* complex.c (nucomp_fdiv): use fdiv recursively.

* complex.c (nucomp_expt): reduced code.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@23687 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
tadf 2009-06-13 22:57:02 +00:00
Родитель d9cf0f822f
Коммит 9540aa5b7b
3 изменённых файлов: 44 добавлений и 41 удалений

Просмотреть файл

@ -1,3 +1,9 @@
Sun Jun 14 07:53:26 2009 Tadayoshi Funaba <tadf@dotrb.org>
* complex.c (nucomp_fdiv): use fdiv recursively.
* complex.c (nucomp_expt): reduced code.
Sun Jun 14 03:37:09 2009 NARUSE, Yui <naruse@ruby-lang.org>
* enc/trans/utf8_mac.trans: remove wrong optimization.

Просмотреть файл

@ -1,5 +1,5 @@
/*
complex.c: Coded by Tadayoshi Funaba 2008
complex.c: Coded by Tadayoshi Funaba 2008,2009
This implementation is based on Keiju Ishitsuka's Complex library
which is written in ruby.
@ -22,9 +22,9 @@
VALUE rb_cComplex;
static ID id_abs, id_abs2, id_arg, id_cmp, id_conj, id_convert,
id_denominator, id_divmod, id_equal_p, id_expt, id_floor,
id_idiv, id_inspect, id_negate, id_numerator, id_polar, id_quo,
id_real_p, id_to_f, id_to_i, id_to_r, id_to_s;
id_denominator, id_divmod, id_equal_p, id_expt, id_fdiv, id_floor,
id_idiv, id_inspect, id_negate, id_numerator, id_quo, id_real_p,
id_to_f, id_to_i, id_to_r, id_to_s;
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
@ -162,7 +162,6 @@ fun1(floor)
fun1(inspect)
fun1(negate)
fun1(numerator)
fun1(polar)
fun1(real_p)
fun1(to_f)
@ -181,6 +180,7 @@ f_equal_p(VALUE x, VALUE y)
}
fun2(expt)
fun2(fdiv)
fun2(idiv)
fun2(quo)
@ -620,10 +620,9 @@ nucomp_mul(VALUE self, VALUE other)
return rb_num_coerce_bin(self, other, '*');
}
#define f_div f_quo
static VALUE
nucomp_div(VALUE self, VALUE other)
nucomp_divide(VALUE self, VALUE other,
VALUE (*func)(VALUE, VALUE), ID id)
{
if (k_complex_p(other)) {
get_dat2(self, other);
@ -634,33 +633,34 @@ nucomp_div(VALUE self, VALUE other)
TYPE(bdat->imag) == T_FLOAT) {
VALUE magn = m_hypot(bdat->real, bdat->imag);
VALUE tmp = f_complex_new_bang2(CLASS_OF(self),
f_div(bdat->real, magn),
f_div(bdat->imag, magn));
return f_div(f_mul(self, f_conj(tmp)), magn);
(*func)(bdat->real, magn),
(*func)(bdat->imag, magn));
return (*func)(f_mul(self, f_conj(tmp)), magn);
}
return f_div(f_mul(self, f_conj(other)), f_abs2(other));
return (*func)(f_mul(self, f_conj(other)), f_abs2(other));
}
if (k_numeric_p(other) && f_real_p(other)) {
get_dat1(self);
return f_complex_new2(CLASS_OF(self),
f_div(dat->real, other),
f_div(dat->imag, other));
(*func)(dat->real, other),
(*func)(dat->imag, other));
}
return rb_num_coerce_bin(self, other, '/');
return rb_num_coerce_bin(self, other, id);
}
static VALUE
nucomp_div(VALUE self, VALUE other)
{
return nucomp_divide(self, other, f_quo, id_quo);
}
#undef f_div
#define nucomp_quo nucomp_div
static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
get_dat1(self);
return f_div(f_complex_new2(CLASS_OF(self),
f_to_f(dat->real),
f_to_f(dat->imag)), other);
return nucomp_divide(self, other, f_fdiv, id_fdiv);
}
static VALUE
@ -673,19 +673,17 @@ nucomp_expt(VALUE self, VALUE other)
other = f_numerator(other); /* good? */
if (k_complex_p(other)) {
VALUE a, r, theta, ore, oim, nr, ntheta;
VALUE r, theta, nr, ntheta;
get_dat1(other);
a = f_polar(self);
r = RARRAY_PTR(a)[0];
theta = RARRAY_PTR(a)[1];
r = f_abs(self);
theta = f_arg(self);
ore = dat->real;
oim = dat->imag;
nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)),
f_mul(oim, theta)));
ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r)));
nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
f_mul(dat->imag, theta)));
ntheta = f_add(f_mul(theta, dat->real),
f_mul(dat->imag, m_log_bang(r)));
return f_complex_polar(CLASS_OF(self), nr, ntheta);
}
if (k_integer_p(other)) {
@ -717,13 +715,12 @@ nucomp_expt(VALUE self, VALUE other)
return f_expt(f_div(f_to_r(ONE), self), f_negate(other));
}
if (k_numeric_p(other) && f_real_p(other)) {
VALUE a, r, theta;
VALUE r, theta;
a = f_polar(self);
r = RARRAY_PTR(a)[0];
theta = RARRAY_PTR(a)[1];
r = f_abs(self);
theta = f_arg(self);
return f_complex_polar(CLASS_OF(self), f_expt(r, other),
f_mul(theta, other));
f_mul(theta, other));
}
return rb_num_coerce_bin(self, other, id_expt);
}
@ -1386,12 +1383,12 @@ Init_Complex(void)
id_divmod = rb_intern("divmod");
id_equal_p = rb_intern("==");
id_expt = rb_intern("**");
id_fdiv = rb_intern("fdiv");
id_floor = rb_intern("floor");
id_idiv = rb_intern("div");
id_inspect = rb_intern("inspect");
id_negate = rb_intern("-@");
id_numerator = rb_intern("numerator");
id_polar = rb_intern("polar");
id_quo = rb_intern("quo");
id_real_p = rb_intern("real?");
id_to_f = rb_intern("to_f");

