зеркало из https://github.com/github/ruby.git
* rational.c: renamed equal_p to eqeq_p.
* complex.c: ditto. * complex.c (nucomp_equal_p): added. Complex(NaN).equal?(Complex(NaN)) should return true. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@23947 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
Родитель
b61ab11f49
Коммит
bac1841a93
|
@ -1,3 +1,12 @@
|
|||
Fri Jul 3 21:07:29 2009 Tadayoshi Funaba <tadf@dotrb.org>
|
||||
|
||||
* rational.c: renamed equal_p to eqeq_p.
|
||||
|
||||
* complex.c: ditto.
|
||||
|
||||
* complex.c (nucomp_equal_p): added.
|
||||
Complex(NaN).equal?(Complex(NaN)) should return true.
|
||||
|
||||
Fri Jul 3 19:48:40 2009 Tadayoshi Funaba <tadf@dotrb.org>
|
||||
|
||||
* complex.c: undef-ed shome methods. [ruby-core:24110]
|
||||
|
|
50
complex.c
50
complex.c
|
@ -18,9 +18,9 @@
|
|||
VALUE rb_cComplex;
|
||||
|
||||
static ID id_abs, id_abs2, id_arg, id_cmp, id_conj, id_convert,
|
||||
id_denominator, id_divmod, id_equal_p, id_expt, id_fdiv, id_floor,
|
||||
id_idiv, id_imag, id_inspect, id_negate, id_numerator, id_quo,
|
||||
id_real, id_real_p, id_to_f, id_to_i, id_to_r, id_to_s;
|
||||
id_denominator, id_divmod, id_eqeq_p, id_equal_p, id_expt, id_fdiv,
|
||||
id_floor, id_idiv, id_imag, id_inspect, id_negate, id_numerator,
|
||||
id_quo, id_real, id_real_p, id_to_f, id_to_i, id_to_r, id_to_s;
|
||||
|
||||
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
|
||||
|
||||
|
@ -177,6 +177,14 @@ f_equal_p(VALUE x, VALUE y)
|
|||
return rb_funcall(x, id_equal_p, 1, y);
|
||||
}
|
||||
|
||||
inline static VALUE
|
||||
f_eqeq_p(VALUE x, VALUE y)
|
||||
{
|
||||
if (FIXNUM_P(x) && FIXNUM_P(y))
|
||||
return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
|
||||
return rb_funcall(x, id_eqeq_p, 1, y);
|
||||
}
|
||||
|
||||
fun2(expt)
|
||||
fun2(fdiv)
|
||||
fun2(idiv)
|
||||
|
@ -197,7 +205,7 @@ f_zero_p(VALUE x)
|
|||
{
|
||||
if (FIXNUM_P(x))
|
||||
return f_boolcast(FIX2LONG(x) == 0);
|
||||
return rb_funcall(x, id_equal_p, 1, ZERO);
|
||||
return rb_funcall(x, id_eqeq_p, 1, ZERO);
|
||||
}
|
||||
|
||||
#define f_nonzero_p(x) (!f_zero_p(x))
|
||||
|
@ -207,7 +215,7 @@ f_one_p(VALUE x)
|
|||
{
|
||||
if (FIXNUM_P(x))
|
||||
return f_boolcast(FIX2LONG(x) == 1);
|
||||
return rb_funcall(x, id_equal_p, 1, ONE);
|
||||
return rb_funcall(x, id_eqeq_p, 1, ONE);
|
||||
}
|
||||
|
||||
inline static VALUE
|
||||
|
@ -886,7 +894,7 @@ nucomp_expt(VALUE self, VALUE other)
|
|||
* call-seq:
|
||||
* cmp == object -> true or false
|
||||
*
|
||||
* Returns true if cmp equals object numerically.
|
||||
* Returns true if cmp is same as object.
|
||||
*/
|
||||
static VALUE
|
||||
nucomp_equal_p(VALUE self, VALUE other)
|
||||
|
@ -897,12 +905,30 @@ nucomp_equal_p(VALUE self, VALUE other)
|
|||
return f_boolcast(f_equal_p(adat->real, bdat->real) &&
|
||||
f_equal_p(adat->imag, bdat->imag));
|
||||
}
|
||||
return Qfalse;
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* cmp == object -> true or false
|
||||
*
|
||||
* Returns true if cmp equals object numerically.
