);
int exit_opcode = opcode_at_pc(jit->iseq, exit_pc);
void* handler_addr = (void*)handler_table[exit_opcode];
mov(ocb, RAX, const_ptr_opnd(exit_pc));
mov(ocb, RCX, const_ptr_opnd(handler_addr));
mov(ocb, mem_opnd(64, RAX, 0), RCX);
// Generate the code to exit to the interpreters
yjit_gen_exit(jit, ctx, ocb, exit_pc);
return code_ptr;
}
// A shorthand for generating an exit in the outline block
static uint8_t *
yjit_side_exit(jitstate_t *jit, ctx_t *ctx)
{
return yjit_gen_exit(jit, ctx, ocb);
}
#if RUBY_DEBUG
// Increment a profiling counter with counter_name
@ -309,7 +305,7 @@ yjit_gen_block(ctx_t* ctx, block_t* block, rb_execution_context_t* ec)
if (!rb_st_lookup(gen_fns, opcode, (st_data_t*)&gen_fn)) {
// If we reach an unknown instruction,
// exit to the interpreter and stop compiling
yjit_gen_exit(&jit, ctx, cb, jit.pc);
yjit_gen_exit(&jit, ctx, cb);
break;
}
@ -330,7 +326,7 @@ yjit_gen_block(ctx_t* ctx, block_t* block, rb_execution_context_t* ec)
// If we can't compile this instruction
// exit to the interpreter and stop compiling
if (status == YJIT_CANT_COMPILE) {
yjit_gen_exit(&jit, ctx, cb, jit.pc);
yjit_gen_exit(&jit, ctx, cb);
break;
}
@ -542,7 +538,7 @@ gen_setlocal_wc0(jitstate_t* jit, ctx_t* ctx)
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
// Create a size-exit to fall back to the interpreter
uint8_t* side_exit = yjit_side_exit(jit, ctx);
uint8_t *side_exit = yjit_side_exit(jit, ctx);
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
jnz_ptr(cb, side_exit);
@ -688,8 +684,7 @@ gen_getinstancevariable(jitstate_t* jit, ctx_t* ctx)
// Eventually, we can encode whether an object is T_OBJECT or not
// inside object shapes.
if (rb_get_alloc_func(self_klass) != rb_class_allocate_instance) {
jmp_ptr(cb, side_exit);
return YJIT_END_BLOCK;
return YJIT_CANT_COMPILE;
}
RUBY_ASSERT(BUILTIN_TYPE(self_val) == T_OBJECT); // because we checked the allocator
@ -787,10 +782,7 @@ gen_getinstancevariable(jitstate_t* jit, ctx_t* ctx)
return YJIT_END_BLOCK;
}
// Take side exit because YJIT_CANT_COMPILE can exit to a JIT entry point and
// form an infinite loop when chain_depth > 0.
jmp_ptr(cb, side_exit);
return YJIT_END_BLOCK;
return YJIT_CANT_COMPILE;
}
static codegen_status_t