* numeric.c (num_div): don't use num_floor which is actually

flo_floor.

	* numeric.c (num_modulo): don't call '%'.

	* numeric.c (num_divmod): use num_modulo.

	* numeric.c: defined '%'.

	* rational.c (nurat_idiv,nurat_mod,nurat_divmod,nurat_rem): removed.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@23768 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
tadf 2009-06-20 12:37:13 +00:00
Родитель a05fd849a1
Коммит d82ed7e2c6
4 изменённых файлов: 64 добавлений и 169 удалений

Просмотреть файл

@ -1,3 +1,16 @@
Sat Jun 20 21:11:43 2009 Tadayoshi Funaba <tadf@dotrb.org>
* numeric.c (num_div): don't use num_floor which is actually
flo_floor.
* numeric.c (num_modulo): don't call '%'.
* numeric.c (num_divmod): use num_modulo.
* numeric.c: defined '%'.
* rational.c (nurat_idiv,nurat_mod,nurat_divmod,nurat_rem): removed.
Sat Jun 20 20:28:44 2009 Tadayoshi Funaba <tadf@dotrb.org>
* complex.c: edited rdoc.

Просмотреть файл

@ -282,8 +282,6 @@ num_fdiv(VALUE x, VALUE y)
}
static VALUE num_floor(VALUE num);
/*
* call-seq:
* num.div(numeric) => integer
@ -302,10 +300,54 @@ static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return num_floor(rb_funcall(x, '/', 1, y));
return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0);
}
/*
* call-seq:
* num.modulo(numeric) => real
*
* x.modulo(y) means x-y*(x/y).floor
*
* Equivalent to
* <i>num</i>.<code>divmod(</code><i>aNumeric</i><code>)[1]</code>.
*
* See <code>Numeric#divmod</code>.
*/
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, rb_intern("div"), 1, y)));
}
/*
* call-seq:
* num.remainder(numeric) => real
*
* x.remainder(y) means x-y*(x/y).truncate
*
* See <code>Numeric#divmod</code>.
*/
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = rb_funcall(x, '%', 1, y);
if ((!rb_equal(z, INT2FIX(0))) &&
((RTEST(rb_funcall(x, '<', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '>', 1, INT2FIX(0)))) ||
(RTEST(rb_funcall(x, '>', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '<', 1, INT2FIX(0)))))) {
return rb_funcall(z, '-', 1, y);
}
return z;
}
/*
* call-seq:
* num.divmod(numeric) => array
@ -350,49 +392,7 @@ num_div(VALUE x, VALUE y)
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), rb_funcall(x, '%', 1, y));
}
/*
* call-seq:
* num.modulo(numeric) => real
*
* x.modulo(y) means x-y*(x/y).floor
*
* Equivalent to
* <i>num</i>.<code>divmod(</code><i>aNumeric</i><code>)[1]</code>.
*
* See <code>Numeric#divmod</code>.
*/
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '%', 1, y);
}
/*
* call-seq:
* num.remainder(numeric) => real
*
* x.remainder(y) means x-y*(x/y).truncate
*
* See <code>Numeric#divmod</code>.
*/
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = rb_funcall(x, '%', 1, y);
if ((!rb_equal(z, INT2FIX(0))) &&
((RTEST(rb_funcall(x, '<', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '>', 1, INT2FIX(0)))) ||
(RTEST(rb_funcall(x, '>', 1, INT2FIX(0))) &&
RTEST(rb_funcall(y, '<', 1, INT2FIX(0)))))) {
return rb_funcall(z, '-', 1, y);
}
return z;
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
/*
@ -3153,6 +3153,7 @@ Init_Numeric(void)
rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1);
rb_define_method(rb_cNumeric, "div", num_div, 1);
rb_define_method(rb_cNumeric, "divmod", num_divmod, 1);
rb_define_method(rb_cNumeric, "%", num_modulo, 1);
rb_define_method(rb_cNumeric, "modulo", num_modulo, 1);
rb_define_method(rb_cNumeric, "remainder", num_remainder, 1);
rb_define_method(rb_cNumeric, "abs", num_abs, 0);