|
||||
*/
|
||||
static VALUE
|
||||
nucomp_eqeq_p(VALUE self, VALUE other)
|
||||
{
|
||||
if (k_complex_p(other)) {
|
||||
get_dat2(self, other);
|
||||
|
||||
return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
|
||||
f_eqeq_p(adat->imag, bdat->imag));
|
||||
}
|
||||
if (k_numeric_p(other) && f_real_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_boolcast(f_equal_p(dat->real, other) && f_zero_p(dat->imag));
|
||||
return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
|
||||
}
|
||||
return f_equal_p(other, self);
|
||||
return f_eqeq_p(other, self);
|
||||
}
|
||||
|
||||
/* :nodoc: */
|
||||
|
@ -1131,7 +1157,7 @@ nucomp_eql_p(VALUE self, VALUE other)
|
|||
|
||||
return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
|
||||
(CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
|
||||
f_equal_p(self, other));
|
||||
f_eqeq_p(self, other));
|
||||
|
||||
}
|
||||
return Qfalse;
|
||||
|
@ -1805,7 +1831,8 @@ Init_Complex(void)
|
|||
id_convert = rb_intern("convert");
|
||||
id_denominator = rb_intern("denominator");
|
||||
id_divmod = rb_intern("divmod");
|
||||
id_equal_p = rb_intern("==");
|
||||
id_equal_p = rb_intern("equal?");
|
||||
id_eqeq_p = rb_intern("==");
|
||||
id_expt = rb_intern("**");
|
||||
id_fdiv = rb_intern("fdiv");
|
||||
id_floor = rb_intern("floor");
|
||||
|
@ -1874,7 +1901,8 @@ Init_Complex(void)
|
|||
rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
|
||||
rb_define_method(rb_cComplex, "**", nucomp_expt, 1);
|
||||
|
||||
rb_define_method(rb_cComplex, "==", nucomp_equal_p, 1);
|
||||
rb_define_method(rb_cComplex, "equal?", nucomp_equal_p, 1);
|
||||
rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
|
||||
rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
|
||||
|
||||
rb_define_method(rb_cComplex, "abs", nucomp_abs, 0);
|
||||
|
|
28
rational.c
28
rational.c
|
@ -22,7 +22,7 @@
|
|||
|
||||
VALUE rb_cRational;
|
||||
|
||||
static ID id_abs, id_cmp, id_convert, id_equal_p, id_expt, id_fdiv,
|
||||
static ID id_abs, id_cmp, id_convert, id_eqeq_p, id_expt, id_fdiv,
|
||||
id_floor, id_idiv, id_inspect, id_integer_p, id_negate, id_to_f,
|
||||
id_to_i, id_to_s, id_truncate;
|
||||
|
||||
|
@ -142,11 +142,11 @@ fun1(to_s)
|
|||
fun1(truncate)
|
||||
|
||||
inline static VALUE
|
||||
f_equal_p(VALUE x, VALUE y)
|
||||
f_eqeq_p(VALUE x, VALUE y)
|
||||
{
|
||||
if (FIXNUM_P(x) && FIXNUM_P(y))
|
||||
return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
|
||||
return rb_funcall(x, id_equal_p, 1, y);
|
||||
return rb_funcall(x, id_eqeq_p, 1, y);
|
||||
}
|
||||
|
||||
fun2(expt)
|
||||
|
@ -168,7 +168,7 @@ f_zero_p(VALUE x)
|
|||
{
|
||||
if (FIXNUM_P(x))
|
||||
return f_boolcast(FIX2LONG(x) == 0);
|
||||
return rb_funcall(x, id_equal_p, 1, ZERO);
|
||||
return rb_funcall(x, id_eqeq_p, 1, ZERO);
|
||||
}
|
||||
|
||||
#define f_nonzero_p(x) (!f_zero_p(x))
|
||||
|
@ -178,7 +178,7 @@ f_one_p(VALUE x)
|
|||
{
|
||||
if (FIXNUM_P(x))
|
||||
return f_boolcast(FIX2LONG(x) == 1);
|
||||
return rb_funcall(x, id_equal_p, 1, ONE);
|
||||
return rb_funcall(x, id_eqeq_p, 1, ONE);
|
||||
}
|
||||
|
||||
inline static VALUE
|
||||
|
@ -586,7 +586,7 @@ inline static VALUE
|
|||
f_imul(long x, long y)
|
||||
{
|
||||
VALUE r = f_imul_orig(x, y);
|
||||
assert(f_equal_p(r, f_mul(LONG2NUM(x), LONG2NUM(y))));
|
||||
assert(f_eqeq_p(r, f_mul(LONG2NUM(x), LONG2NUM(y))));