Просмотреть файл

@ -1,5 +1,5 @@
/*
rational.c: Coded by Tadayoshi Funaba 2008
rational.c: Coded by Tadayoshi Funaba 2008,2009
This implementation is based on Keiju Ishitsuka's Rational library
which is written in ruby.
@ -26,8 +26,8 @@
VALUE rb_cRational;
static ID id_abs, id_cmp, id_convert, id_equal_p, id_expt, id_floor,
id_idiv, id_inspect, id_integer_p, id_negate, id_to_f,
static ID id_abs, id_cmp, id_convert, id_equal_p, id_expt, id_fdiv,
id_floor, id_idiv, id_inspect, id_integer_p, id_negate, id_to_f,
id_to_i, id_to_s, id_truncate;
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
@ -154,6 +154,7 @@ f_equal_p(VALUE x, VALUE y)
}
fun2(expt)
fun2(fdiv)
fun2(idiv)
inline static VALUE
@ -1064,8 +1065,6 @@ nurat_round_n(int argc, VALUE *argv, VALUE self)
return nurat_round_common(argc, argv, self, nurat_round);
}
#define f_fdiv(x,y) rb_funcall(x, rb_intern("fdiv"), 1, y)
static VALUE
nurat_to_f(VALUE self)
{
@ -1483,6 +1482,7 @@ Init_Rational(void)
id_convert = rb_intern("convert");
id_equal_p = rb_intern("==");
id_expt = rb_intern("**");
id_fdiv = rb_intern("fdiv");
id_floor = rb_intern("floor");
id_idiv = rb_intern("div");
id_inspect = rb_intern("inspect");