Просмотреть файл

@ -1092,91 +1092,6 @@ nurat_coerce(VALUE self, VALUE other)
return Qnil;
}
/*
* call-seq:
* rat.div(numeric) => integer
*
* Uses +/+ to divide _rat_ by _numeric_, then returns the floor of the result
* as an +Integer+ object.
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object. A
* +ZeroDivisionError+ is raised if _numeric_ is 0. A +FloatDomainError+ is
* raised if _numeric_ is 0.0.
*
* For example:
*
* Rational(2, 3).div(Rational(2, 3)) #=> 1
* Rational(-2, 9).div(Rational(-9, 2)) #=> 0
* Rational(3, 4).div(0.1) #=> 7
* Rational(-9).div(9.9) #=> -1
* Rational(3.12).div(0.5) #=> 6
* Rational(200, 51).div(0) #=> ZeroDivisionError:
* # divided by zero
*/
static VALUE
nurat_idiv(VALUE self, VALUE other)
{
return f_floor(f_div(self, other));
}
/*
* call-seq:
* rat.modulo(numeric) => real
* rat % numeric => real
*
* Returns the modulo of _rat_ and _numeric_ as a +Numeric+ object.
*
* x.modulo(y) means x-y*(x/y).floor
*
* A +TypeError+ is raised unless _numeric_ is a +Numeric+ object. A
* +ZeroDivisionError+ is raised if _numeric_ is 0. A +FloatDomainError+ is
* raised if _numeric_ is 0.0.
*
* For example:
*
* Rational(2, 3) % Rational(2, 3) #=> (0/1)
* Rational(2) % Rational(300) #=> (2/1)
* Rational(-2, 9) % Rational(9, -2) #=> (-2/9)
* Rational(8.2) % 3.2 #=> 1.799999999999999
* Rational(198.1) % 2.3e3 #=> 198.1
* Rational(2, 5) % 0.0 #=> FloatDomainError: Infinity
*/
static VALUE
nurat_mod(VALUE self, VALUE other)
{
VALUE val = f_floor(f_div(self, other));
return f_sub(self, f_mul(other, val));
}
/*
* call-seq:
* rat.divmod(numeric) => array
*
* Returns a two-element +Array+ containing the quotient and modulus
* obtained by dividing _rat_ by _numeric_. The first element is
* an integer. The second selement is a real.
*
* A +ZeroDivisionError+ is raised if _numeric_ is 0. A +FloatDomainError+ is
* raised if _numeric_ is 0.0. A +TypeError+ is raised unless _numeric_ is a
* +Numeric+ object.
*
* For example:
*
* Rational(3).divmod(3) #=> [1, (0/1)]
* Rational(4).divmod(3) #=> [1, (1/1)]
* Rational(5).divmod(3) #=> [1, (2/1)]
* Rational(6).divmod(3) #=> [2, (0/1)]
* Rational(2, 3).divmod(Rational(2, 3)) #=> [1, (0/1)]
* Rational(-2, 9).divmod(Rational(9, -2)) #=> [0, (-2/9)]
* Rational(11.5).divmod(Rational(3.5)) #=> [3, (1/1)]
*/
static VALUE
nurat_divmod(VALUE self, VALUE other)
{
VALUE val = f_floor(f_div(self, other));
return rb_assoc_new(val, f_sub(self, f_mul(other, val)));
}
#if 0
/* :nodoc: */
static VALUE
@ -1184,37 +1099,8 @@ nurat_quot(VALUE self, VALUE other)
{
return f_truncate(f_div(self, other));
}
#endif
/*
* call-seq:
* rat.remainder(numeric) => real
*
* Returns the remainder of dividing _rat_ by _numeric_ as a +Numeric+ object.
*
* x.remainder(y) means x-y*(x/y).truncate
*
* A +ZeroDivisionError+ is raised if _numeric_ is 0. A +FloatDomainError+ is
* raised if the result is Infinity or NaN, or _numeric_ is 0.0. A +TypeError+
* is raised unless _numeric_ is a +Numeric+ object.
*
* For example:
*
* Rational(3, 4).remainder(Rational(3)) #=> (3/4)
* Rational(12,13).remainder(-8) #=> (12/13)
* Rational(2,3).remainder(-Rational(3,2)) #=> (2/3)
* Rational(-5,7).remainder(7.1) #=> -0.7142857142857143
* Rational(1).remainder(0) # ZeroDivisionError:
* # divided by zero
*/
static VALUE
nurat_rem(VALUE self, VALUE other)
{
VALUE val = f_truncate(f_div(self, other));
return f_sub(self, f_mul(other, val));
}
#if 0
/* :nodoc: */
static VALUE
nurat_quotrem(VALUE self, VALUE other)
@ -2241,21 +2127,12 @@ Init_Rational(void)
rb_define_method(rb_cRational, "==", nurat_equal_p, 1);
rb_define_method(rb_cRational, "coerce", nurat_coerce, 1);
rb_define_method(rb_cRational, "div", nurat_idiv, 1);
#if 0 /* NUBY */
rb_define_method(rb_cRational, "//", nurat_idiv, 1);
#endif
rb_define_method(rb_cRational, "modulo", nurat_mod, 1);
rb_define_method(rb_cRational, "%", nurat_mod, 1);
rb_define_method(rb_cRational, "divmod", nurat_divmod, 1);
#if 0
rb_define_method(rb_cRational, "quot", nurat_quot, 1);
#endif
rb_define_method(rb_cRational, "remainder", nurat_rem, 1);
#if 0
rb_define_method(rb_cRational, "quotrem", nurat_quotrem, 1);
#endif

Просмотреть файл

@ -55,6 +55,7 @@ class TestNumeric < Test::Unit::TestCase
end
def test_divmod
=begin
DummyNumeric.class_eval do
def /(x); 42.0; end
def %(x); :mod; end
@ -63,13 +64,16 @@ class TestNumeric < Test::Unit::TestCase
assert_equal(42, DummyNumeric.new.div(1))
assert_equal(:mod, DummyNumeric.new.modulo(1))
assert_equal([42, :mod], DummyNumeric.new.divmod(1))
=end
assert_kind_of(Integer, 11.divmod(3.5).first, '[ruby-dev:34006]')
=begin
ensure
DummyNumeric.class_eval do
remove_method :/, :%
end
=end
end
def test_real_p