|
||||
return r;
|
||||
}
|
||||
#endif
|
||||
|
@ -1002,7 +1002,7 @@ nurat_cmp(VALUE self, VALUE other)
|
|||
* Rational('1/2') == '1/2' #=> false
|
||||
*/
|
||||
static VALUE
|
||||
nurat_equal_p(VALUE self, VALUE other)
|
||||
nurat_eqeq_p(VALUE self, VALUE other)
|
||||
{
|
||||
switch (TYPE(other)) {
|
||||
case T_FIXNUM:
|
||||
|
@ -1017,12 +1017,12 @@ nurat_equal_p(VALUE self, VALUE other)
|
|||
return Qfalse;
|
||||
if (FIX2LONG(dat->den) != 1)
|
||||
return Qfalse;
|
||||
if (f_equal_p(dat->num, other))
|
||||
if (f_eqeq_p(dat->num, other))
|
||||
return Qtrue;
|
||||
return Qfalse;
|
||||
}
|
||||
case T_FLOAT:
|
||||
return f_equal_p(f_to_f(self), other);
|
||||
return f_eqeq_p(f_to_f(self), other);
|
||||
case T_RATIONAL:
|
||||
{
|
||||
get_dat2(self, other);
|
||||
|
@ -1030,11 +1030,11 @@ nurat_equal_p(VALUE self, VALUE other)
|
|||
if (f_zero_p(adat->num) && f_zero_p(bdat->num))
|
||||
return Qtrue;
|
||||
|
||||
return f_boolcast(f_equal_p(adat->num, bdat->num) &&
|
||||
f_equal_p(adat->den, bdat->den));
|
||||
return f_boolcast(f_eqeq_p(adat->num, bdat->num) &&
|
||||
f_eqeq_p(adat->den, bdat->den));
|
||||
}
|
||||
default:
|
||||
return f_equal_p(other, self);
|
||||
return f_eqeq_p(other, self);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1988,7 +1988,7 @@ Init_Rational(void)
|
|||
id_abs = rb_intern("abs");
|
||||
id_cmp = rb_intern("<=>");
|
||||
id_convert = rb_intern("convert");
|
||||
id_equal_p = rb_intern("==");
|
||||
id_eqeq_p = rb_intern("==");
|
||||
id_expt = rb_intern("**");
|
||||
id_fdiv = rb_intern("fdiv");
|
||||
id_floor = rb_intern("floor");
|
||||
|
@ -2027,7 +2027,7 @@ Init_Rational(void)
|
|||
rb_define_method(rb_cRational, "**", nurat_expt, 1);
|
||||
|
||||
rb_define_method(rb_cRational, "<=>", nurat_cmp, 1);
|
||||
rb_define_method(rb_cRational, "==", nurat_equal_p, 1);
|
||||
rb_define_method(rb_cRational, "==", nurat_eqeq_p, 1);
|
||||
rb_define_method(rb_cRational, "coerce", nurat_coerce, 1);
|
||||
|
||||
#if 0 /* NUBY */
|
||||
|
|
|
@ -489,6 +489,18 @@ class Complex_Test < Test::Unit::TestCase
|
|||
end
|
||||
|
||||
def test_equal
|
||||
unless @unify
|
||||
assert_equal(true, Complex(1,0).equal?(Complex(1)))
|
||||
assert_equal(false, Complex(1,0).equal?(Complex(1.0)))
|
||||
if (0.0/0).nan?
|
||||
nan = 0.0/0
|
||||
assert_equal(true, Complex(nan).equal?(Complex(nan)))
|
||||
assert_equal(false, Complex(nan).equal?(nan))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
def test_eqeq
|
||||
assert(Complex(1,0) == Complex(1))
|
||||
assert(Complex(-1,0) == Complex(-1))
|
||||
|
||||
|
@ -891,6 +903,13 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(0, 1.0.angle)
|
||||
assert_equal(0, 1.0.phase)
|
||||
|
||||
if (0.0/0).nan?
|
||||
nan = 0.0/0
|
||||
assert(nan.arg.equal?(nan))
|
||||
assert(nan.angle.equal?(nan))
|
||||
assert(nan.phase.equal?(nan))
|
||||
end
|
||||
|
||||
assert_equal(Math::PI, -1.arg)
|
||||
assert_equal(Math::PI, -1.angle)
|
||||
assert_equal(Math::PI, -1.phase)
|
||||
|
|
|
@ -697,7 +697,7 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_equal(nil, Rational(0) <=> 'foo')
|
||||
end
|
||||
|
||||
def test_equal
|
||||
def test_eqeq
|
||||
assert(Rational(1,1) == Rational(1))
|
||||
assert(Rational(-1,1) == Rational(-1))
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче